Educational resources and simple solutions for your research journey

research

What is Research? Definition, Types, Methods, and Examples

Academic research is a methodical way of exploring new ideas or understanding things we already know. It involves gathering and studying information to answer questions or test ideas and requires careful thinking and persistence to reach meaningful conclusions. Let’s try to understand what research is.   

Table of Contents

Why is research important?    

Whether it’s doing experiments, analyzing data, or studying old documents, research helps us learn more about the world. Without it, we rely on guesswork and hearsay, often leading to mistakes and misconceptions. By using systematic methods, research helps us see things clearly, free from biases. (1)   

What is the purpose of research?  

In the real world, academic research is also a key driver of innovation. It brings many benefits, such as creating valuable opportunities and fostering partnerships between academia and industry. By turning research into products and services, science makes meaningful improvements to people’s lives and boosts the economy. (2)(3)  

What are the characteristics of research?    

The research process collects accurate information systematically. Logic is used to analyze the collected data and find insights. Checking the collected data thoroughly ensures accuracy. Research also leads to new questions using existing data.   

Accuracy is key in research, which requires precise data collection and analysis. In scientific research, laboratories ensure accuracy by carefully calibrating instruments and controlling experiments. Every step is checked to maintain integrity, from instruments to final results. Accuracy gives reliable insights, which in turn help advance knowledge.   

Types of research    

The different forms of research serve distinct purposes in expanding knowledge and understanding:    

  • Exploratory research ventures into uncharted territories, exploring new questions or problem areas without aiming for conclusive answers. For instance, a study may delve into unexplored market segments to better understand consumer behaviour patterns.   
  • Descriptive research delves into current issues by collecting and analyzing data to describe the behaviour of a sample population. For instance, a survey may investigate millennials’ spending habits to gain insights into their purchasing behaviours.   
  • Explanatory research, also known as causal research, seeks to understand the impact of specific changes in existing procedures. An example might be a study examining how changes in drug dosage over some time improve patients’ health.   
  • Correlational research examines connections between two sets of data to uncover meaningful relationships. For instance, a study may analyze the relationship between advertising spending and sales revenue.   
  • Theoretical research deepens existing knowledge without attempting to solve specific problems. For example, a study may explore theoretical frameworks to understand the underlying principles of human behaviour.   
  • Applied research focuses on real-world issues and aims to provide practical solutions. An example could be a study investigating the effectiveness of a new teaching method in improving student performance in schools.  (4)

Types of research methods

  • Qualitative Method: Qualitative research gathers non-numerical data through interactions with participants. Methods include one-to-one interviews, focus groups, ethnographic studies, text analysis, and case studies. For example, a researcher interviews cancer patients to understand how different treatments impact their lives emotionally.    
  • Quantitative Method: Quantitative methods deal with numbers and measurable data to understand relationships between variables. They use systematic methods to investigate events and aim to explain or predict outcomes. For example, Researchers study how exercise affects heart health by measuring variables like heart rate and blood pressure in a large group before and after an exercise program. (5)  

Basic steps involved in the research process    

Here are the basic steps to help you understand the research process:   

  • Choose your topic: Decide the specific subject or area that you want to study and investigate. This decision is the foundation of your research journey.   
  • Find information: Look for information related to your research topic. You can search in journals, books, online, or ask experts for help.   
  • Assess your sources: Make sure the information you find is reliable and trustworthy. Check the author’s credentials and the publication date.   
  • Take notes: Write down important information from your sources that you can use in your research.   
  • Write your paper: Use your notes to write your research paper. Broadly, start with an introduction, then write the body of your paper, and finish with a conclusion.   
  • Cite your sources: Give credit to the sources you used by including citations in your paper.   
  • Proofread: Check your paper thoroughly for any errors in spelling, grammar, or punctuation before you submit it. (6)

How to ensure research accuracy?  

Ensuring accuracy in research is a mix of several essential steps:    

  • Clarify goals: Start by defining clear objectives for your research. Identify your research question, hypothesis, and variables of interest. This clarity will help guide your data collection and analysis methods, ensuring that your research stays focused and purposeful.   
  • Use reliable data: Select trustworthy sources for your information, whether they are primary data collected by you or secondary data obtained from other sources. For example, if you’re studying climate change, use data from reputable scientific organizations with transparent methodologies.   
  • Validate data: Validate your data to ensure it meets the standards of your research project. Check for errors, outliers, and inconsistencies at different stages, such as during data collection, entry, cleaning, or analysis.    
  • Document processes: Documenting your data collection and analysis processes is essential for transparency and reproducibility. Record details such as data collection methods, cleaning procedures, and analysis techniques used. This documentation not only helps you keep track of your research but also enables others to understand and replicate your work.   
  • Review results: Finally, review and verify your research findings to confirm their accuracy and reliability. Double-check your analyses, cross-reference your data, and seek feedback from peers or supervisors. (7) 

Research is crucial for better understanding our world and for social and economic growth. By following ethical guidelines and ensuring accuracy, researchers play a critical role in driving this progress, whether through exploring new topics or deepening existing knowledge.   

References:  

  • Why is Research Important – Introductory Psychology – Washington State University  
  • The Role Of Scientific Research In Driving Business Innovation – Forbes  
  • Innovation – Royal Society  
  • Types of Research – Definition & Methods – Bachelor Print  
  • What Is Qualitative vs. Quantitative Study? – National University  
  • Basic Steps in the Research Process – North Hennepin Community College  
  • Best Practices for Ensuring Data Accuracy in Research – LinkedIn  

Researcher.Life is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Researcher.Life All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 21+ years of experