Probability and Statistics Questions and Answers – Testing of Hypothesis

This set of Probability and Statistics Multiple Choice Questions & Answers (MCQs) focuses on “Testing of Hypothesis”.

Sanfoundry Global Education & Learning Series – Probability and Statistics.

To practice all areas of Probability and Statistics, here is complete set of 1000+ Multiple Choice Questions and Answers .

  • Practice Engineering Mathematics MCQ
  • Practice Numerical Methods MCQ
  • Check Probability and Statistics Books
  • Apply for 1st Year Engineering Internship

Recommended Articles:

  • Probability and Statistics Questions and Answers – Testing of Hypothesis Concerning Single Population Mean
  • Probability and Statistics Questions and Answers – Probability Distributions – 1
  • Probability and Statistics Questions and Answers – Sampling Distribution of Means
  • Probability and Statistics Questions and Answers – Sampling Distribution – 2
  • Probability and Statistics Questions and Answers – Chi-Squared Distribution
  • Probability and Statistics Questions and Answers – Sampling Distribution – 1
  • Probability and Statistics MCQ (Multiple Choice Questions)
  • Probability and Statistics Questions and Answers – Sampling Distribution of Proportions
  • Probability and Statistics Questions and Answers – F-Distribution
  • Probability and Statistics Questions and Answers – Probability Distributions – 2
  • Probability and Statistics MCQ Questions
  • Mechanical Behaviour & Testing of Materials MCQ Questions
  • Probability MCQ Questions
  • Statistical Quality Control MCQ Questions
  • JavaScript MCQ Questions
  • C# Programs on Functions
  • Visual Basic MCQ Questions
  • String Programs in C++
  • Linked List Programs in C
  • JUnit MCQ Questions

Manish Bhojasia - Founder & CTO at Sanfoundry

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

hypothesis testing can help us validate mcq

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved August 13, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

EBC Logo 2024

MCQ on Hypothesis Testing in Statistics

Statistical hypothesis testing is a method used to assess the validity of claims about data. It involves formulating null and alternative hypotheses, conducting tests, and interpreting results to draw conclusions about population parameters from sample data. This MCQ on Hypothesis Testing will help you to understand the basic concepts and applications of testing of hypothesis.

You may also like : Hypothesis Testing Notes | PPT Hypothesis Testing |

clock.png

You may also like: Biostatistics Notes   |   Biostatistics PPT   |   Biostatistics MCQs   |

<<< Back to Statistics MCQ Page

Related posts:

  • Hypothesis Testing in Statistics – Short Notes + PPT
  • MCQ on Errors in Statistics
  • MCQ on Experimental Design
  • MCQ on t Test
  • MCQ on Correlation and Regression

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Privacy Overview

CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Reset password New user? Sign up

Existing user? Log in

Hypothesis Testing

Already have an account? Log in here.

A hypothesis test is a statistical inference method used to test the significance of a proposed (hypothesized) relation between population statistics (parameters) and their corresponding sample estimators . In other words, hypothesis tests are used to determine if there is enough evidence in a sample to prove a hypothesis true for the entire population.

The test considers two hypotheses: the null hypothesis , which is a statement meant to be tested, usually something like "there is no effect" with the intention of proving this false, and the alternate hypothesis , which is the statement meant to stand after the test is performed. The two hypotheses must be mutually exclusive ; moreover, in most applications, the two are complementary (one being the negation of the other). The test works by comparing the \(p\)-value to the level of significance (a chosen target). If the \(p\)-value is less than or equal to the level of significance, then the null hypothesis is rejected.

When analyzing data, only samples of a certain size might be manageable as efficient computations. In some situations the error terms follow a continuous or infinite distribution, hence the use of samples to suggest accuracy of the chosen test statistics. The method of hypothesis testing gives an advantage over guessing what distribution or which parameters the data follows.

Definitions and Methodology

Hypothesis test and confidence intervals.

In statistical inference, properties (parameters) of a population are analyzed by sampling data sets. Given assumptions on the distribution, i.e. a statistical model of the data, certain hypotheses can be deduced from the known behavior of the model. These hypotheses must be tested against sampled data from the population.

The null hypothesis \((\)denoted \(H_0)\) is a statement that is assumed to be true. If the null hypothesis is rejected, then there is enough evidence (statistical significance) to accept the alternate hypothesis \((\)denoted \(H_1).\) Before doing any test for significance, both hypotheses must be clearly stated and non-conflictive, i.e. mutually exclusive, statements. Rejecting the null hypothesis, given that it is true, is called a type I error and it is denoted \(\alpha\), which is also its probability of occurrence. Failing to reject the null hypothesis, given that it is false, is called a type II error and it is denoted \(\beta\), which is also its probability of occurrence. Also, \(\alpha\) is known as the significance level , and \(1-\beta\) is known as the power of the test. \(H_0\) \(\textbf{is true}\)\(\hspace{15mm}\) \(H_0\) \(\textbf{is false}\) \(\textbf{Reject}\) \(H_0\)\(\hspace{10mm}\) Type I error Correct Decision \(\textbf{Reject}\) \(H_1\) Correct Decision Type II error The test statistic is the standardized value following the sampled data under the assumption that the null hypothesis is true, and a chosen particular test. These tests depend on the statistic to be studied and the assumed distribution it follows, e.g. the population mean following a normal distribution. The \(p\)-value is the probability of observing an extreme test statistic in the direction of the alternate hypothesis, given that the null hypothesis is true. The critical value is the value of the assumed distribution of the test statistic such that the probability of making a type I error is small.
Methodologies: Given an estimator \(\hat \theta\) of a population statistic \(\theta\), following a probability distribution \(P(T)\), computed from a sample \(\mathcal{S},\) and given a significance level \(\alpha\) and test statistic \(t^*,\) define \(H_0\) and \(H_1;\) compute the test statistic \(t^*.\) \(p\)-value Approach (most prevalent): Find the \(p\)-value using \(t^*\) (right-tailed). If the \(p\)-value is at most \(\alpha,\) reject \(H_0\). Otherwise, reject \(H_1\). Critical Value Approach: Find the critical value solving the equation \(P(T\geq t_\alpha)=\alpha\) (right-tailed). If \(t^*>t_\alpha\), reject \(H_0\). Otherwise, reject \(H_1\). Note: Failing to reject \(H_0\) only means inability to accept \(H_1\), and it does not mean to accept \(H_0\).
Assume a normally distributed population has recorded cholesterol levels with various statistics computed. From a sample of 100 subjects in the population, the sample mean was 214.12 mg/dL (milligrams per deciliter), with a sample standard deviation of 45.71 mg/dL. Perform a hypothesis test, with significance level 0.05, to test if there is enough evidence to conclude that the population mean is larger than 200 mg/dL. Hypothesis Test We will perform a hypothesis test using the \(p\)-value approach with significance level \(\alpha=0.05:\) Define \(H_0\): \(\mu=200\). Define \(H_1\): \(\mu>200\). Since our values are normally distributed, the test statistic is \(z^*=\frac{\bar X - \mu_0}{\frac{s}{\sqrt{n}}}=\frac{214.12 - 200}{\frac{45.71}{\sqrt{100}}}\approx 3.09\). Using a standard normal distribution, we find that our \(p\)-value is approximately \(0.001\). Since the \(p\)-value is at most \(\alpha=0.05,\) we reject \(H_0\). Therefore, we can conclude that the test shows sufficient evidence to support the claim that \(\mu\) is larger than \(200\) mg/dL.

If the sample size was smaller, the normal and \(t\)-distributions behave differently. Also, the question itself must be managed by a double-tail test instead.

Assume a population's cholesterol levels are recorded and various statistics are computed. From a sample of 25 subjects, the sample mean was 214.12 mg/dL (milligrams per deciliter), with a sample standard deviation of 45.71 mg/dL. Perform a hypothesis test, with significance level 0.05, to test if there is enough evidence to conclude that the population mean is not equal to 200 mg/dL. Hypothesis Test We will perform a hypothesis test using the \(p\)-value approach with significance level \(\alpha=0.05\) and the \(t\)-distribution with 24 degrees of freedom: Define \(H_0\): \(\mu=200\). Define \(H_1\): \(\mu\neq 200\). Using the \(t\)-distribution, the test statistic is \(t^*=\frac{\bar X - \mu_0}{\frac{s}{\sqrt{n}}}=\frac{214.12 - 200}{\frac{45.71}{\sqrt{25}}}\approx 1.54\). Using a \(t\)-distribution with 24 degrees of freedom, we find that our \(p\)-value is approximately \(2(0.068)=0.136\). We have multiplied by two since this is a two-tailed argument, i.e. the mean can be smaller than or larger than. Since the \(p\)-value is larger than \(\alpha=0.05,\) we fail to reject \(H_0\). Therefore, the test does not show sufficient evidence to support the claim that \(\mu\) is not equal to \(200\) mg/dL.

The complement of the rejection on a two-tailed hypothesis test (with significance level \(\alpha\)) for a population parameter \(\theta\) is equivalent to finding a confidence interval \((\)with confidence level \(1-\alpha)\) for the population parameter \(\theta\). If the assumption on the parameter \(\theta\) falls inside the confidence interval, then the test has failed to reject the null hypothesis \((\)with \(p\)-value greater than \(\alpha).\) Otherwise, if \(\theta\) does not fall in the confidence interval, then the null hypothesis is rejected in favor of the alternate \((\)with \(p\)-value at most \(\alpha).\)

  • Statistics (Estimation)
  • Normal Distribution
  • Correlation
  • Confidence Intervals

Problem Loading...

Note Loading...

Set Loading...

  • Comprehensive Learning Paths
  • 150+ Hours of Videos
  • Complete Access to Jupyter notebooks, Datasets, References.

Rating

Hypothesis Testing – A Deep Dive into Hypothesis Testing, The Backbone of Statistical Inference

  • September 21, 2023

Explore the intricacies of hypothesis testing, a cornerstone of statistical analysis. Dive into methods, interpretations, and applications for making data-driven decisions.

hypothesis testing can help us validate mcq

In this Blog post we will learn:

  • What is Hypothesis Testing?
  • Steps in Hypothesis Testing 2.1. Set up Hypotheses: Null and Alternative 2.2. Choose a Significance Level (α) 2.3. Calculate a test statistic and P-Value 2.4. Make a Decision
  • Example : Testing a new drug.
  • Example in python

1. What is Hypothesis Testing?

In simple terms, hypothesis testing is a method used to make decisions or inferences about population parameters based on sample data. Imagine being handed a dice and asked if it’s biased. By rolling it a few times and analyzing the outcomes, you’d be engaging in the essence of hypothesis testing.

Think of hypothesis testing as the scientific method of the statistics world. Suppose you hear claims like “This new drug works wonders!” or “Our new website design boosts sales.” How do you know if these statements hold water? Enter hypothesis testing.

2. Steps in Hypothesis Testing

  • Set up Hypotheses : Begin with a null hypothesis (H0) and an alternative hypothesis (Ha).
  • Choose a Significance Level (α) : Typically 0.05, this is the probability of rejecting the null hypothesis when it’s actually true. Think of it as the chance of accusing an innocent person.
  • Calculate Test statistic and P-Value : Gather evidence (data) and calculate a test statistic.
  • p-value : This is the probability of observing the data, given that the null hypothesis is true. A small p-value (typically ≤ 0.05) suggests the data is inconsistent with the null hypothesis.
  • Decision Rule : If the p-value is less than or equal to α, you reject the null hypothesis in favor of the alternative.

2.1. Set up Hypotheses: Null and Alternative

Before diving into testing, we must formulate hypotheses. The null hypothesis (H0) represents the default assumption, while the alternative hypothesis (H1) challenges it.

For instance, in drug testing, H0 : “The new drug is no better than the existing one,” H1 : “The new drug is superior .”

2.2. Choose a Significance Level (α)

When You collect and analyze data to test H0 and H1 hypotheses. Based on your analysis, you decide whether to reject the null hypothesis in favor of the alternative, or fail to reject / Accept the null hypothesis.

The significance level, often denoted by $α$, represents the probability of rejecting the null hypothesis when it is actually true.

In other words, it’s the risk you’re willing to take of making a Type I error (false positive).

Type I Error (False Positive) :

  • Symbolized by the Greek letter alpha (α).
  • Occurs when you incorrectly reject a true null hypothesis . In other words, you conclude that there is an effect or difference when, in reality, there isn’t.
  • The probability of making a Type I error is denoted by the significance level of a test. Commonly, tests are conducted at the 0.05 significance level , which means there’s a 5% chance of making a Type I error .
  • Commonly used significance levels are 0.01, 0.05, and 0.10, but the choice depends on the context of the study and the level of risk one is willing to accept.

Example : If a drug is not effective (truth), but a clinical trial incorrectly concludes that it is effective (based on the sample data), then a Type I error has occurred.

Type II Error (False Negative) :

  • Symbolized by the Greek letter beta (β).
  • Occurs when you accept a false null hypothesis . This means you conclude there is no effect or difference when, in reality, there is.
  • The probability of making a Type II error is denoted by β. The power of a test (1 – β) represents the probability of correctly rejecting a false null hypothesis.

Example : If a drug is effective (truth), but a clinical trial incorrectly concludes that it is not effective (based on the sample data), then a Type II error has occurred.

Balancing the Errors :

hypothesis testing can help us validate mcq

In practice, there’s a trade-off between Type I and Type II errors. Reducing the risk of one typically increases the risk of the other. For example, if you want to decrease the probability of a Type I error (by setting a lower significance level), you might increase the probability of a Type II error unless you compensate by collecting more data or making other adjustments.

It’s essential to understand the consequences of both types of errors in any given context. In some situations, a Type I error might be more severe, while in others, a Type II error might be of greater concern. This understanding guides researchers in designing their experiments and choosing appropriate significance levels.

2.3. Calculate a test statistic and P-Value

Test statistic : A test statistic is a single number that helps us understand how far our sample data is from what we’d expect under a null hypothesis (a basic assumption we’re trying to test against). Generally, the larger the test statistic, the more evidence we have against our null hypothesis. It helps us decide whether the differences we observe in our data are due to random chance or if there’s an actual effect.

P-value : The P-value tells us how likely we would get our observed results (or something more extreme) if the null hypothesis were true. It’s a value between 0 and 1. – A smaller P-value (typically below 0.05) means that the observation is rare under the null hypothesis, so we might reject the null hypothesis. – A larger P-value suggests that what we observed could easily happen by random chance, so we might not reject the null hypothesis.

2.4. Make a Decision

Relationship between $α$ and P-Value

When conducting a hypothesis test:

We then calculate the p-value from our sample data and the test statistic.

Finally, we compare the p-value to our chosen $α$:

  • If $p−value≤α$: We reject the null hypothesis in favor of the alternative hypothesis. The result is said to be statistically significant.
  • If $p−value>α$: We fail to reject the null hypothesis. There isn’t enough statistical evidence to support the alternative hypothesis.

3. Example : Testing a new drug.

Imagine we are investigating whether a new drug is effective at treating headaches faster than drug B.

Setting Up the Experiment : You gather 100 people who suffer from headaches. Half of them (50 people) are given the new drug (let’s call this the ‘Drug Group’), and the other half are given a sugar pill, which doesn’t contain any medication.

  • Set up Hypotheses : Before starting, you make a prediction:
  • Null Hypothesis (H0): The new drug has no effect. Any difference in healing time between the two groups is just due to random chance.
  • Alternative Hypothesis (H1): The new drug does have an effect. The difference in healing time between the two groups is significant and not just by chance.

Calculate Test statistic and P-Value : After the experiment, you analyze the data. The “test statistic” is a number that helps you understand the difference between the two groups in terms of standard units.

For instance, let’s say:

  • The average healing time in the Drug Group is 2 hours.
  • The average healing time in the Placebo Group is 3 hours.

The test statistic helps you understand how significant this 1-hour difference is. If the groups are large and the spread of healing times in each group is small, then this difference might be significant. But if there’s a huge variation in healing times, the 1-hour difference might not be so special.

Imagine the P-value as answering this question: “If the new drug had NO real effect, what’s the probability that I’d see a difference as extreme (or more extreme) as the one I found, just by random chance?”

For instance:

  • P-value of 0.01 means there’s a 1% chance that the observed difference (or a more extreme difference) would occur if the drug had no effect. That’s pretty rare, so we might consider the drug effective.
  • P-value of 0.5 means there’s a 50% chance you’d see this difference just by chance. That’s pretty high, so we might not be convinced the drug is doing much.
  • If the P-value is less than ($α$) 0.05: the results are “statistically significant,” and they might reject the null hypothesis , believing the new drug has an effect.
  • If the P-value is greater than ($α$) 0.05: the results are not statistically significant, and they don’t reject the null hypothesis , remaining unsure if the drug has a genuine effect.

4. Example in python

For simplicity, let’s say we’re using a t-test (common for comparing means). Let’s dive into Python:

Making a Decision : “The results are statistically significant! p-value < 0.05 , The drug seems to have an effect!” If not, we’d say, “Looks like the drug isn’t as miraculous as we thought.”

5. Conclusion

Hypothesis testing is an indispensable tool in data science, allowing us to make data-driven decisions with confidence. By understanding its principles, conducting tests properly, and considering real-world applications, you can harness the power of hypothesis testing to unlock valuable insights from your data.

More Articles

Correlation – connecting the dots, the role of correlation in data analysis, sampling and sampling distributions – a comprehensive guide on sampling and sampling distributions, law of large numbers – a deep dive into the world of statistics, central limit theorem – a deep dive into central limit theorem and its significance in statistics, skewness and kurtosis – peaks and tails, understanding data through skewness and kurtosis”, similar articles, complete introduction to linear regression in r, how to implement common statistical significance tests and find the p value, logistic regression – a complete tutorial with examples in r.

Subscribe to Machine Learning Plus for high value data science content

© Machinelearningplus. All rights reserved.

hypothesis testing can help us validate mcq

Machine Learning A-Z™: Hands-On Python & R In Data Science

Free sample videos:.

hypothesis testing can help us validate mcq

hypothesis testing can help us validate mcq

We'll Be Right Back!

  • Hypothesis Testing: Definition, Uses, Limitations + Examples

busayo.longe

Hypothesis testing is as old as the scientific method and is at the heart of the research process. 

Research exists to validate or disprove assumptions about various phenomena. The process of validation involves testing and it is in this context that we will explore hypothesis testing. 

What is a Hypothesis? 

A hypothesis is a calculated prediction or assumption about a population parameter based on limited evidence. The whole idea behind hypothesis formulation is testing—this means the researcher subjects his or her calculated assumption to a series of evaluations to know whether they are true or false. 

Typically, every research starts with a hypothesis—the investigator makes a claim and experiments to prove that this claim is true or false . For instance, if you predict that students who drink milk before class perform better than those who don’t, then this becomes a hypothesis that can be confirmed or refuted using an experiment.  

Read: What is Empirical Research Study? [Examples & Method]

What are the Types of Hypotheses? 

1. simple hypothesis.

Also known as a basic hypothesis, a simple hypothesis suggests that an independent variable is responsible for a corresponding dependent variable. In other words, an occurrence of the independent variable inevitably leads to an occurrence of the dependent variable. 

Typically, simple hypotheses are considered as generally true, and they establish a causal relationship between two variables. 

Examples of Simple Hypothesis  

  • Drinking soda and other sugary drinks can cause obesity. 
  • Smoking cigarettes daily leads to lung cancer.

2. Complex Hypothesis

A complex hypothesis is also known as a modal. It accounts for the causal relationship between two independent variables and the resulting dependent variables. This means that the combination of the independent variables leads to the occurrence of the dependent variables . 

Examples of Complex Hypotheses  

  • Adults who do not smoke and drink are less likely to develop liver-related conditions.
  • Global warming causes icebergs to melt which in turn causes major changes in weather patterns.

3. Null Hypothesis

As the name suggests, a null hypothesis is formed when a researcher suspects that there’s no relationship between the variables in an observation. In this case, the purpose of the research is to approve or disapprove this assumption. 

Examples of Null Hypothesis

  • This is no significant change in a student’s performance if they drink coffee or tea before classes. 
  • There’s no significant change in the growth of a plant if one uses distilled water only or vitamin-rich water. 
Read: Research Report: Definition, Types + [Writing Guide]

4. Alternative Hypothesis 

To disapprove a null hypothesis, the researcher has to come up with an opposite assumption—this assumption is known as the alternative hypothesis. This means if the null hypothesis says that A is false, the alternative hypothesis assumes that A is true. 

An alternative hypothesis can be directional or non-directional depending on the direction of the difference. A directional alternative hypothesis specifies the direction of the tested relationship, stating that one variable is predicted to be larger or smaller than the null value while a non-directional hypothesis only validates the existence of a difference without stating its direction. 

Examples of Alternative Hypotheses  

  • Starting your day with a cup of tea instead of a cup of coffee can make you more alert in the morning. 
  • The growth of a plant improves significantly when it receives distilled water instead of vitamin-rich water. 

5. Logical Hypothesis

Logical hypotheses are some of the most common types of calculated assumptions in systematic investigations. It is an attempt to use your reasoning to connect different pieces in research and build a theory using little evidence. In this case, the researcher uses any data available to him, to form a plausible assumption that can be tested. 

Examples of Logical Hypothesis

  • Waking up early helps you to have a more productive day. 
  • Beings from Mars would not be able to breathe the air in the atmosphere of the Earth. 

6. Empirical Hypothesis  

After forming a logical hypothesis, the next step is to create an empirical or working hypothesis. At this stage, your logical hypothesis undergoes systematic testing to prove or disprove the assumption. An empirical hypothesis is subject to several variables that can trigger changes and lead to specific outcomes. 

Examples of Empirical Testing 

  • People who eat more fish run faster than people who eat meat.
  • Women taking vitamin E grow hair faster than those taking vitamin K.

7. Statistical Hypothesis

When forming a statistical hypothesis, the researcher examines the portion of a population of interest and makes a calculated assumption based on the data from this sample. A statistical hypothesis is most common with systematic investigations involving a large target audience. Here, it’s impossible to collect responses from every member of the population so you have to depend on data from your sample and extrapolate the results to the wider population. 

Examples of Statistical Hypothesis  

  • 45% of students in Louisiana have middle-income parents. 
  • 80% of the UK’s population gets a divorce because of irreconcilable differences.

What is Hypothesis Testing? 

Hypothesis testing is an assessment method that allows researchers to determine the plausibility of a hypothesis. It involves testing an assumption about a specific population parameter to know whether it’s true or false. These population parameters include variance, standard deviation, and median. 

Typically, hypothesis testing starts with developing a null hypothesis and then performing several tests that support or reject the null hypothesis. The researcher uses test statistics to compare the association or relationship between two or more variables. 

Explore: Research Bias: Definition, Types + Examples

Researchers also use hypothesis testing to calculate the coefficient of variation and determine if the regression relationship and the correlation coefficient are statistically significant.

How Hypothesis Testing Works

The basis of hypothesis testing is to examine and analyze the null hypothesis and alternative hypothesis to know which one is the most plausible assumption. Since both assumptions are mutually exclusive, only one can be true. In other words, the occurrence of a null hypothesis destroys the chances of the alternative coming to life, and vice-versa. 

Interesting: 21 Chrome Extensions for Academic Researchers in 2021

What Are The Stages of Hypothesis Testing?  

To successfully confirm or refute an assumption, the researcher goes through five (5) stages of hypothesis testing; 

  • Determine the null hypothesis
  • Specify the alternative hypothesis
  • Set the significance level
  • Calculate the test statistics and corresponding P-value
  • Draw your conclusion
  • Determine the Null Hypothesis

Like we mentioned earlier, hypothesis testing starts with creating a null hypothesis which stands as an assumption that a certain statement is false or implausible. For example, the null hypothesis (H0) could suggest that different subgroups in the research population react to a variable in the same way. 

  • Specify the Alternative Hypothesis

Once you know the variables for the null hypothesis, the next step is to determine the alternative hypothesis. The alternative hypothesis counters the null assumption by suggesting the statement or assertion is true. Depending on the purpose of your research, the alternative hypothesis can be one-sided or two-sided. 

Using the example we established earlier, the alternative hypothesis may argue that the different sub-groups react differently to the same variable based on several internal and external factors. 

  • Set the Significance Level

Many researchers create a 5% allowance for accepting the value of an alternative hypothesis, even if the value is untrue. This means that there is a 0.05 chance that one would go with the value of the alternative hypothesis, despite the truth of the null hypothesis. 

Something to note here is that the smaller the significance level, the greater the burden of proof needed to reject the null hypothesis and support the alternative hypothesis.

Explore: What is Data Interpretation? + [Types, Method & Tools]
  • Calculate the Test Statistics and Corresponding P-Value 

Test statistics in hypothesis testing allow you to compare different groups between variables while the p-value accounts for the probability of obtaining sample statistics if your null hypothesis is true. In this case, your test statistics can be the mean, median and similar parameters. 

If your p-value is 0.65, for example, then it means that the variable in your hypothesis will happen 65 in100 times by pure chance. Use this formula to determine the p-value for your data: 

hypothesis testing can help us validate mcq

  • Draw Your Conclusions

After conducting a series of tests, you should be able to agree or refute the hypothesis based on feedback and insights from your sample data.  

Applications of Hypothesis Testing in Research

Hypothesis testing isn’t only confined to numbers and calculations; it also has several real-life applications in business, manufacturing, advertising, and medicine. 

In a factory or other manufacturing plants, hypothesis testing is an important part of quality and production control before the final products are approved and sent out to the consumer. 

During ideation and strategy development, C-level executives use hypothesis testing to evaluate their theories and assumptions before any form of implementation. For example, they could leverage hypothesis testing to determine whether or not some new advertising campaign, marketing technique, etc. causes increased sales. 

In addition, hypothesis testing is used during clinical trials to prove the efficacy of a drug or new medical method before its approval for widespread human usage. 

What is an Example of Hypothesis Testing?

An employer claims that her workers are of above-average intelligence. She takes a random sample of 20 of them and gets the following results: 

Mean IQ Scores: 110

Standard Deviation: 15 

Mean Population IQ: 100

Step 1: Using the value of the mean population IQ, we establish the null hypothesis as 100.

Step 2: State that the alternative hypothesis is greater than 100.

Step 3: State the alpha level as 0.05 or 5% 

Step 4: Find the rejection region area (given by your alpha level above) from the z-table. An area of .05 is equal to a z-score of 1.645.

Step 5: Calculate the test statistics using this formula

hypothesis testing can help us validate mcq

Z = (110–100) ÷ (15÷√20) 

10 ÷ 3.35 = 2.99 

If the value of the test statistics is higher than the value of the rejection region, then you should reject the null hypothesis. If it is less, then you cannot reject the null. 

In this case, 2.99 > 1.645 so we reject the null. 

Importance/Benefits of Hypothesis Testing 

The most significant benefit of hypothesis testing is it allows you to evaluate the strength of your claim or assumption before implementing it in your data set. Also, hypothesis testing is the only valid method to prove that something “is or is not”. Other benefits include: 

  • Hypothesis testing provides a reliable framework for making any data decisions for your population of interest. 
  • It helps the researcher to successfully extrapolate data from the sample to the larger population. 
  • Hypothesis testing allows the researcher to determine whether the data from the sample is statistically significant. 
  • Hypothesis testing is one of the most important processes for measuring the validity and reliability of outcomes in any systematic investigation. 
  • It helps to provide links to the underlying theory and specific research questions.

Criticism and Limitations of Hypothesis Testing

Several limitations of hypothesis testing can affect the quality of data you get from this process. Some of these limitations include: 

  • The interpretation of a p-value for observation depends on the stopping rule and definition of multiple comparisons. This makes it difficult to calculate since the stopping rule is subject to numerous interpretations, plus “multiple comparisons” are unavoidably ambiguous. 
  • Conceptual issues often arise in hypothesis testing, especially if the researcher merges Fisher and Neyman-Pearson’s methods which are conceptually distinct. 
  • In an attempt to focus on the statistical significance of the data, the researcher might ignore the estimation and confirmation by repeated experiments.
  • Hypothesis testing can trigger publication bias, especially when it requires statistical significance as a criterion for publication.
  • When used to detect whether a difference exists between groups, hypothesis testing can trigger absurd assumptions that affect the reliability of your observation.

Logo

Connect to Formplus, Get Started Now - It's Free!

  • alternative hypothesis
  • alternative vs null hypothesis
  • complex hypothesis
  • empirical hypothesis
  • hypothesis testing
  • logical hypothesis
  • simple hypothesis
  • statistical hypothesis
  • busayo.longe

Formplus

You may also like:

Alternative vs Null Hypothesis: Pros, Cons, Uses & Examples

We are going to discuss alternative hypotheses and null hypotheses in this post and how they work in research.

hypothesis testing can help us validate mcq

Internal Validity in Research: Definition, Threats, Examples

In this article, we will discuss the concept of internal validity, some clear examples, its importance, and how to test it.

Type I vs Type II Errors: Causes, Examples & Prevention

This article will discuss the two different types of errors in hypothesis testing and how you can prevent them from occurring in your research

What is Pure or Basic Research? + [Examples & Method]

Simple guide on pure or basic research, its methods, characteristics, advantages, and examples in science, medicine, education and psychology

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Statistical Hypothesis Testing Overview

By Jim Frost 59 Comments

In this blog post, I explain why you need to use statistical hypothesis testing and help you navigate the essential terminology. Hypothesis testing is a crucial procedure to perform when you want to make inferences about a population using a random sample. These inferences include estimating population properties such as the mean, differences between means, proportions, and the relationships between variables.

This post provides an overview of statistical hypothesis testing. If you need to perform hypothesis tests, consider getting my book, Hypothesis Testing: An Intuitive Guide .

Why You Should Perform Statistical Hypothesis Testing

Graph that displays mean drug scores by group. Use hypothesis testing to determine whether the difference between the means are statistically significant.

Hypothesis testing is a form of inferential statistics that allows us to draw conclusions about an entire population based on a representative sample. You gain tremendous benefits by working with a sample. In most cases, it is simply impossible to observe the entire population to understand its properties. The only alternative is to collect a random sample and then use statistics to analyze it.

While samples are much more practical and less expensive to work with, there are trade-offs. When you estimate the properties of a population from a sample, the sample statistics are unlikely to equal the actual population value exactly.  For instance, your sample mean is unlikely to equal the population mean. The difference between the sample statistic and the population value is the sample error.

Differences that researchers observe in samples might be due to sampling error rather than representing a true effect at the population level. If sampling error causes the observed difference, the next time someone performs the same experiment the results might be different. Hypothesis testing incorporates estimates of the sampling error to help you make the correct decision. Learn more about Sampling Error .

For example, if you are studying the proportion of defects produced by two manufacturing methods, any difference you observe between the two sample proportions might be sample error rather than a true difference. If the difference does not exist at the population level, you won’t obtain the benefits that you expect based on the sample statistics. That can be a costly mistake!

Let’s cover some basic hypothesis testing terms that you need to know.

Background information : Difference between Descriptive and Inferential Statistics and Populations, Parameters, and Samples in Inferential Statistics

Hypothesis Testing

Hypothesis testing is a statistical analysis that uses sample data to assess two mutually exclusive theories about the properties of a population. Statisticians call these theories the null hypothesis and the alternative hypothesis. A hypothesis test assesses your sample statistic and factors in an estimate of the sample error to determine which hypothesis the data support.

When you can reject the null hypothesis, the results are statistically significant, and your data support the theory that an effect exists at the population level.

The effect is the difference between the population value and the null hypothesis value. The effect is also known as population effect or the difference. For example, the mean difference between the health outcome for a treatment group and a control group is the effect.

Typically, you do not know the size of the actual effect. However, you can use a hypothesis test to help you determine whether an effect exists and to estimate its size. Hypothesis tests convert your sample effect into a test statistic, which it evaluates for statistical significance. Learn more about Test Statistics .

An effect can be statistically significant, but that doesn’t necessarily indicate that it is important in a real-world, practical sense. For more information, read my post about Statistical vs. Practical Significance .

Null Hypothesis

The null hypothesis is one of two mutually exclusive theories about the properties of the population in hypothesis testing. Typically, the null hypothesis states that there is no effect (i.e., the effect size equals zero). The null is often signified by H 0 .

In all hypothesis testing, the researchers are testing an effect of some sort. The effect can be the effectiveness of a new vaccination, the durability of a new product, the proportion of defect in a manufacturing process, and so on. There is some benefit or difference that the researchers hope to identify.

However, it’s possible that there is no effect or no difference between the experimental groups. In statistics, we call this lack of an effect the null hypothesis. Therefore, if you can reject the null, you can favor the alternative hypothesis, which states that the effect exists (doesn’t equal zero) at the population level.

You can think of the null as the default theory that requires sufficiently strong evidence against in order to reject it.

For example, in a 2-sample t-test, the null often states that the difference between the two means equals zero.

When you can reject the null hypothesis, your results are statistically significant. Learn more about Statistical Significance: Definition & Meaning .

Related post : Understanding the Null Hypothesis in More Detail

Alternative Hypothesis

The alternative hypothesis is the other theory about the properties of the population in hypothesis testing. Typically, the alternative hypothesis states that a population parameter does not equal the null hypothesis value. In other words, there is a non-zero effect. If your sample contains sufficient evidence, you can reject the null and favor the alternative hypothesis. The alternative is often identified with H 1 or H A .

For example, in a 2-sample t-test, the alternative often states that the difference between the two means does not equal zero.

You can specify either a one- or two-tailed alternative hypothesis:

If you perform a two-tailed hypothesis test, the alternative states that the population parameter does not equal the null value. For example, when the alternative hypothesis is H A : μ ≠ 0, the test can detect differences both greater than and less than the null value.

A one-tailed alternative has more power to detect an effect but it can test for a difference in only one direction. For example, H A : μ > 0 can only test for differences that are greater than zero.

Related posts : Understanding T-tests and One-Tailed and Two-Tailed Hypothesis Tests Explained

Image of a P for the p-value in hypothesis testing.

P-values are the probability that you would obtain the effect observed in your sample, or larger, if the null hypothesis is correct. In simpler terms, p-values tell you how strongly your sample data contradict the null. Lower p-values represent stronger evidence against the null. You use P-values in conjunction with the significance level to determine whether your data favor the null or alternative hypothesis.

Related post : Interpreting P-values Correctly

Significance Level (Alpha)

image of the alpha symbol for hypothesis testing.

For instance, a significance level of 0.05 signifies a 5% risk of deciding that an effect exists when it does not exist.

Use p-values and significance levels together to help you determine which hypothesis the data support. If the p-value is less than your significance level, you can reject the null and conclude that the effect is statistically significant. In other words, the evidence in your sample is strong enough to be able to reject the null hypothesis at the population level.

Related posts : Graphical Approach to Significance Levels and P-values and Conceptual Approach to Understanding Significance Levels

Types of Errors in Hypothesis Testing

Statistical hypothesis tests are not 100% accurate because they use a random sample to draw conclusions about entire populations. There are two types of errors related to drawing an incorrect conclusion.

  • False positives: You reject a null that is true. Statisticians call this a Type I error . The Type I error rate equals your significance level or alpha (α).
  • False negatives: You fail to reject a null that is false. Statisticians call this a Type II error. Generally, you do not know the Type II error rate. However, it is a larger risk when you have a small sample size , noisy data, or a small effect size. The type II error rate is also known as beta (β).

Statistical power is the probability that a hypothesis test correctly infers that a sample effect exists in the population. In other words, the test correctly rejects a false null hypothesis. Consequently, power is inversely related to a Type II error. Power = 1 – β. Learn more about Power in Statistics .

Related posts : Types of Errors in Hypothesis Testing and Estimating a Good Sample Size for Your Study Using Power Analysis

Which Type of Hypothesis Test is Right for You?

There are many different types of procedures you can use. The correct choice depends on your research goals and the data you collect. Do you need to understand the mean or the differences between means? Or, perhaps you need to assess proportions. You can even use hypothesis testing to determine whether the relationships between variables are statistically significant.

To choose the proper statistical procedure, you’ll need to assess your study objectives and collect the correct type of data . This background research is necessary before you begin a study.

Related Post : Hypothesis Tests for Continuous, Binary, and Count Data

Statistical tests are crucial when you want to use sample data to make conclusions about a population because these tests account for sample error. Using significance levels and p-values to determine when to reject the null hypothesis improves the probability that you will draw the correct conclusion.

To see an alternative approach to these traditional hypothesis testing methods, learn about bootstrapping in statistics !

If you want to see examples of hypothesis testing in action, I recommend the following posts that I have written:

  • How Effective Are Flu Shots? This example shows how you can use statistics to test proportions.
  • Fatality Rates in Star Trek . This example shows how to use hypothesis testing with categorical data.
  • Busting Myths About the Battle of the Sexes . A fun example based on a Mythbusters episode that assess continuous data using several different tests.
  • Are Yawns Contagious? Another fun example inspired by a Mythbusters episode.

Share this:

hypothesis testing can help us validate mcq

Reader Interactions

' src=

January 14, 2024 at 8:43 am

Hello professor Jim, how are you doing! Pls. What are the properties of a population and their examples? Thanks for your time and understanding.

' src=

January 14, 2024 at 12:57 pm

Please read my post about Populations vs. Samples for more information and examples.

Also, please note there is a search bar in the upper-right margin of my website. Use that to search for topics.

' src=

July 5, 2023 at 7:05 am

Hello, I have a question as I read your post. You say in p-values section

“P-values are the probability that you would obtain the effect observed in your sample, or larger, if the null hypothesis is correct. In simpler terms, p-values tell you how strongly your sample data contradict the null. Lower p-values represent stronger evidence against the null.”

But according to your definition of effect, the null states that an effect does not exist, correct? So what I assume you want to say is that “P-values are the probability that you would obtain the effect observed in your sample, or larger, if the null hypothesis is **incorrect**.”

July 6, 2023 at 5:18 am

Hi Shrinivas,

The correct definition of p-value is that it is a probability that exists in the context of a true null hypothesis. So, the quotation is correct in stating “if the null hypothesis is correct.”

Essentially, the p-value tells you the likelihood of your observed results (or more extreme) if the null hypothesis is true. It gives you an idea of whether your results are surprising or unusual if there is no effect.

Hence, with sufficiently low p-values, you reject the null hypothesis because it’s telling you that your sample results were unlikely to have occurred if there was no effect in the population.

I hope that helps make it more clear. If not, let me know I’ll attempt to clarify!

' src=

May 8, 2023 at 12:47 am

Thanks a lot Ny best regards

May 7, 2023 at 11:15 pm

Hi Jim Can you tell me something about size effect? Thanks

May 8, 2023 at 12:29 am

Here’s a post that I’ve written about Effect Sizes that will hopefully tell you what you need to know. Please read that. Then, if you have any more specific questions about effect sizes, please post them there. Thanks!

' src=

January 7, 2023 at 4:19 pm

Hi Jim, I have only read two pages so far but I am really amazed because in few paragraphs you made me clearly understand the concepts of months of courses I received in biostatistics! Thanks so much for this work you have done it helps a lot!

January 10, 2023 at 3:25 pm

Thanks so much!

' src=

June 17, 2021 at 1:45 pm

Can you help in the following question: Rocinante36 is priced at ₹7 lakh and has been designed to deliver a mileage of 22 km/litre and a top speed of 140 km/hr. Formulate the null and alternative hypotheses for mileage and top speed to check whether the new models are performing as per the desired design specifications.

' src=

April 19, 2021 at 1:51 pm

Its indeed great to read your work statistics.

I have a doubt regarding the one sample t-test. So as per your book on hypothesis testing with reference to page no 45, you have mentioned the difference between “the sample mean and the hypothesised mean is statistically significant”. So as per my understanding it should be quoted like “the difference between the population mean and the hypothesised mean is statistically significant”. The catch here is the hypothesised mean represents the sample mean.

Please help me understand this.

Regards Rajat

April 19, 2021 at 3:46 pm

Thanks for buying my book. I’m so glad it’s been helpful!

The test is performed on the sample but the results apply to the population. Hence, if the difference between the sample mean (observed in your study) and the hypothesized mean is statistically significant, that suggests that population does not equal the hypothesized mean.

For one sample tests, the hypothesized mean is not the sample mean. It is a mean that you want to use for the test value. It usually represents a value that is important to your research. In other words, it’s a value that you pick for some theoretical/practical reasons. You pick it because you want to determine whether the population mean is different from that particular value.

I hope that helps!

' src=

November 5, 2020 at 6:24 am

Jim, you are such a magnificent statistician/economist/econometrician/data scientist etc whatever profession. Your work inspires and simplifies the lives of so many researchers around the world. I truly admire you and your work. I will buy a copy of each book you have on statistics or econometrics. Keep doing the good work. Remain ever blessed

November 6, 2020 at 9:47 pm

Hi Renatus,

Thanks so much for you very kind comments. You made my day!! I’m so glad that my website has been helpful. And, thanks so much for supporting my books! 🙂

' src=

November 2, 2020 at 9:32 pm

Hi Jim, I hope you are aware of 2019 American Statistical Association’s official statement on Statistical Significance: https://www.tandfonline.com/doi/full/10.1080/00031305.2019.1583913 In case you do not bother reading the full article, may I quote you the core message here: “We conclude, based on our review of the articles in this special issue and the broader literature, that it is time to stop using the term “statistically significant” entirely. Nor should variants such as “significantly different,” “p < 0.05,” and “nonsignificant” survive, whether expressed in words, by asterisks in a table, or in some other way."

With best wishes,

November 3, 2020 at 2:09 am

I’m definitely aware of the debate surrounding how to use p-values most effectively. However, I need to correct you on one point. The link you provide is NOT a statement by the American Statistical Association. It is an editorial by several authors.

There is considerable debate over this issue. There are problems with p-values. However, as the authors state themselves, much of the problem is over people’s mindsets about how to use p-values and their incorrect interpretations about what statistical significance does and does not mean.

If you were to read my website more thoroughly, you’d be aware that I share many of their concerns and I address them in multiple posts. One of the authors’ key points is the need to be thoughtful and conduct thoughtful research and analysis. I emphasize this aspect in multiple posts on this topic. I’ll ask you to read the following three because they all address some of the authors’ concerns and suggestions. But you might run across others to read as well.

Five Tips for Using P-values to Avoid Being Misled How to Interpret P-values Correctly P-values and the Reproducibility of Experimental Results

' src=

September 24, 2020 at 11:52 pm

HI Jim, i just want you to know that you made explanation for Statistics so simple! I should say lesser and fewer words that reduce the complexity. All the best! 🙂

September 25, 2020 at 1:03 am

Thanks, Rene! Your kind words mean a lot to me! I’m so glad it has been helpful!

' src=

September 23, 2020 at 2:21 am

Honestly, I never understood stats during my entire M.Ed course and was another nightmare for me. But how easily you have explained each concept, I have understood stats way beyond my imagination. Thank you so much for helping ignorant research scholars like us. Looking forward to get hardcopy of your book. Kindly tell is it available through flipkart?

September 24, 2020 at 11:14 pm

I’m so happy to hear that my website has been helpful!

I checked on flipkart and it appears like my books are not available there. I’m never exactly sure where they’re available due to the vagaries of different distribution channels. They are available on Amazon in India.

Introduction to Statistics: An Intuitive Guide (Amazon IN) Hypothesis Testing: An Intuitive Guide (Amazon IN)

' src=

July 26, 2020 at 11:57 am

Dear Jim I am a teacher from India . I don’t have any background in statistics, and still I should tell that in a single read I can follow your explanations . I take my entire biostatistics class for botany graduates with your explanations. Thanks a lot. May I know how I can avail your books in India

July 28, 2020 at 12:31 am

Right now my books are only available as ebooks from my website. However, soon I’ll have some exciting news about other ways to obtain it. Stay tuned! I’ll announce it on my email list. If you’re not already on it, you can sign up using the form that is in the right margin of my website.

' src=

June 22, 2020 at 2:02 pm

Also can you please let me if this book covers topics like EDA and principal component analysis?

June 22, 2020 at 2:07 pm

This book doesn’t cover principal components analysis. Although, I wouldn’t really classify that as a hypothesis test. In the future, I might write a multivariate analysis book that would cover this and others. But, that’s well down the road.

My Introduction to Statistics covers EDA. That’s the largely graphical look at your data that you often do prior to hypothesis testing. The Introduction book perfectly leads right into the Hypothesis Testing book.

June 22, 2020 at 1:45 pm

Thanks for the detailed explanation. It does clear my doubts. I saw that your book related to hypothesis testing has the topics that I am studying currently. I am looking forward to purchasing it.

Regards, Take Care

June 19, 2020 at 1:03 pm

For this particular article I did not understand a couple of statements and it would great if you could help: 1)”If sample error causes the observed difference, the next time someone performs the same experiment the results might be different.” 2)”If the difference does not exist at the population level, you won’t obtain the benefits that you expect based on the sample statistics.”

I discovered your articles by chance and now I keep coming back to read & understand statistical concepts. These articles are very informative & easy to digest. Thanks for the simplifying things.

June 20, 2020 at 9:53 pm

I’m so happy to hear that you’ve found my website to be helpful!

To answer your questions, keep in mind that a central tenant of inferential statistics is that the random sample that a study drew was only one of an infinite number of possible it could’ve drawn. Each random sample produces different results. Most results will cluster around the population value assuming they used good methodology. However, random sampling error always exists and makes it so that population estimates from a sample almost never exactly equal the correct population value.

So, imagine that we’re studying a medication and comparing the treatment and control groups. Suppose that the medicine is truly not effect and that the population difference between the treatment and control group is zero (i.e., no difference.) Despite the true difference being zero, most sample estimates will show some degree of either a positive or negative effect thanks to random sampling error. So, just because a study has an observed difference does not mean that a difference exists at the population level. So, on to your questions:

1. If the observed difference is just random error, then it makes sense that if you collected another random sample, the difference could change. It could change from negative to positive, positive to negative, more extreme, less extreme, etc. However, if the difference exists at the population level, most random samples drawn from the population will reflect that difference. If the medicine has an effect, most random samples will reflect that fact and not bounce around on both sides of zero as much.

2. This is closely related to the previous answer. If there is no difference at the population level, but say you approve the medicine because of the observed effects in a sample. Even though your random sample showed an effect (which was really random error), that effect doesn’t exist. So, when you start using it on a larger scale, people won’t benefit from the medicine. That’s why it’s important to separate out what is easily explained by random error versus what is not easily explained by it.

I think reading my post about how hypothesis tests work will help clarify this process. Also, in about 24 hours (as I write this), I’ll be releasing my new ebook about Hypothesis Testing!

' src=

May 29, 2020 at 5:23 am

Hi Jim, I really enjoy your blog. Can you please link me on your blog where you discuss about Subgroup analysis and how it is done? I need to use non parametric and parametric statistical methods for my work and also do subgroup analysis in order to identify potential groups of patients that may benefit more from using a treatment than other groups.

May 29, 2020 at 2:12 pm

Hi, I don’t have a specific article about subgroup analysis. However, subgroup analysis is just the dividing up of a larger sample into subgroups and then analyzing those subgroups separately. You can use the various analyses I write about on the subgroups.

Alternatively, you can include the subgroups in regression analysis as an indicator variable and include that variable as a main effect and an interaction effect to see how the relationships vary by subgroup without needing to subdivide your data. I write about that approach in my article about comparing regression lines . This approach is my preferred approach when possible.

' src=

April 19, 2020 at 7:58 am

sir is confidence interval is a part of estimation?

' src=

April 17, 2020 at 3:36 pm

Sir can u plz briefly explain alternatives of hypothesis testing? I m unable to find the answer

April 18, 2020 at 1:22 am

Assuming you want to draw conclusions about populations by using samples (i.e., inferential statistics ), you can use confidence intervals and bootstrap methods as alternatives to the traditional hypothesis testing methods.

' src=

March 9, 2020 at 10:01 pm

Hi JIm, could you please help with activities that can best teach concepts of hypothesis testing through simulation, Also, do you have any question set that would enhance students intuition why learning hypothesis testing as a topic in introductory statistics. Thanks.

' src=

March 5, 2020 at 3:48 pm

Hi Jim, I’m studying multiple hypothesis testing & was wondering if you had any material that would be relevant. I’m more trying to understand how testing multiple samples simultaneously affects your results & more on the Bonferroni Correction

March 5, 2020 at 4:05 pm

I write about multiple comparisons (aka post hoc tests) in the ANOVA context . I don’t talk about Bonferroni Corrections specifically but I cover related types of corrections. I’m not sure if that exactly addresses what you want to know but is probably the closest I have already written. I hope it helps!

' src=

January 14, 2020 at 9:03 pm

Thank you! Have a great day/evening.

January 13, 2020 at 7:10 pm

Any help would be greatly appreciated. What is the difference between The Hypothesis Test and The Statistical Test of Hypothesis?

January 14, 2020 at 11:02 am

They sound like the same thing to me. Unless this is specialized terminology for a particular field or the author was intending something specific, I’d guess they’re one and the same.

' src=

April 1, 2019 at 10:00 am

so these are the only two forms of Hypothesis used in statistical testing?

April 1, 2019 at 10:02 am

Are you referring to the null and alternative hypothesis? If so, yes, that’s those are the standard hypotheses in a statistical hypothesis test.

April 1, 2019 at 9:57 am

year very insightful post, thanks for the write up

' src=

October 27, 2018 at 11:09 pm

hi there, am upcoming statistician, out of all blogs that i have read, i have found this one more useful as long as my problem is concerned. thanks so much

October 27, 2018 at 11:14 pm

Hi Stano, you’re very welcome! Thanks for your kind words. They mean a lot! I’m happy to hear that my posts were able to help you. I’m sure you will be a fantastic statistician. Best of luck with your studies!

' src=

October 26, 2018 at 11:39 am

Dear Jim, thank you very much for your explanations! I have a question. Can I use t-test to compare two samples in case each of them have right bias?

October 26, 2018 at 12:00 pm

Hi Tetyana,

You’re very welcome!

The term “right bias” is not a standard term. Do you by chance mean right skewed distributions? In other words, if you plot the distribution for each group on a histogram they have longer right tails? These are not the symmetrical bell-shape curves of the normal distribution.

If that’s the case, yes you can as long as you exceed a specific sample size within each group. I include a table that contains these sample size requirements in my post about nonparametric vs parametric analyses .

Bias in statistics refers to cases where an estimate of a value is systematically higher or lower than the true value. If this is the case, you might be able to use t-tests, but you’d need to be sure to understand the nature of the bias so you would understand what the results are really indicating.

I hope this helps!

' src=

April 2, 2018 at 7:28 am

Simple and upto the point 👍 Thank you so much.

April 2, 2018 at 11:11 am

Hi Kalpana, thanks! And I’m glad it was helpful!

' src=

March 26, 2018 at 8:41 am

Am I correct if I say: Alpha – Probability of wrongly rejection of null hypothesis P-value – Probability of wrongly acceptance of null hypothesis

March 28, 2018 at 3:14 pm

You’re correct about alpha. Alpha is the probability of rejecting the null hypothesis when the null is true.

Unfortunately, your definition of the p-value is a bit off. The p-value has a fairly convoluted definition. It is the probability of obtaining the effect observed in a sample, or more extreme, if the null hypothesis is true. The p-value does NOT indicate the probability that either the null or alternative is true or false. Although, those are very common misinterpretations. To learn more, read my post about how to interpret p-values correctly .

' src=

March 2, 2018 at 6:10 pm

I recently started reading your blog and it is very helpful to understand each concept of statistical tests in easy way with some good examples. Also, I recommend to other people go through all these blogs which you posted. Specially for those people who have not statistical background and they are facing to many problems while studying statistical analysis.

Thank you for your such good blogs.

March 3, 2018 at 10:12 pm

Hi Amit, I’m so glad that my blog posts have been helpful for you! It means a lot to me that you took the time to write such a nice comment! Also, thanks for recommending by blog to others! I try really hard to write posts about statistics that are easy to understand.

' src=

January 17, 2018 at 7:03 am

I recently started reading your blog and I find it very interesting. I am learning statistics by my own, and I generally do many google search to understand the concepts. So this blog is quite helpful for me, as it have most of the content which I am looking for.

January 17, 2018 at 3:56 pm

Hi Shashank, thank you! And, I’m very glad to hear that my blog is helpful!

' src=

January 2, 2018 at 2:28 pm

thank u very much sir.

January 2, 2018 at 2:36 pm

You’re very welcome, Hiral!

' src=

November 21, 2017 at 12:43 pm

Thank u so much sir….your posts always helps me to be a #statistician

November 21, 2017 at 2:40 pm

Hi Sachin, you’re very welcome! I’m happy that you find my posts to be helpful!

' src=

November 19, 2017 at 8:22 pm

great post as usual, but it would be nice to see an example.

November 19, 2017 at 8:27 pm

Thank you! At the end of this post, I have links to four other posts that show examples of hypothesis tests in action. You’ll find what you’re looking for in those posts!

Comments and Questions Cancel reply

Back to blog home

Hypothesis testing explained in 4 parts, yuzheng sun, phd.

As data scientists, Hypothesis Testing is expected to be well understood, but often not in reality. It is mainly because our textbooks blend two schools of thought – p-value and significance testing vs. hypothesis testing – inconsistently.

For example, some questions are not obvious unless you have thought through them before:

Are power or beta dependent on the null hypothesis?

Can we accept the null hypothesis? Why?

How does MDE change with alpha holding beta constant?

Why do we use standard error in Hypothesis Testing but not the standard deviation?

Why can’t we be specific about the alternative hypothesis so we can properly model it?

Why is the fundamental tradeoff of the Hypothesis Testing about mistake vs. discovery, not about alpha vs. beta?

Addressing this problem is not easy. The topic of Hypothesis Testing is convoluted. In this article, there are 10 concepts that we will introduce incrementally, aid you with visualizations, and include intuitive explanations. After this article, you will have clear answers to the questions above that you truly understand on a first-principle level and explain these concepts well to your stakeholders.

We break this article into four parts.

Set up the question properly using core statistical concepts, and connect them to Hypothesis Testing, while striking a balance between technically correct and simplicity. Specifically, 

We emphasize a clear distinction between the standard deviation and the standard error, and why the latter is used in Hypothesis Testing

We explain fully when can you “accept” a hypothesis, when shall you say “failing to reject” instead of “accept”, and why

Introduce alpha, type I error, and the critical value with the null hypothesis

Introduce beta, type II error, and power with the alternative hypothesis

Introduce minimum detectable effects and the relationship between the factors with power calculations , with a high-level summary and practical recommendations

Part 1 - Hypothesis Testing, the central limit theorem, population, sample, standard deviation, and standard error

In Hypothesis Testing, we begin with a null hypothesis , which generally asserts that there is no effect between our treatment and control groups. Commonly, this is expressed as the difference in means between the treatment and control groups being zero.

The central limit theorem suggests an important property of this difference in means — given a sufficiently large sample size, the underlying distribution of this difference in means will approximate a normal distribution, regardless of the population's original distribution. There are two notes:

1. The distribution of the population for the treatment and control groups can vary, but the observed means (when you observe many samples and calculate many means) are always normally distributed with a large enough sample. Below is a chart, where the n=10 and n=30 correspond to the underlying distribution of the sample means.

Central Limit Theorem

2. Pay attention to “the underlying distribution”. Standard deviation vs. standard error is a potentially confusing concept. Let’s clarify.

Standard deviation vs. Standard error

Let’s declare our null hypothesis as having no treatment effect. Then, to simplify, let’s propose the following normal distribution with a mean of 0 and a standard deviation of 1 as the range of possible outcomes with probabilities associated with this null hypothesis.

Standard Deviation v Standard Error

The language around population, sample, group, and estimators can get confusing. Again, to simplify, let’s forget that the null hypothesis is about the mean estimator, and declare that we can either observe the mean hypothesis once or many times. When we observe it many times, it forms a sample*, and our goal is to make decisions based on this sample.

* For technical folks, the observation is actually about a single sample, many samples are a group, and the difference in groups is the distribution we are talking about as the mean hypothesis. The red curve represents the distribution of the estimator of this difference, and then we can have another sample consisting of many observations of this estimator. In my simplified language, the red curve is the distribution of the estimator, and the blue curve with sample size is the repeated observations of it. If you have a better way to express these concepts without causing confusiongs, please suggest.

This probability density function means if there is one realization from this distribution, the realitization can be anywhere on the x-axis, with the relative likelihood on the y-axis.

If we draw multiple observations , they form a sample . Each observation in this sample follows the property of this underlying distribution – more likely to be close to 0, and equally likely to be on either side, which makes the odds of positive and negative cancel each other out, so the mean of this sample is even more centered around 0.

We use the standard error to represent the error of our “sample mean” . 

The standard error = the standard deviation of the observed sample / sqrt (sample size). 

For a sample size of 30, the standard error is roughly 0.18. Compared with the underlying distribution, the distribution of the sample mean is much narrower.

Standard Deviation and Standard Error 2 Images

In Hypothesis Testing, we try to draw some conclusions – is there a treatment effect or not? – based on a sample. So when we talk about alpha and beta, which are the probabilities of type I and type II errors , we are talking about the probabilities based on the plot of sample means and standard error .

Part 2, The null hypothesis: alpha and the critical value

From Part 1, we stated that a null hypothesis is commonly expressed as the difference in means between the treatment and control groups being zero.

Without loss of generality*, let’s assume the underlying distribution of our null hypothesis is mean 0 and standard deviation 1

Then the sample mean of the null hypothesis is 0 and the standard error of 1/√ n, where n is the sample size.

When the sample size is 30, this distribution has a standard error of ≈0.18 looks like the below. 

Null Hypothesis YZ

*: A note for the technical readers: The null hypothesis is about the difference in means, but here, without complicating things, we made the subtle change to just draw the distribution of this “estimator of this difference in means”. Everything below speaks to this “estimator”.

The reason we have the null hypothesis is that we want to make judgments, particularly whether a  treatment effect exists. But in the world of probabilities, any observation, and any sample mean can happen, with different probabilities. So we need a decision rule to help us quantify our risk of making mistakes.

The decision rule is, let’s set a threshold. When the sample mean is above the threshold, we reject the null hypothesis; when the sample mean is below the threshold, we accept the null hypothesis.

Accepting a hypothesis vs. failing to reject a hypothesis

It’s worth noting that you may have heard of “we never accept a hypothesis, we just fail to reject a hypothesis” and be subconsciously confused by it. The deep reason is that modern textbooks do an inconsistent blend of Fisher’s significance testing and Neyman-Pearson’s Hypothesis Testing definitions and ignore important caveats ( ref ). To clarify:

First of all, we can never “prove” a particular hypothesis given any observations, because there are infinitely many true hypotheses (with different probabilities) given an observation. We will visualize it in Part 3.

Second, “accepting” a hypothesis does not mean that you believe in it, but only that you act as if it were true. So technically, there is no problem with “accepting” a hypothesis.

But, third, when we talk about p-values and confidence intervals, “accepting” the null hypothesis is at best confusing. The reason is that “the p-value above the threshold” just means we failed to reject the null hypothesis. In the strict Fisher’s p-value framework, there is no alternative hypothesis. While we have a clear criterion for rejecting the null hypothesis (p < alpha), we don't have a similar clear-cut criterion for "accepting" the null hypothesis based on beta.

So the dangers in calling “accepting a hypothesis” in the p-value setting are:

Many people misinterpret “accepting” the null hypothesis as “proving” the null hypothesis, which is wrong; 

“Accepting the null hypothesis” is not rigorously defined, and doesn’t speak to the purpose of the test, which is about whether or not we reject the null hypothesis. 

In this article, we will stay consistent within the Neyman-Pearson framework , where “accepting” a hypothesis is legal and necessary. Otherwise, we cannot draw any distributions without acting as if some hypothesis was true.

You don’t need to know the name Neyman-Pearson to understand anything, but pay attention to our language, as we choose our words very carefully to avoid mistakes and confusion.

So far, we have constructed a simple world of one hypothesis as the only truth, and a decision rule with two potential outcomes – one of the outcomes is “reject the null hypothesis when it is true” and the other outcome is “accept the null hypothesis when it is true”. The likelihoods of both outcomes come from the distribution where the null hypothesis is true.

Later, when we introduce the alternative hypothesis and MDE, we will gradually walk into the world of infinitely many alternative hypotheses and visualize why we cannot “prove” a hypothesis.

We save the distinction between the p-value/significance framework vs. Hypothesis Testing in another article where you will have the full picture.

Type I error, alpha, and the critical value

We’re able to construct a distribution of the sample mean for this null hypothesis using the standard error. Since we only have the null hypothesis as the truth of our universe, we can only make one type of mistake – falsely rejecting the null hypothesis when it is true. This is the type I error , and the probability is called alpha . Suppose we want alpha to be 5%. We can calculate the threshold required to make it happen. This threshold is called the critical value . Below is the chart we further constructed with our sample of 30.

Type I Error Alpha Critical Value

In this chart, alpha is the blue area under the curve. The critical value is 0.3. If our sample mean is above 0.3, we reject the null hypothesis. We have a 5% chance of making the type I error.

Type I error: Falsely rejecting the null hypothesis when the null hypothesis is true

Alpha: The probability of making a Type I error

Critical value: The threshold to determine whether the null hypothesis is to be rejected or not

Part 3, The alternative hypothesis: beta and power

You may have noticed in part 2 that we only spoke to Type I error – rejecting the null hypothesis when it is true. What about the Type II error – falsely accepting the null hypothesis when it is not true?

But it is weird to call “accepting” false unless we know the truth. So we need an alternative hypothesis which serves as the alternative truth. 

Alternative hypotheses are theoretical constructs

There is an important concept that most textbooks fail to emphasize – that is, you can have infinitely many alternative hypotheses for a given null hypothesis, we just choose one. None of them are more special or “real” than the others. 

Let’s visualize it with an example. Suppose we observed a sample mean of 0.51, what is the true alternative hypothesis?

Alternative hypotheses theoretical

With this visualization, you can see why we have “infinitely many alternative hypotheses” because, given the observation, there is an infinite number of alternative hypotheses (plus the null hypothesis) that can be true, each with different probabilities. Some are more likely than others, but all are possible.

Remember, alternative hypotheses are a theoretical construct. We choose one particular alternative hypothesis to calculate certain probabilities. By now, we should have more understanding of why we cannot “accept” the null hypothesis given an observation. We can’t prove that the null hypothesis is true, we just fail to accept it given the observation and our pre-determined decision rule. 

We will fully reconcile this idea of picking one alternative hypothesis out of the world of infinite possibilities when we talk about MDE. The idea of “accept” vs. “fail to reject” is deeper, and we won’t cover it fully in this article. We will do so when we have an article about the p-value and the confidence interval.

Type II error and Beta

For the sake of simplicity and easy comparison, let’s choose an alternative hypothesis with a mean of 0.5, and a standard deviation of

1. Again, with a sample size of 30, the standard error ≈0.18. There are now two potential “truths” in our simple universe.

Type II Error and Beta

Remember from the null hypothesis, we want alpha to be 5% so the corresponding critical value is 0.30. We modify our rule as follows:

If the observation is above 0.30, we reject the null hypothesis and accept the alternative hypothesis ; 

If the observation is below 0.30, we accept the null hypothesis and reject the alternative hypothesis .

Reject alternative and accept null

With the introduction of the alternative hypothesis, the alternative “(hypothesized) truth”, we can call “accepting the null hypothesis and rejecting the alternative hypothesis” a mistake – the Type II error. We can also calculate the probability of this mistake. This is called beta, which is illustrated by the red area below.

Null hypothesis alternative hypothesis

From the visualization, we can see that beta is conditional on the alternative hypothesis and the critical value. Let’s elaborate on these two relationships one by one, very explicitly, as both of them are important.

First, Let’s visualize how beta changes with the mean of the alternative hypothesis by setting another alternative hypothesis where mean = 1 instead of 0.5

Sample Size 30 for Null and Alternative Hypothesis

Beta change from 13.7% to 0.0%. Namely, beta is the probability of falsely rejecting a particular alternative hypothesis when we assume it is true. When we assume a different alternative hypothesis is true, we get a different beta. So strictly speaking, beta only speaks to the probability of falsely rejecting a particular alternative hypothesis when it is true . Nothing else. It’s only under other conditions, that “rejecting the alternative hypothesis” implies “accepting” the null hypothesis or “failing to accept the null hypothesis”. We will further elaborate when we talk about p-value and confidence interval in another article. But what we talked about so far is true and enough for understanding power.

Second, there is a relationship between alpha and beta. Namely, given the null hypothesis and the alternative hypothesis, alpha would determine the critical value, and the critical value determines beta. This speaks to the tradeoff between mistake and discovery. 

If we tolerate more alpha, we will have a smaller critical value, and for the same beta, we can detect a smaller alternative hypothesis

If we tolerate more beta, we can also detect a smaller alternative hypothesis. 

In short, if we tolerate more mistakes (either Type I or Type II), we can detect a smaller true effect. Mistake vs. discovery is the fundamental tradeoff of Hypothesis Testing.

So tolerating more mistakes leads to more chance of discovery. This is the concept of MDE that we will elaborate on in part 4.

Finally, we’re ready to define power. Power is an important and fundamental topic in statistical testing, and we’ll explain the concept in three different ways.

Three ways to understand power

First, the technical definition of power is 1−β. It represents that given an alternative hypothesis and given our null, sample size, and decision rule (alpha = 0.05), the probability is that we accept this particular hypothesis. We visualize the yellow area below.

Understand Power Hypothesis

Second, power is really intuitive in its definition. A real-world example is trying to determine the most popular car manufacturer in the world. If I observe one car and see one brand, my observation is not very powerful. But if I observe a million cars, my observation is very powerful. Powerful tests mean that I have a high chance of detecting a true effect.

Third, to illustrate the two concepts concisely, let’s run a visualization by just changing the sample size from 30 to 100 and see how power increases from 86.3% to almost 100%.

Same size from 30 to 100

As the graph shows, we can easily see that power increases with sample size . The reason is that the distribution of both the null hypothesis and the alternative hypothesis became narrower as their sample means got more accurate. We are less likely to make either a type I error (which reduces the critical value) or a type II error.  

Type II error: Failing to reject the null hypothesis when the alternative hypothesis is true

Beta: The probability of making a type II error

Power: The ability of the test to detect a true effect when it’s there

Part 4, Power calculation: MDE

The relationship between mde, alternative hypothesis, and power.

Now, we are ready to tackle the most nuanced definition of them all: Minimum detectable effect (MDE). First, let’s make the sample mean of the alternative hypothesis explicit on the graph with a red dotted line.

Relationship between MDE

What if we keep the same sample size, but want power to be 80%? This is when we recall the previous chapter that “alternative hypotheses are theoretical constructs”. We can have a different alternative that corresponds to 80% power. After some calculations, we discovered that when it’s the alternative hypothesis with mean = 0.45 (if we keep the standard deviation to be 1).

MDE Alternative Hypothesis pt 2

This is where we reconcile the concept of “infinitely many alternative hypotheses” with the concept of minimum detectable delta. Remember that in statistical testing, we want more power. The “ minimum ” in the “ minimum detectable effect”, is the minimum value of the mean of the alternative hypothesis that would give us 80% power. Any alternative hypothesis with a mean to the right of MDE gives us sufficient power.

In other words, there are indeed infinitely many alternative hypotheses to the right of this mean 0.45. The particular alternative hypothesis with a mean of 0.45 gives us the minimum value where power is sufficient. We call it the minimum detectable effect, or MDE.

Not enough power MDE

The complete definition of MDE from scratch

Let’s go through how we derived MDE from the beginning:

We fixed the distribution of sample means of the null hypothesis, and fixed sample size, so we can draw the blue distribution

For our decision rule, we require alpha to be 5%. We derived that the critical value shall be 0.30 to make 5% alpha happen

We fixed the alternative hypothesis to be normally distributed with a standard deviation of 1 so the standard error is 0.18, the mean can be anywhere as there are infinitely many alternative hypotheses

For our decision rule, we require beta to be 20% or less, so our power is 80% or more. 

We derived that the minimum value of the observed mean of the alternative hypothesis that we can detect with our decision rule is 0.45. Any value above 0.45 would give us sufficient power.

How MDE changes with sample size

Now, let’s tie everything together by increasing the sample size, holding alpha and beta constant, and see how MDE changes.

How MDE changes with sample size

Narrower distribution of the sample mean + holding alpha constant -> smaller critical value from 0.3 to 0.16

+ holding beta constant -> MDE decreases from 0.45 to 0.25

This is the other key takeaway:  The larger the sample size, the smaller of an effect we can detect, and the smaller the MDE.

This is a critical takeaway for statistical testing. It suggests that even for companies not with large sample sizes if their treatment effects are large, AB testing can reliably detect it.

Statistical Power Curve

Summary of Hypothesis Testing

Let’s review all the concepts together.

Assuming the null hypothesis is correct:

Alpha: When the null hypothesis is true, the probability of rejecting it

Critical value: The threshold to determine rejecting vs. accepting the null hypothesis

Assuming an alternative hypothesis is correct:

Beta: When the alternative hypothesis is true, the probability of rejecting it

Power: The chance that a real effect will produce significant results

Power calculation:

Minimum detectable effect (MDE): Given sample sizes and distributions, the minimum mean of alternative distribution that would give us the desired alpha and sufficient power (usually alpha = 0.05 and power >= 0.8)

Relationship among the factors, all else equal: Larger sample, more power; Larger sample, smaller MDE

Everything we talk about is under the Neyman-Pearson framework. There is no need to mention the p-value and significance under this framework. Blending the two frameworks is the inconsistency brought by our textbooks. Clarifying the inconsistency and correctly blending them are topics for another day.

Practical recommendations

That’s it. But it’s only the beginning. In practice, there are many crafts in using power well, for example:

Why peeking introduces a behavior bias, and how to use sequential testing to correct it

Why having multiple comparisons affects alpha, and how to use Bonferroni correction

The relationship between sample size, duration of the experiment, and allocation of the experiment?

Treat your allocation as a resource for experimentation, understand when interaction effects are okay, and when they are not okay, and how to use layers to manage

Practical considerations for setting an MDE

Also, in the above examples, we fixed the distribution, but in reality, the variance of the distribution plays an important role. There are different ways of calculating the variance and different ways to reduce variance, such as CUPED, or stratified sampling.

Related resources:

How to calculate power with an uneven split of sample size: https://blog.statsig.com/calculating-sample-sizes-for-a-b-tests-7854d56c2646

Real-life applications: https://blog.statsig.com/you-dont-need-large-sample-sizes-to-run-a-b-tests-6044823e9992

Create a free account

2m events per month, free forever..

Sign up for Statsig and launch your first experiment in minutes.

Build fast?

Try statsig today.

hypothesis testing can help us validate mcq

Recent Posts

Statsig spotlight: more powerful and flexible funnels analysis.

Statsig offers a suite of features that make funnel analysis powerful, easy, and flexible, helping you identify drop-offs and drive conversions.

How to build a Metrics Library on Statsig with Best Practices

Struggling with compiling metrics from multiple sources? Our guide helps you standardize metrics and establish clear governance with Statsig efficiently.

Your go-to guide for Online Bot Filtering

Ensure accurate data with Statsig's default Bot Filtering. Learn how bot traffic can impact metrics and experiments, and how to maintain clean, reliable data.

Statsig Spotlight: Unlock deeper user insights with cohort analysis

Statsig's cohort analysis features help you segment users and track how they engage with your product.

Statsig Seattle Tech Week Recap: Founders by Founders 5 key takeaways

Statsig at Seattle Tech Week - 5 Takeaways: Our Founders by Founders event featured CEOs and CTOs sharing startup journeys, challenges, and invaluable insights. Watch on-demand.

Controlling your Type I Errors: Bonferroni and Benjamini-Hochberg

The Benjamini-Hochberg procedure on Statsig reduces false positives in experiments by adjusting significance levels for multiple comparisons, ensuring reliable results.

Statistical Hypothesis Testing MCQ

When computing effect size, the sample size is ________..

Note: This Question is unanswered, help us to find answer for this one

To conduct a test of hypothesis with a small sample, we make an assumption that __________.

The t test for independent means is used when each group is tested ____________., the rejection of a true null hypothesis is called a ______________ error., for a fixed sample size, the lower we set α, the higher is the ___________., if calculated required sample size is a non integer value, we should always _____ calculated value., in the t test for independent groups, ____., the critical value for a hypothesis test _______., the hypothesis statement h: μ < 60 is an example of a(an) ________ hypothesis., the test statistic calculated by the statistical procedure selected is known as the ___________., the sample mean is _____ the confidence interval., when using student's t to compute an interval estimate, ___________..

Correct Answer: We assume the samples are collected from normally distributed populations

The size of the sampling error is ________.

A(n) ____________ difference is due to some systematic influence and not due to chance., decreasing the alpha level from α = .05 to α = .01 ____., a type i error occurs when: (hint: when we use test statistics to tell us about the true state of the world, we’re trying to see whether there is an effect in our population.), what is p the probability if the null hypothesis were true (hint: nhst relies on fitting a ‘model’ to the data and then evaluating the probability of this ‘model’ given the assumption that no effect exists.), if my null hypothesis is ‘dutch people do not differ from english people in height’, what is my alternative hypothesis, if my experimental hypothesis were ‘eating cheese before bed affects the number of nightmares you have’, what would the null hypothesis be, ‘children can learn a second language faster before the age of 7’. is this statement:.

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

hypothesis testing can help us validate mcq

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Creating Brand Value
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

A Beginner’s Guide to Hypothesis Testing in Business

Business professionals performing hypothesis testing

  • 30 Mar 2021

Becoming a more data-driven decision-maker can bring several benefits to your organization, enabling you to identify new opportunities to pursue and threats to abate. Rather than allowing subjective thinking to guide your business strategy, backing your decisions with data can empower your company to become more innovative and, ultimately, profitable.

If you’re new to data-driven decision-making, you might be wondering how data translates into business strategy. The answer lies in generating a hypothesis and verifying or rejecting it based on what various forms of data tell you.

Below is a look at hypothesis testing and the role it plays in helping businesses become more data-driven.

Access your free e-book today.

What Is Hypothesis Testing?

To understand what hypothesis testing is, it’s important first to understand what a hypothesis is.

A hypothesis or hypothesis statement seeks to explain why something has happened, or what might happen, under certain conditions. It can also be used to understand how different variables relate to each other. Hypotheses are often written as if-then statements; for example, “If this happens, then this will happen.”

Hypothesis testing , then, is a statistical means of testing an assumption stated in a hypothesis. While the specific methodology leveraged depends on the nature of the hypothesis and data available, hypothesis testing typically uses sample data to extrapolate insights about a larger population.

Hypothesis Testing in Business

When it comes to data-driven decision-making, there’s a certain amount of risk that can mislead a professional. This could be due to flawed thinking or observations, incomplete or inaccurate data , or the presence of unknown variables. The danger in this is that, if major strategic decisions are made based on flawed insights, it can lead to wasted resources, missed opportunities, and catastrophic outcomes.

The real value of hypothesis testing in business is that it allows professionals to test their theories and assumptions before putting them into action. This essentially allows an organization to verify its analysis is correct before committing resources to implement a broader strategy.

As one example, consider a company that wishes to launch a new marketing campaign to revitalize sales during a slow period. Doing so could be an incredibly expensive endeavor, depending on the campaign’s size and complexity. The company, therefore, may wish to test the campaign on a smaller scale to understand how it will perform.

In this example, the hypothesis that’s being tested would fall along the lines of: “If the company launches a new marketing campaign, then it will translate into an increase in sales.” It may even be possible to quantify how much of a lift in sales the company expects to see from the effort. Pending the results of the pilot campaign, the business would then know whether it makes sense to roll it out more broadly.

Related: 9 Fundamental Data Science Skills for Business Professionals

Key Considerations for Hypothesis Testing

1. alternative hypothesis and null hypothesis.

In hypothesis testing, the hypothesis that’s being tested is known as the alternative hypothesis . Often, it’s expressed as a correlation or statistical relationship between variables. The null hypothesis , on the other hand, is a statement that’s meant to show there’s no statistical relationship between the variables being tested. It’s typically the exact opposite of whatever is stated in the alternative hypothesis.

For example, consider a company’s leadership team that historically and reliably sees $12 million in monthly revenue. They want to understand if reducing the price of their services will attract more customers and, in turn, increase revenue.

In this case, the alternative hypothesis may take the form of a statement such as: “If we reduce the price of our flagship service by five percent, then we’ll see an increase in sales and realize revenues greater than $12 million in the next month.”

The null hypothesis, on the other hand, would indicate that revenues wouldn’t increase from the base of $12 million, or might even decrease.

Check out the video below about the difference between an alternative and a null hypothesis, and subscribe to our YouTube channel for more explainer content.

2. Significance Level and P-Value

Statistically speaking, if you were to run the same scenario 100 times, you’d likely receive somewhat different results each time. If you were to plot these results in a distribution plot, you’d see the most likely outcome is at the tallest point in the graph, with less likely outcomes falling to the right and left of that point.

distribution plot graph

With this in mind, imagine you’ve completed your hypothesis test and have your results, which indicate there may be a correlation between the variables you were testing. To understand your results' significance, you’ll need to identify a p-value for the test, which helps note how confident you are in the test results.

In statistics, the p-value depicts the probability that, assuming the null hypothesis is correct, you might still observe results that are at least as extreme as the results of your hypothesis test. The smaller the p-value, the more likely the alternative hypothesis is correct, and the greater the significance of your results.

3. One-Sided vs. Two-Sided Testing

When it’s time to test your hypothesis, it’s important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests , or one-tailed and two-tailed tests, respectively.

Typically, you’d leverage a one-sided test when you have a strong conviction about the direction of change you expect to see due to your hypothesis test. You’d leverage a two-sided test when you’re less confident in the direction of change.

Business Analytics | Become a data-driven leader | Learn More

4. Sampling

To perform hypothesis testing in the first place, you need to collect a sample of data to be analyzed. Depending on the question you’re seeking to answer or investigate, you might collect samples through surveys, observational studies, or experiments.

A survey involves asking a series of questions to a random population sample and recording self-reported responses.

Observational studies involve a researcher observing a sample population and collecting data as it occurs naturally, without intervention.

Finally, an experiment involves dividing a sample into multiple groups, one of which acts as the control group. For each non-control group, the variable being studied is manipulated to determine how the data collected differs from that of the control group.

A Beginner's Guide to Data and Analytics | Access Your Free E-Book | Download Now

Learn How to Perform Hypothesis Testing

Hypothesis testing is a complex process involving different moving pieces that can allow an organization to effectively leverage its data and inform strategic decisions.

If you’re interested in better understanding hypothesis testing and the role it can play within your organization, one option is to complete a course that focuses on the process. Doing so can lay the statistical and analytical foundation you need to succeed.

Do you want to learn more about hypothesis testing? Explore Business Analytics —one of our online business essentials courses —and download our Beginner’s Guide to Data & Analytics .

hypothesis testing can help us validate mcq

About the Author

PW Skills | Blog

What is Hypothesis Testing in Statistics? Types and Examples

' src=

Varun Saharawat is a seasoned professional in the fields of SEO and content writing. With a profound knowledge of the intricate aspects of these disciplines, Varun has established himself as a valuable asset in the world of digital marketing and online content creation.

Hypothesis testing in statistics involves testing an assumption about a population parameter using sample data. Learners can download Hypothesis Testing PDF to get instant access to all information!

Hypothesis Testing

What exactly is hypothesis testing, and how does it work in statistics? Can I find practical examples and understand the different types from this blog?

Hypothesis Testing : Ever wonder how researchers determine if a new medicine actually works or if a new marketing campaign effectively drives sales? They use hypothesis testing! It is at the core of how scientific studies, business experiments and surveys determine if their results are statistically significant or just due to chance.

Hypothesis testing allows us to make evidence-based decisions by quantifying uncertainty and providing a structured process to make data-driven conclusions rather than guessing. In this post, we will discuss hypothesis testing types, examples, and processes!

Table of Contents

Hypothesis Testing

Hypothesis testing is a statistical method used to evaluate the validity of a hypothesis using sample data. It involves assessing whether observed data provide enough evidence to reject a specific hypothesis about a population parameter. 

Hypothesis Testing in Data Science

Hypothesis testing in data science is a statistical method used to evaluate two mutually exclusive population statements based on sample data. The primary goal is to determine which statement is more supported by the observed data.

Hypothesis testing assists in supporting the certainty of findings in research and data science projects. This statistical inference aids in making decisions about population parameters using sample data. For those who are looking to deepen their knowledge in data science and expand their skillset, we highly recommend checking out Master Generative AI: Data Science Course by Physics Wallah .

Also Read: What is Encapsulation Explain in Details

What is the Hypothesis Testing Procedure in Data Science?

The hypothesis testing procedure in data science involves a structured approach to evaluating hypotheses using statistical methods. Here’s a step-by-step breakdown of the typical procedure:

1) State the Hypotheses:

  • Null Hypothesis (H0): This is the default assumption or a statement of no effect or difference. It represents what you aim to test against.
  • Alternative Hypothesis (Ha): This is the opposite of the null hypothesis and represents what you want to prove.

2) Choose a Significance Level (α):

  • Decide on a threshold (commonly 0.05) beyond which you will reject the null hypothesis. This is your significance level.

3) Select the Appropriate Test:

  • Depending on your data type (e.g., continuous, categorical) and the nature of your research question, choose the appropriate statistical test (e.g., t-test, chi-square test, ANOVA, etc.).

4) Collect Data:

  • Gather data from your sample or population, ensuring that it’s representative and sufficiently large (or as per your experimental design).

5)Compute the Test Statistic:

  • Using your data and the chosen statistical test, compute the test statistic that summarizes the evidence against the null hypothesis.

6) Determine the Critical Value or P-value:

  • Based on your significance level and the test statistic’s distribution, determine the critical value from a statistical table or compute the p-value.

7) Make a Decision:

  • If the p-value is less than α: Reject the null hypothesis.
  • If the p-value is greater than or equal to α: Fail to reject the null hypothesis.

8) Draw Conclusions:

  • Based on your decision, draw conclusions about your research question or hypothesis. Remember, failing to reject the null hypothesis doesn’t prove it true; it merely suggests that you don’t have sufficient evidence to reject it.

9) Report Findings:

  • Document your findings, including the test statistic, p-value, conclusion, and any other relevant details. Ensure clarity so that others can understand and potentially replicate your analysis.

Also Read: Binary Search Algorithm

How Hypothesis Testing Works?

Hypothesis testing is a fundamental concept in statistics that aids analysts in making informed decisions based on sample data about a larger population. The process involves setting up two contrasting hypotheses, the null hypothesis and the alternative hypothesis, and then using statistical methods to determine which hypothesis provides a more plausible explanation for the observed data.

The Core Principles:

  • The Null Hypothesis (H0): This serves as the default assumption or status quo. Typically, it posits that there is no effect or no difference, often represented by an equality statement regarding population parameters. For instance, it might state that a new drug’s effect is no different from a placebo.
  • The Alternative Hypothesis (H1 or Ha): This is the counter assumption or what researchers aim to prove. It’s the opposite of the null hypothesis, indicating that there is an effect, a change, or a difference in the population parameters. Using the drug example, the alternative hypothesis would suggest that the new drug has a different effect than the placebo.

Testing the Hypotheses:

Once these hypotheses are established, analysts gather data from a sample and conduct statistical tests. The objective is to determine whether the observed results are statistically significant enough to reject the null hypothesis in favor of the alternative.

Examples to Clarify the Concept:

  • Null Hypothesis (H0): The sanitizer’s average efficacy is 95%.
  • By conducting tests, if evidence suggests that the sanitizer’s efficacy is significantly less than 95%, we reject the null hypothesis.
  • Null Hypothesis (H0): The coin is fair, meaning the probability of heads and tails is equal.
  • Through experimental trials, if results consistently show a skewed outcome, indicating a significantly different probability for heads and tails, the null hypothesis might be rejected.

What are the 3 types of Hypothesis Test?

Hypothesis testing is a cornerstone in statistical analysis, providing a framework to evaluate the validity of assumptions or claims made about a population based on sample data. Within this framework, several specific tests are utilized based on the nature of the data and the question at hand. Here’s a closer look at the three fundamental types of hypothesis tests:

The z-test is a statistical method primarily employed when comparing means from two datasets, particularly when the population standard deviation is known. Its main objective is to ascertain if the means are statistically equivalent. 

A crucial prerequisite for the z-test is that the sample size should be relatively large, typically 30 data points or more. This test aids researchers and analysts in determining the significance of a relationship or discovery, especially in scenarios where the data’s characteristics align with the assumptions of the z-test.

The t-test is a versatile statistical tool used extensively in research and various fields to compare means between two groups. It’s particularly valuable when the population standard deviation is unknown or when dealing with smaller sample sizes. 

By evaluating the means of two groups, the t-test helps ascertain if a particular treatment, intervention, or variable significantly impacts the population under study. Its flexibility and robustness make it a go-to method in scenarios ranging from medical research to business analytics.

3. Chi-Square Test:

The Chi-Square test stands distinct from the previous tests, primarily focusing on categorical data rather than means. This statistical test is instrumental when analyzing categorical variables to determine if observed data aligns with expected outcomes as posited by the null hypothesis. 

By assessing the differences between observed and expected frequencies within categorical data, the Chi-Square test offers insights into whether discrepancies are statistically significant. Whether used in social sciences to evaluate survey responses or in quality control to assess product defects, the Chi-Square test remains pivotal for hypothesis testing in diverse scenarios.

Also Read: Python vs Java: Which is Best for Machine learning algorithm

Hypothesis Testing in Statistics

Hypothesis testing is a fundamental concept in statistics used to make decisions or inferences about a population based on a sample of data. The process involves setting up two competing hypotheses, the null hypothesis H 0​ and the alternative hypothesis H 1​. 

Through various statistical tests, such as the t-test, z-test, or Chi-square test, analysts evaluate sample data to determine whether there’s enough evidence to reject the null hypothesis in favor of the alternative. The aim is to draw conclusions about population parameters or to test theories, claims, or hypotheses.

Hypothesis Testing in Research

In research, hypothesis testing serves as a structured approach to validate or refute theories or claims. Researchers formulate a clear hypothesis based on existing literature or preliminary observations. They then collect data through experiments, surveys, or observational studies. 

Using statistical methods, researchers analyze this data to determine if there’s sufficient evidence to reject the null hypothesis. By doing so, they can draw meaningful conclusions, make predictions, or recommend actions based on empirical evidence rather than mere speculation.

Hypothesis Testing in R

R, a powerful programming language and environment for statistical computing and graphics, offers a wide array of functions and packages specifically designed for hypothesis testing. Here’s how hypothesis testing is conducted in R:

  • Data Collection : Before conducting any test, you need to gather your data and ensure it’s appropriately structured in R.
  • Choose the Right Test : Depending on your research question and data type, select the appropriate hypothesis test. For instance, use the t.test() function for a t-test or chisq.test() for a Chi-square test.
  • Set Hypotheses : Define your null and alternative hypotheses. Using R’s syntax, you can specify these hypotheses and run the corresponding test.
  • Execute the Test : Utilize built-in functions in R to perform the hypothesis test on your data. For instance, if you want to compare two means, you can use the t.test() function, providing the necessary arguments like the data vectors and type of t-test (one-sample, two-sample, paired, etc.).
  • Interpret Results : Once the test is executed, R will provide output, including test statistics, p-values, and confidence intervals. Based on these results and a predetermined significance level (often 0.05), you can decide whether to reject the null hypothesis.
  • Visualization : R’s graphical capabilities allow users to visualize data distributions, confidence intervals, or test statistics, aiding in the interpretation and presentation of results.

Hypothesis testing is an integral part of statistics and research, offering a systematic approach to validate hypotheses. Leveraging R’s capabilities, researchers and analysts can efficiently conduct and interpret various hypothesis tests, ensuring robust and reliable conclusions from their data.

Do Data Scientists do Hypothesis Testing?

Yes, data scientists frequently engage in hypothesis testing as part of their analytical toolkit. Hypothesis testing is a foundational statistical technique used to make data-driven decisions, validate assumptions, and draw conclusions from data. Here’s how data scientists utilize hypothesis testing:

  • Validating Assumptions : Before diving into complex analyses or building predictive models, data scientists often need to verify certain assumptions about the data. Hypothesis testing provides a structured approach to test these assumptions, ensuring that subsequent analyses or models are valid.
  • Feature Selection : In machine learning and predictive modeling, data scientists use hypothesis tests to determine which features (or variables) are most relevant or significant in predicting a particular outcome. By testing hypotheses related to feature importance or correlation, they can streamline the modeling process and enhance prediction accuracy.
  • A/B Testing : A/B testing is a common technique in marketing, product development, and user experience design. Data scientists employ hypothesis testing to compare two versions (A and B) of a product, feature, or marketing strategy to determine which performs better in terms of a specified metric (e.g., conversion rate, user engagement).
  • Research and Exploration : In exploratory data analysis (EDA) or when investigating specific research questions, data scientists formulate hypotheses to test certain relationships or patterns within the data. By conducting hypothesis tests, they can validate these relationships, uncover insights, and drive data-driven decision-making.
  • Model Evaluation : After building machine learning or statistical models, data scientists use hypothesis testing to evaluate the model’s performance, assess its predictive power, or compare different models. For instance, hypothesis tests like the t-test or F-test can help determine if a new model significantly outperforms an existing one based on certain metrics.
  • Business Decision-making : Beyond technical analyses, data scientists employ hypothesis testing to support business decisions. Whether it’s evaluating the effectiveness of a marketing campaign, assessing customer preferences, or optimizing operational processes, hypothesis testing provides a rigorous framework to validate assumptions and guide strategic initiatives.

Hypothesis Testing Examples and Solutions

Let’s delve into some common examples of hypothesis testing and provide solutions or interpretations for each scenario.

Example: Testing the Mean

Scenario : A coffee shop owner believes that the average waiting time for customers during peak hours is 5 minutes. To test this, the owner takes a random sample of 30 customer waiting times and wants to determine if the average waiting time is indeed 5 minutes.

Hypotheses :

  • H 0​ (Null Hypothesis): 5 μ =5 minutes (The average waiting time is 5 minutes)
  • H 1​ (Alternative Hypothesis): 5 μ =5 minutes (The average waiting time is not 5 minutes)

Solution : Using a t-test (assuming population variance is unknown), calculate the t-statistic based on the sample mean, sample standard deviation, and sample size. Then, determine the p-value and compare it with a significance level (e.g., 0.05) to decide whether to reject the null hypothesis.

Example: A/B Testing in Marketing

Scenario : An e-commerce company wants to determine if changing the color of a “Buy Now” button from blue to green increases the conversion rate.

  • H 0​: Changing the button color does not affect the conversion rate.
  • H 1​: Changing the button color affects the conversion rate.

Solution : Split website visitors into two groups: one sees the blue button (control group), and the other sees the green button (test group). Track the conversion rates for both groups over a specified period. Then, use a chi-square test or z-test (for large sample sizes) to determine if there’s a statistically significant difference in conversion rates between the two groups.

Hypothesis Testing Formula

The formula for hypothesis testing typically depends on the type of test (e.g., z-test, t-test, chi-square test) and the nature of the data (e.g., mean, proportion, variance). Below are the basic formulas for some common hypothesis tests:

Z-Test for Population Mean :

Z=(σ/n​)(xˉ−μ0​)​

  • ˉ x ˉ = Sample mean
  • 0 μ 0​ = Population mean under the null hypothesis
  • σ = Population standard deviation
  • n = Sample size

T-Test for Population Mean :

t= (s/ n ​ ) ( x ˉ −μ 0 ​ ) ​ 

s = Sample standard deviation 

Chi-Square Test for Goodness of Fit :

χ2=∑Ei​(Oi​−Ei​)2​

  • Oi ​ = Observed frequency
  • Ei ​ = Expected frequency

Also Read: Full Form of OOPS

Hypothesis Testing Calculator

While you can perform hypothesis testing manually using the above formulas and statistical tables, many online tools and software packages simplify this process. Here’s how you might use a calculator or software:

  • Z-Test and T-Test Calculators : These tools typically require you to input sample statistics (like sample mean, population mean, standard deviation, and sample size). Once you input these values, the calculator will provide you with the test statistic (Z or t) and a p-value.
  • Chi-Square Calculator : For chi-square tests, you’d input observed and expected frequencies for different categories or groups. The calculator then computes the chi-square statistic and provides a p-value.
  • Software Packages (e.g., R, Python with libraries like scipy, or statistical software like SPSS) : These platforms offer more comprehensive tools for hypothesis testing. You can run various tests, get detailed outputs, and even perform advanced analyses, including regression models, ANOVA, and more.

When using any calculator or software, always ensure you understand the underlying assumptions of the test, interpret the results correctly, and consider the broader context of your research or analysis.

Hypothesis Testing FAQs

What are the key components of a hypothesis test.

The key components include: Null Hypothesis (H0): A statement of no effect or no difference. Alternative Hypothesis (H1 or Ha): A statement that contradicts the null hypothesis. Test Statistic: A value computed from the sample data to test the null hypothesis. Significance Level (α): The threshold for rejecting the null hypothesis. P-value: The probability of observing the given data, assuming the null hypothesis is true.

What is the significance level in hypothesis testing?

The significance level (often denoted as α) is the probability threshold used to determine whether to reject the null hypothesis. Commonly used values for α include 0.05, 0.01, and 0.10, representing a 5%, 1%, or 10% chance of rejecting the null hypothesis when it's actually true.

How do I choose between a one-tailed and two-tailed test?

The choice between one-tailed and two-tailed tests depends on your research question and hypothesis. Use a one-tailed test when you're specifically interested in one direction of an effect (e.g., greater than or less than). Use a two-tailed test when you want to determine if there's a significant difference in either direction.

What is a p-value, and how is it interpreted?

The p-value is a probability value that helps determine the strength of evidence against the null hypothesis. A low p-value (typically ≤ 0.05) suggests that the observed data is inconsistent with the null hypothesis, leading to its rejection. Conversely, a high p-value suggests that the data is consistent with the null hypothesis, leading to no rejection.

Can hypothesis testing prove a hypothesis true?

No, hypothesis testing cannot prove a hypothesis true. Instead, it helps assess the likelihood of observing a given set of data under the assumption that the null hypothesis is true. Based on this assessment, you either reject or fail to reject the null hypothesis.

card-img

  • How to Become A Security Architect: Qualifications, Eligibility, And Skills

security architect

A role of cyber security architect ensures that all the major safety protocols are followed and there are no chances…

  • 10 Best Information Technology Companies In World

best information technolgy companies

Apple and Microsoft top the charts of best information technology companies with its unmatched services and products.

  • System Administrator – What Does a System Administrator Do?

system administrator

System administrator is a field profession in IT industries where experts ensure proper working of organisation systems, network and servers.

right adv

Related Articles

  • What are the 6 main ethical issues in research?
  • System Design Twitter X – A System Design Interview Questions
  • 24 Data Stage Interview Questions & Answers
  • PhysicsWallah World Cup Offer On India Victory: Upto Rs. 500 on All PW Skills Courses
  • Best Web Designing: Top 10 Website Designs to Inspire You in 2024
  • Business Intelligence: Operations, User Types, and Advantages [2023]
  • System Design Basics to Advance Concepts Explained for Interview Preparation

bottom banner

Benchmark Six Sigma Forum

  • Remember me Not recommended on shared computers

Forgot your password?

Or sign in with one of these services

  • We ask and you answer! The best answer wins!
  • Hypothesis Testing
  • hypothesis test

Vishwadeep Khatri

Asked by Vishwadeep Khatri , September 21, 2017

Guest

Hypothesis Testing - it is the process of using statistical tests to determine if the observed differences between two or more samples is statistically significant or not. A null hypothesis (Ho) is a stated assumption that there is no difference or the difference is due to a random chance while the alternate hypothesis (Ha) is a statement that there is a true difference. With the help of hypothesis testing, we arrive at one of the following conclusions. 1. Fail to reject the Null hypothesis (accept the Null hypothesis) 2. Reject the Null hypothesis (accept the Alternate hypothesis) From a practical point of view, hypothesis testing allows to collect sample sizes and make decisions based on facts and it takes away the decisions based on gut feeling or experience or common sense. You have statistical proof of whatever you "feel" or "think" is right.

An application oriented question on the topic along with responses can be seen below. The best answer was provided by Rupinder N on 22nd September 2017. 

  • Vishwadeep Khatri

Q 13. Hypothesis testing is one of the powerful methods used in Six Sigma methodology. In the pursuit of excellence, how important is hypothesis testing? In which phases of an improvement project, is it likely to be used? 

Note for website visitors   - Two questions are asked every week on this platform. One on Tuesday and the other on Friday.

  • All   questions  so far can be seen here -  https://www.benchmarksixsigma.com/forum/lean-six-sigma-business-excellence-questions/
  • Please visit the forum home page at   https://www.benchmarksixsigma.com/forum/   to respond to the latest question open till the next Tuesday/ Friday evening 5 PM as per Indian Standard Time.  
  • The best answer is always shown at the top among responses and the author finds honorable mention in our Business Excellence dictionary at   https://www.benchmarksixsigma.com/forum/business-excellence-dictionary-glossary/   along with the related term.

Link to comment

Share on other sites, 19 answers to this question.

  • Sort by votes
  • Sort by date

Recommended Posts

Hypothesis Testing is among the most powerful tools used in Business Excellence. It takes away the decisions based on gut feeling or experience or common sense e.g. Site A has better performance than Site B, we should hire more experienced employees as their accuracy is higher, it takes lesser time if we use System A vs System B, older customers are less likely to use self-help as compared to other age groups, are we meeting the cut-off defective %age or not, based on the proportion defectives we see. Hypothesis testing allows to collect valid sample sizes and make decisions for population - it keeps the gut feeling and statements such as "in our experience" out of the picture. You have statistical proof of whatever you "feel" or "think" is right.

What must be kept in mind is that it is an OFAT testing technique - only one factor under consideration can be varied while all other Xs must be maintained constant.

Hypothesis Testing can be used in any and every phase of the DMAIC cycle.

Define - Usually all "1" tests or tests where we compare a population to an external standard are used in this phase e.g. 1 proportion test (if I have x out of y defects, am I meeting the client quality target of 95%?), 1 Sample Z, 1 Sample T, 1 Sample Sign etc. (Has the cost of living gone up as compared to the mean or median cost 10 years ago?). It helps us decide "do we even have a problem".

Measure - One can look at data and the eye can catch a "trend". But can we really say that the performance has dipped, is the difference in performance statistically significant. Hypothesis testing can give you the answer.

Analyze - this hardly needs any explanation as everyone has using hypothesis testing extensively in this phase to compare two populations or multiple populations e.g. do the five swimming schools create the same proportion of champions out of all enrolled in them, is the lead time for a process on machine A better than machine B, does Raw Material X give better quality than Raw Material Y, does Training Methodology 1 give better results as compared to Methodology 2, 3 and 4, does Vendor A have fewer billing discrepancies than Vendor B etc.

Improve - tests involving two populations are generally used.  E.g. comparing Y pre and post solution implementation (we implemented a solution to improve the yield of a machine). Is the post-solution yield higher than pre-solution yield, is the TAT post solution better than the TAT before implementing the solution, are more customers buying our product than before etc.

Control - We get different CTQ numbers every month post we made an initial improvement. Can we really say that we have improved as compared to before? For 5 months after improve, if we saw a lower number for the metric, was that really different than other months. Can we say that we are consistent? We can use Hypothesis testing again.

Business Excellence is nothing but an iterative process to drive excellence throughout the business. As Hypothesis Testing helps us validate or invalidate what we suspect every step of the way in the DMAIC cycle, it is a "must use" tool for the armor.

jisha.nair

Hypothesis testing is an essential procedure in statistics , it evaluates two mutually exclusive statements about a population to determine which statement is best supported by data i.e which statement is statistically significant. But, why do we need hypothesis testing ? that is because we are making our conclusion about a population basis the sample data – hypothesis tests helps assess the likelihood of this possibility that the sample data is representative of the population data. This itself makes hypothesis testing very significant as it helps us assess the population parameters using the sample statistics.

Hypothesis tests can be used across Define, Measure, Analyze and Improve phase of an improvement project

Define Phase : To test whether the target set is significantly different from the baseline performance.

Measure phase : Understanding the likelihood that a data sample comes from a population that follows a given probability distribution (i.e. normal, exponential, uniform, etc.)  

Analyse Phase : For screening potential causes. Evaluating several process factors (process inputs, or x’s) in a designed experiment to understand which factors are significant to a given output, and which are not.

Improve phase :  Evaluating a proposed process improvement, using pilot study output, to see if its effect is statistically significant, or if the same improvement could have occurred by random chance.

SandhyaKamath

SandhyaKamath

A hypothesis test is a statistical test that is used to determine whether there is enough evidence in a sample of data to infer that a certain condition is true for the entire population.

A hypothesis test examines two opposing hypotheses about a population: the null hypothesis and the alternative hypothesis. The null hypothesis is the statement being tested. Usually, the null hypothesis is a statement of "no effect" or "no difference". The alternative hypothesis is the statement you want to be able to conclude is true.

Based on the sample data, the test determines whether to reject the null hypothesis. You use a p-value, to make the determination. If the p-value is less than or equal to the level of significance, which is a cut-off point that you define, then you can reject the null hypothesis.

A common misconception is that statistical hypothesis tests are designed to select the more likely of two hypotheses. Instead, a test will remain with the null hypothesis until there is enough evidence (data) to support the alternative hypothesis.

Hypothesis testing is used in the  Six Sigma Analyze Phase for screening potential causes.

All hypotheses are tested using a four-step process. The first step is for the analyst to state the two hypotheses so that only one can be right. The next step is to formulate an analysis plan, which outlines how the data will be evaluated. The third step is to carry out the plan and physically analyze the sample data. The fourth and final step is to analyze the results and either accept or reject the null. Try to re-run the test (if practical) to further confirm results. The next step is to take the statistical results and translate it into a practical solution. It is also possible to determine the critical value of the test and use to calculated test statistics to determine the results. Either way, using the p-value approach or critical value should provide the same result. There could be a problem with centering where the process is not centered, it may be precise but not accurate. Processes may be accurate but not precise. Data collection establishes the foundation for appraising the quality of a product or service. But without correct data processing, it becomes challenging to make an objective conclusion. Sometimes, the observation is wrongly interpreted. This is the hypothesis to be tested.

Essentially good hypotheses lead decision-makers to new and better ways to achieve your business goals. When you need to make decisions such as how much you should spend on advertising or what effect a price increase will have your customer base, it’s easy to make wild assumptions or get lost in analysis paralysis. A business hypothesis solves this problem, because, at the start, it’s based on some foundational information Theory tells you what you can generally expect from a certain line of inquiry. A hypothesis based on years of business research in a particular area, then, helps you focus, define and appropriately direct your research. You won’t go on a wild goose chase to prove or disprove it. A hypothesis predicts the relationship between two variables. If you want to study pricing and customer loyalty, you won’t waste your time and resources studying tangential areas.

Kavitha Sundar

A hypothesis is an  educated guess  about something in the world around you. It should be testable, either by experiment or observation. For example:

  • A new medicine you think might work.
  • A way of teaching you think might be better.
  • A possible location of new species.
  • A fairer way to administer standardized tests.

It can really be  anything at all  as long as you can put it to the test.

  What is a Hypothesis Statement?

If you are going to propose a hypothesis, it’s customary to write a statement. Your statement will look like this: “If I…(do this to an  independent variable )….then (this will happen to the  dependent variable ).” For example:

  • If I (decrease the amount of water given to herbs) then (the herbs will increase in size).
  • If I (give patients counseling in addition to medication) then (their overall depression scale will decrease).
  • If I (give exams at noon instead of 7) then (student test scores will improve).
  • If I (look in this certain location) then (I am more likely to find new species).

A good hypothesis statement should:

  • Include an “if” and “then” statement  (according to the University of California).
  • Include both the independent and  dependent variables.
  • Be testable by experiment, survey or other scientifically sound technique.
  • Be based on information in prior research (either yours or someone else’s).
  • Have design criteria (for engineering or programming projects).

 What is Hypothesis Testing?

Hypothesis testing in statistics is a way for you to test the results of a survey or experiment to see if you have meaningful results. You’re basically testing whether your results are valid by figuring out the odds that your results have happened by chance. If your results may have happened by chance, the experiment won’t be repeatable and so has little use.

Hypothesis testing can be one of the most confusing aspects for students, mostly because before you can even perform a test, you have to know what your null hypothesis is. Often, those tricky word problems that you are faced with can be difficult to decipher. But it’s easier than you think; all you need to do is:

  • Figure out your null hypothesis,
  • State your null hypothesis,
  • Choose what kind of test you need to perform,
  • Either accept or reject the null hypothesis.

  What is the Null Hypothesis?

If you trace back the history of science, the null hypothesis is always the accepted fact. Simple examples of null hypotheses that are generally accepted as being true are:

  • DNA is shaped like a double helix.
  • There are 8 planets in the solar system (excluding Pluto).
  • Taking Vioxx can increase your risk of heart problems (a drug now taken off the market).

How do I State the Null Hypothesis?

You won’t be required to actually perform a real experiment or survey in elementary statistics (or even disprove a fact like “Pluto is a planet”!), so you’ll be given word problems from real-life situations. You’ll need to figure out what your hypothesis is from the problem. This can be a little trickier than just figuring out what the accepted fact is. With word problems, you are looking to find a fact that is nullifiable (i.e. something you can reject).

Hypothesis Testing Examples #1: Basic Example

A researcher thinks that if knee surgery patients go to physical therapy twice a week (instead of 3 times), their recovery period will be longer. Average recovery times for knee surgery patients is 8.2 weeks.

The hypothesis statement in this question is that the researcher believes the average recovery time is more than 8.2 weeks. It can be written in mathematical terms as:

H1: μ > 8.2

Next, you’ll need to state the null hypothesis (See: How to state the null hypothesis). That’s what will happen if the researcher is wrong. In the above example, if the researcher is wrong then the recovery time is less than or equal to 8.2 weeks. In math, that’s:

Rejecting the null hypothesis:

Ten or so years ago, we believed that there were 9 planets in the solar system. Pluto was demoted as a planet in 2006. The null hypothesis of “Pluto is a planet” was replaced by “Pluto is not a planet.” Of course, rejecting the null hypothesis isn’t always that easy — the hard part is usually figuring out what your null hypothesis is in the first place.

Hypothesis testing categorization:

Hypothesis testing is categorized as a parametric test and nonparametric test. The parametric test includes z-test, t-test, f-Test and x 2  test. The nonparametric test includes sign test, Wilcoxon Rank-sum test, Kruskal-Wallis test and permutation test. Parametric test:   In this test, samples are taken from a population with known distribution (normal distribution), and a test of population parameters is executed. Nonparametric test:  Also called distribution-free test, this test does not require the population to conform to a normal distribution, nor do the popular parameters need to be statistically estimated.

How important is hypothesis testing?

People refer to a trial solution to a problem as a  hypothesis often called an "educated guess" because it provides a suggested solution based on the evidence. However, some scientists reject the term "educated guess" as incorrect. Experimenters may test and reject several  hypotheses  before solving the problem. Much of running a small  business  is a gamble, buoyed by boldness, intuition, and guts. But wise  business  leaders also conduct formal and informal research to inform their  business  decisions.

“Good research starts with a good  hypothesis” , which is simply a statement making a prediction based on a set of observations.

The  purpose of hypothesis testing  is to make a decision in the face of uncertainty. We do not have a fool-proof method for doing this: Errors can be made.

image.png.ef4eb08d05e6e40d2cf4c26a4d8362f3.png

In which phases of an improvement project, is it likely to be used? 

It is used in analyze phase of the DMAIC improvement cycle. Critical X’s are identified and to measure the effect of each X on Y, the hypothesis testing is used in Analyze phase.

RaghavendraRao

RaghavendraRao

Primarily hypothesis is used in Analysis of the problem area to screen potential causes. Hypothesis test helps assess if proposed improvement project results in statistically significant improvement. In case of analysis of various process factors, hypothesis test helps to assess which all factors have significant influence on outcome. It also helps to figure out if the improvement observed in process is due to the actions initiated by us or due to chance variation.

Hypothesis testing helps to address the possible sampling error involved in the study of sample data of the population. Overall in pursuit of excellence hypothesis test helps to validate any possible assumptions involved in the analysis and cut down on possible errors due to assumptions.

Deepti Arora

Hypothesis test is a statistical techniques which is used to evaluate two mutually exclusive statements about a population to determine which statement is best supported by the sample data. Hypothesis testing helps in taking a decision in the face of uncertainty.

Hypothesis testing is helpful in taking decisions in a wide variety of areas. For example, in case of a business one can use the technique to determine whether customer experience has a significant bearing on sales or is it the price which is more significant. This can help the owner of the business to pay more attention to the pain area and take corrective measures.

Under the DMAIC framework, Hypothesis Testing is used in the Analyse Phase. It helps in prioritizing the X's so that solutions and recommendations can be provided to correct and improve the significant X's.  Two-sample t-test and Chi-square are most commonly used hypothesis tests in Six Sigma work

Nagraj Bhat

Hypothesis testing is an objective method of making decisions or inferences from sample data. Typically carried out by comparing what we have observed to what we have expected and if one of the statements was true.

These are the requirements for the test:

Null statement or Ho is an assumption about the population from the sample data used to decide whether it is true or otherwise. Also known as skeptic’s hypothesis it is sticking to the status quo of the case.  Alternative hypothesis on the other hand is a researcher’s question to the claim. 

Since we are inferring the population from a sample one needs to also asses the risk involved of being wrong.

Significance level is the probability of rejecting the null hypothesis when it is true. Also known as type I error. This is normally set at 5% (0.05). Test statistic is the value calculated from a sample to decide whether to accept or reject null hypothesis.

p Value is the probability of obtaining a test statistics.

         If p is less than alpha =5%, the null hypothesis is rejected at 5% significance level and the test result is called “ statistically significant ”.

         If p is less than alpha =1%, the null hypothesis is rejected at 1% significance level and the test result is called “ highly significant ”.

Test statistic = [Relevant Statistics - Hypothesized Parameter]/Standard Error of Relevant Statistic.

                     = [Observed-Expected]/Standard Error

Based on the awareness of Standard deviation one needs to use either z test or t test. And the table below shows the relationship of the choice made based on the statistical result.

No Error  ( 1-alpha)

Type II Error (beta)

Type I Error (alpha)

No Error (1-beta)

  Predominantly  used during the analyse phase of the DMAIC roadmap. Below are the criteria one needs to be familiar with to have a successful  test and subsequent effective prediction.  

  •   It would be wonderful if we could force both alpha and beta to equal zero.   Unfortunately, these quantities have an inverse relationship.   As alpha increases, beta decreases and vice versa.
  •   alpha is the producer’s risk in an experiment with a new drug or the skeptics leeway to the status quo and beta , the consumer’s risk to the new drug or declined researcher’s claim. Both are to assessed and determined based on the potential loss and the severity of a decision.
  • The only way to decrease both alpha and b eta is to increase the sample size.   To make both quantities equal zero, the sample size would have to be infinite—you would have to sample the entire population.
  • Power of the test ( 1– beta) is the probability of correctly rejecting the false null hypothesis. This can be enhanced when the variation in the sample is reduced, increase in the sample size and an increase in  alpha .
  • For parametric tests, the statistical power is higher and it helps one to significantly detect an effect.

Arunesh Ramalingam

A Hypothesis is basically a thought or belief that a particular input might affect an output. Hypothesis Testing is a systematic approach of testing this belief statistically and deciding whether the hypothesis can be retained as reasonable and realistic or should be rejected as impractical or insupportable. A hypothesis is developed for the population and statistical tests are used to determine whether there is enough evidence in a sample of data (representing the population) to infer that a certain condition is true for the entire population.

A Six Sigma Project is implemented using the DMAIC or DMADV Methodology.

  • DMAIC: Define -> Measure -> Analyze -> Improve -> Control
  • DMADV: Define -> Measure -> Analyze -> Design -> Verify

Hypothesis testing is used in the Analyze phase . In this phase, potential Xs (Inputs) which might have a bearing on the defined Y (output) of the six sigma projects are listed.   Out of the potential Xs, critical Xs, which are expected to affect the output the most, are identified and checked if the identified critical Xs are sufficient to improve the Output.

An hypothesis test will help the team in cases like determining if a modified process B has “significantly” improved yield when compared to the original process A or if a quality parameter is independent of a given production condition and so on.

Answer 2 from Excellence Club 66:   Hypothesis testing

image.png.6c08cb056e890444c9efe477fd684e72.png

Practical Six Sigma Problems that require Hypothesis Testing

Hypothesis testing tells us whether there exists statistically significant difference between the data sets for us to consider that they represent different distributions. What is the difference that can be detected using Hypothesis Testing? For Continuous data, hypothesis testing can detect Difference in Average and Difference in Variance. For Discrete data, hypothesis testing can detect Difference in Proportion Defective. Steps in Hypothesis Testing:

  • Step 1:  Determine appropriate Hypothesis test
  • Step 2:  State the Null Hypothesis Ho and Alternate Hypothesis Ha
  • Step 3:  Calculate Test Statistics / P-value against table value of test statistic
  • Step 4:  Interpret results – Accept or reject Ho
  • Ho = Null Hypothesis  – There is No statistically significant difference between the two groups
  • Ha = Alternate Hypothesis  – There is statistically significant difference between the two groups

Hypothesis Testing Errors:

Type I Error – P (Reject Ho when Ho is true) = α In type I Error, we reject the Null Hypothesis when it is true. It is also called as Alpha error or Producer’s Risk.  Type II Error - P (Accept Ho when Ho is false) = β Similarly, in type II Error, we accept Null Hypothesis when it is false. It is also called as Beta error or Consumer’s Risk. Six Sigma Hypothesis Testing Errors

image.png.ea4696cf56420e9133a45dbfb30794ab.png

Types of Six Sigma Hypothesis Testing

image.png.a92b3d8a81f65c09d36e69949a230c95.png

Mona Bhandari

Hypothesis testing is used in ANALYZE PHASE for testing potential causes. The probability that the data samples actually came from the same underlying population can be calculated. If this p-value is less than 0.05 than we conclude that the two samples likely came from different underlying populations.

Example: p-value= 0.02; means only 2% chance that data samples came from the same underlying population.

It assists us in problem-solving:

  • Evaluating a proposed process improvement to see if its effect is statistically significant, or if the same improvement could have occurred by random chance.
  • Evaluating several process factors (x's) in a designed experiment to understand which factors are significant to a given output and which are not.
  • To understand the data samples follows which given probability- normal, exponential, uniform, etc

Example:  An individual working to improve his vehicle's fuel economy might run a hypothesis test comparing fuel economy at driving speeds of 60 mph and 70 mph on a highway.

The result might show that driving at the lower speed has a statistically significant effect on the CTQ, win the case is miles-per-gallon fuel economy. The actual improvement in fuel economy might only be 0.5 miles per gallon, which be deemed not worth the extra time it will take to get work each day. 

Venugopal R

Venugopal R

Hypothesis testing is an important statistical tool that helps us to take an objective decision about a population parameter based on a reasonably small sample. Popular decisions made are whether:

  • The mean value of the population can be considered equal, more or less than a reference value. 
  • The means of two populations may be considered equal or not.
  • The variance of a population is equal to a reference value
  • The variance between two populations may be considered equal

The test of hypothesis (TOH) will be useful during the Analyze phase of DMAIC cycle. Once we have short listed a set of potential cause factors (x factors) based on a funneling method, say, a subjective rating method, TOH helps us to to narrow down to factors that have a significant influence on the outcome, in an objective manner. The TOH methods offer a good range of choices on the type of tool to be selected for a given data type, whether it is variable, discrete, standard deviation known or unknown, parametric, non-parametric, paired test etc.

TOH is also the fundamental principle upon which other advanced statistical tools such as ANOVA (Analysis of Variance), DOE (Design of Experiments) are evolved. Thus a knowledge and understanding of TOH is very essential to enhance one's competence to use several other tools as part of the Six Sigma cycle.

Apart from the Analyze phase , during the Improve phase, once we identify multiple solutions, TOH or TOH based tools may be found useful for determining the relative effectiveness of the solutions as well.

The versatility of TOH to adapt to different types of data and its ability to help derive conclusions by using very limited samples, with the known confidence levels, makes it an indispensable tool in the pursuit for excellence. It may also be noted that the complexities associated in handling the statistical calculations have been greatly simplified and made very user friendly by modern software applications.

mohanpb0

In my humble opinion, Hypothesis Testing (HT) would be the life of the Six Sigma Methodology, where reality checks are conducted to validate one way or the other, assumptions, hunches or expert opinion. In short, Hypothesis Testing is the password to access the Domain of Excellence. Of course, access to the domain alone is not sufficient to achieve excellence. However, HT provides the opportunity for the same.

HT symbolises the value add, the Six Sigma methodology brings to the table when compared with traditional improvement approaches. HT captures the essence of the "Data driven-ness" of the Six Sigma Methodology. In a validated Measurement System, HT remains the ultimate decision enabler.

Apart from the uses of HT during the Six Sigma project life-cycle, HT is very effective even when used as a stand-alone, "Six Sigma Infrastructural process tool". Any comparisons of period based performance becomes that much enriched with HT. Daily, Weekly, Monthly Performance reports all become even more smarter when combined with HT. All staff can take more educated decisions in their daily work if they apply HT. 

In the Analyse Phase, HT is used to identify the Vital few Xs from the overall X universe. Further in the Improve Phase, HT is used to validate the results of the pilots. Again, after full blown implementation of the improvements in the Control Phase, HT is again used to validate the success of the project.

Apart from the above-mentioned, almost mandatory uses of HT, in certain very specific situations, HT is sometimes also used in the Measure Phase to come to a conclusion on the Measurement System. In some even more peculiar situations, HT can come in handy in Project selection during the Define Phase.

Pratyush Kumar Nayak

Pratyush Kumar Nayak

Hypothesis Testing is used in the Analyze phase.  Hypothesis testing tells us whether there exists statistically significant difference between the data sets for us to consider that they represent different distributions.

For Continuous data, hypothesis testing can detect Difference in Average and Difference in Variance. For Discrete data, hypothesis testing can detect Difference in Proportion Defective. To Summarize the detail in pictorial form is given below.

six_sigma_hypothesis_test_null_and_alternate_summary.jpg

PrashantKurse

Generally the good hypothesis decisions leads to new understandings and better alternatives to achieve the goals . Lets take an example as an organization we decide to spend on advertizing or what effect will result in price hike on customers. Its easy tobmake a wild assumptions.

A business hypothesis always helps to solve the problems . In the start it takes support of some foundational information. Basically, hypothesis is theory. The theory details you generally expect from a certaion thought of enquiry.

A hypothesis based on years of business research in a particular field hepls you to focus ,define and appropriately direct your research.

You will not blindly or with a gut f÷ling chase to approve or disapprove it.

The hypothesis predicts the relationship between two variables. Data collection establishes the foundation for appraising the quality of a product or service.but without correct data processing, it becomes challenging make an objective conclusion.it leads to wrong interpretation. Hypothesis testing is the process of using statistics to determine the probability that a specific hypothesis is true.

Hypothesis test evaluates two mutually exclusive statements about a population to determine which statement is bestvsupported by sample data.

Hypothesis testing is categorized as a parametric test and nonparametric test. The parametric includes z-test, t-test, and f-test.

The nonparametric test includes sign test, Wilcoxon rank sum test, Kruskal Wallis test and permutation test. Its uses in analyze phase 

The statement of problem

Suppose that the doctor claims those who are 17 yearscold have an average body temperature that is hogher than the commonly acepted human temperature of 98.6 degrees F .A simple random statistical samplevof 25 people ,each of age 17 is selected.The average temperature of the sample of the sample is found to be 98.9 degrees f .Further suppose that we know that the population standard deviation of every one who is 17 years old is 0.6 degress.

The null hypothesis 

The claimbbeing investigated is that the average body temperature of everyone who is 17 yrs is greatervthan 98.6 degrees.This correspondes to the ststement x>98.6. The negation of this is that the population average is not greatervthan 98.6degress.In other words , the average temperature is les than or equal to 98.6 degrees.

I.e x<=98.6.

One of these statements must become the null hypothesis, and the other should be the altenative hypothesis. The null hypothesis contains equality. So for above, the null hypothesis Ho : x= 98.6.

Its a common practise to only state the null hypothesis in terms of an equals sign and not a greater or equal or less thannequal to.

The orther which does not contain equality is alternative hypothesis.

One or two tails.

The statement of our problem will determine which kind of test to use .if the alternative hypothesis contains a not equal to sign thenbwe use two tailed test.

In other two cases whenbthebaltrnative hypothesisbcontains strict inequality webuse one tailes test.

Choice ofba significance

Here we choose the valuebof alpha , our significance level.It is typical to let alpha be 0.05 or 0.01.For this example we will use 5% level.i.e the alpha = 0.05.

Choice of test statistic and distribution.

Now we need to determine which distribution to use .the sample is from a population that is normally distributed as the bell curve, so we can use the standard normal distribution. A table of z scores will be necessary.

The test statistic is found by the formulae for the mean of a sample, rather than thevstandard deviation we use standard error of the sample mean.Here n= 25 which hasba square root of 5. So the standard error is a 0.6/5 = 0.12.our test statistic is z = (98.9-98.6)/.12 = 2.5.

Accepting and Rejecting

At a 5% significance level, the critical value for a one tailed test is found from the table of z scores to be 1.645

Since the test statstic does not fall within the critical region we reject thevnull hypothesis.

The pvalue method.

There is a slight variation if we conduct our test using p values.

Here we see that a zscore of 2.5 has a p value of 0.0062.Since this less than the significance level of 0.05 we reject null hypothesis.

Conclusion 

We conclude by stating the results of our hypothesis test.

The statistical evidence shows that eitherva rare event has occured or that the average temperature of thosevwho are 17yrs is greater than 98.6degrees.

Hypothesis test evaluates two mutually exclusive statements about a population to determine which statement is best supported by the sample data. Research without hypothesis testing is like a sailor in the sea without compass. Hypothesis testing is used in Analyze phase in an improvement project.

R Rajesh

What is Hypothesis Testing:

To determine if the observed differences in the given samples are due to random chance or due to true differences in the samples, through statistical means

When it's used and why it is important:

Hypothesis Testing is used in the analyze phase of an improvement project (DMAIC).    It is extremely important and helps in making business decisions through statistical means. Let us see how it's achieved.                                                         

As we see from the equation, Y=f(x), vital factors that would impact the outcome, need to be scrutinized. There may be some instances where tools like Pareto chart might be able to highlight which of these factors are important. But sometimes these tools may not be able to determine the vital factors which can affect the outcome. This is where Hypothesis testing comes into the picture.

With hypothesis testing, we would be able to highlight the vital factors with relative ease. Also with it, we would be able to tell statistically which can lend support to your business decisions.

Let us speak with an example:  

To find the mileage of a car, we have a null hypothesis (H 0 ) which says that tyre pressure, fuel and speed determine the car mileage.   Let us do a Design of Experiment (DOE) for this.

Car Mileage:

 

Tyre Pressure

Fuel

Speed

Factor1

20~25 psi

Gasoline/Diesel

40~50 km/hr

Factor2

30~35 psi

Gasoline/Diesel

50~60 km/hr

 

 

 

 

Factor4

30~35 psi

Gasoline/Diesel

60~70 km/hr

It is observed that factor3 (in bold) serves the optimal value for the mileage of a car. Therefore, our null hypothesis of tyre pressure, fuel and speed determine the car mileage.  There may be instances where even when a hypothesis is proven true, it may not statistically add much difference, but which can lend support to business decisions.                             

Conclusion:

Thus we can see how important is hypothesis testing.

Chaudhary Anshu

Chaudhary Anshu

The Hypothesis testing  is tool used in inferential statistics.Hypothesis tells us whether there  exists statistically significant difference between the data set to consider that they represents different distributions.Here a null hypothesis and an alternative hypothesis are stated.The null hypothesis is a statement about the value of a population parameter such as mean,and must contain the condition of equality.The alternate hypothesis is a statement that must be true if null hypothesis is false.A null hypothesis can only be rejected or fail to be rejected,it cannot be accepted because of a lack of evidence to reject it. The Hypothesis test is used in ANALYZE phase of six Sigma methodology.The practical problem was created in earlier phases.The Hypothesis test reviews the families of variation statistically to determine the significant contributors to the output.The steps involved are: State the null hypothesis (Ho) and alternative hypothesis (Ha).Choose the level of significance (alpha). Determine the rejection region for the statistics of interest.Calculate the test statistic.Decide whether the null hypothesis should be rejected.State the conclusion in terms of the original problem.

Atul Sharma

Atul Sharma

In hypothesis testing, the statistician is likely to prove that whether the data is statistically significant and unlikely to have occurred by chance alone. A hypothesis test is a test of significance.

Once the statistician has collected data and you test hypothesis against the likelihood of chance, he draws his final conclusion. If he reject the null hypothesis than he is claiming that the result is statistically significant and that it did not happen by luck or chance. As such, the outcome proves the alternative hypothesis. If he fails to reject the null hypothesis than it is concluded that you did not find an effect or difference in your study.

Hypothesis testing is used in the six sigma Analyse phase for screening potential causes.

Yogesh.

Decision making is very crucial in every business and are taken based on experience, assumptions, judgment .

Most of the time businesses are trying to arrive at a conclusion for below questions:

  • Is the new design proposed is more robust?
  • Is the new process is cost-effective, increase the productivity, improve the performance?
  • Does adding new features to the product will increase the sale?

Mostly decisions for the above questions are made on judgement . Accuracy of the judgement is based on data. Statistical methods will help us take data based decision.

After a problem is identified, then a make a hypothesis about what will happen during the testing. In other words, the purpose of the hypothesis is a proposed solution to the problem.

Hypothesis cannot be proven correct from the data obtain in the experiment, instead hypothesis are either supported by the data collected or refuted by the data collected.

Hypothesis is used in analyze phase: It helps develop a criteria (educated guess) to accept or reject  a decision based on data obtained from experiments.

Type I Error – P (Reject Ho when Ho is true) = Alpha

Type II Error – P (Accept Ho when Ho is false) = Beta

Confidence Level – The probability of correctly accepting Ho

Power of Test – The probability of correctly rejecting Ho

 

Ho is true

Ho is false

Ho not rejected

Correct Decision

(confidence = 1- alpha)

Type II error

(Beta Risk)

Ho is rejected

Type I error

(Alpha Risk)

Correct Decision

(Power = 1- Beta)

Who's Online (See full list)

  • Alpana Sharma

Forum Statistics

  • Total Topics 3.3k
  • Total Posts 17k

Member Statistics

  • Total Members 55,245
  • Most Online 990 January 13, 2023
  • Existing user? Sign In
  • Think Pieces
  • Guest Posts

Discussions on Topics

  • Business Analytics
  • Customer Satisfaction
  • Metrics and Measurement Systems
  • DFSS - Design for Six Sigma
  • Lean Management
  • Root Cause Analysis
  • Problem Solving Methodologies
  • Efficiency and Productivity
  • Online Green Belt
  • Online Black Belt
  • Create New...

COMMENTS

  1. Hypothesis Testing Questions and Answers

    This set of Probability and Statistics Multiple Choice Questions & Answers (MCQs) focuses on "Testing of Hypothesis". 1. A statement made about a population for testing purpose is called? a) Statistic. b) Hypothesis. c) Level of Significance. d) Test-Statistic. View Answer. 2.

  2. Hypothesis Testing Practice Questions

    17 Multiple choice questions. Term. A method for testing a claim or hypothesis about a parameter in a population, using data measured in a sample, is called: A) the central limit theorem. B) hypothesis testing. C) significance testing.

  3. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  4. Hypothesis testing quiz Flashcards

    We are determining whether the actual mean (mu) of the population aligns with the hypothesized mean (muo) under analysis. Or put another way, too determine whether the observed data are significantly unlikely to have occurred if the null hypothesis were true.

  5. MCQ on Hypothesis Testing

    Statistical hypothesis testing is a method used to assess the validity of claims about data. It involves formulating null and alternative hypotheses, conducting tests, and interpreting results to draw conclusions about population parameters from sample data. This MCQ on Hypothesis Testing will help you to understand the basic concepts and ...

  6. Hypothesis testing MCQ [Free PDF]

    Statistical tests are used in hypothesis testing. They can be used to: determine whether a predictor variable has a statistically significant relationship with an outcome variable. estimate the difference between two or more groups. Statistical tests assume a null hypothesis of no relationship or no difference between groups.

  7. Hypothesis Testing

    A hypothesis test is a statistical inference method used to test the significance of a proposed (hypothesized) relation between population statistics (parameters) and their corresponding sample estimators. In other words, hypothesis tests are used to determine if there is enough evidence in a sample to prove a hypothesis true for the entire population. The test considers two hypotheses: the ...

  8. Hypothesis Testing: Uses, Steps & Example

    Formulate the Hypotheses: Write your research hypotheses as a null hypothesis (H 0) and an alternative hypothesis (H A).; Data Collection: Gather data specifically aimed at testing the hypothesis.; Conduct A Test: Use a suitable statistical test to analyze your data.; Make a Decision: Based on the statistical test results, decide whether to reject the null hypothesis or fail to reject it.

  9. Hypothesis Testing

    Hypothesis testing is an indispensable tool in data science, allowing us to make data-driven decisions with confidence. By understanding its principles, conducting tests properly, and considering real-world applications, you can harness the power of hypothesis testing to unlock valuable insights from your data.

  10. Hypothesis Testing

    Whenever we need to verify the results of a test or experiment we turn to hypothesis testing. In this free practice exam you are a data analyst at an electric car manufacturer, selling vehicles in the US and Canada. Currently the company offers two car models - Apollo and SpeedX.

  11. Mastering Hypothesis Testing: A Comprehensive Guide for ...

    1. Introduction to Hypothesis Testing - Definition and significance in research and data analysis. - Brief historical background. 2. Fundamentals of Hypothesis Testing - Null and Alternative…

  12. Hypothesis Testing: Definition, Uses, Limitations + Examples

    Mean Population IQ: 100. Step 1: Using the value of the mean population IQ, we establish the null hypothesis as 100. Step 2: State that the alternative hypothesis is greater than 100. Step 3: State the alpha level as 0.05 or 5%. Step 4: Find the rejection region area (given by your alpha level above) from the z-table.

  13. Statistical Hypothesis Testing Overview

    For example, when the alternative hypothesis is H A: μ ≠ 0, the test can detect differences both greater than and less than the null value. A one-tailed alternative has more power to detect an effect but it can test for a difference in only one direction. For example, H A: μ > 0 can only test for differences that are greater than zero.

  14. Hypothesis Testing explained in 4 parts

    First, the technical definition of power is 1−β. It represents that given an alternative hypothesis and given our null, sample size, and decision rule (alpha = 0.05), the probability is that we accept this particular hypothesis. We visualize the yellow area below. Second, power is really intuitive in its definition.

  15. Statistical Hypothesis Testing MCQ MCQs (Educational Statistics

    Check Answer. 'Children can learn a second language faster before the age of 7'. Is this statement: A non-scientific statement. A one-tailed hypothesis. A two-tailed hypothesis. A null hypothesis. Check Answer. Statistical Hypothesis Testing MCQs: Learn Educational Statistics Chapterwise.

  16. Hypothesis Testing

    Hypothesis testing is a statistical method that is used to make a statistical decision using experimental data. Hypothesis testing is basically an assumption that we make about a population parameter. It evaluates two mutually exclusive statements about a population to determine which statement is best supported by the sample data.

  17. Everything you need to know about Hypothesis Testing in Machine Learning

    The null hypothesis represented as H₀ is the initial claim that is based on the prevailing belief about the population. The alternate hypothesis represented as H₁ is the challenge to the null hypothesis. It is the claim which we would like to prove as True. One of the main points which we should consider while formulating the null and alternative hypothesis is that the null hypothesis ...

  18. Hypothesis MCQ [Free PDF]

    Hypothesis Question 15 Detailed Solution. Download Solution PDF. The correct answer is n - 1. Important Points. In the context of hypothesis testing using a paired t-test, the degrees of freedom is calculated as the number of pairs (n) minus 1.

  19. How to Generate New Ideas with Hypothesis Testing and Validation

    6. Here's what else to consider. Hypothesis testing and validation are essential analytical skills that can help you generate new ideas for solving problems, improving processes, or creating ...

  20. A Beginner's Guide to Hypothesis Testing in Business

    3. One-Sided vs. Two-Sided Testing. When it's time to test your hypothesis, it's important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests, or one-tailed and two-tailed tests, respectively. Typically, you'd leverage a one-sided test when you have a strong conviction ...

  21. P-Value Method for Hypothesis Testing

    Now, let's validate Sample 1 using the p-value method. We will take the threshold or the significance level of 0.05 (5%) to validate this hypothesis. Because this is a 2-tailed test, we divide the significance level by 2 for distributing equally on the Upper and Lower critical points. We assume that the Standard deviation of the population is 45.

  22. What is Hypothesis Testing in Statistics? Types and Examples

    Here's a closer look at the three fundamental types of hypothesis tests: 1. Z-Test: The z-test is a statistical method primarily employed when comparing means from two datasets, particularly when the population standard deviation is known. Its main objective is to ascertain if the means are statistically equivalent.

  23. Hypothesis Testing

    Hypothesis Testing is among the most powerful tools used in Business Excellence. It takes away the decisions based on gut feeling or experience or common sense e.g. Site A has better performance than Site B, we should hire more experienced employees as their accuracy is higher, it takes lesser time if we use System A vs System B, older customers are less likely to use self-help as compared to ...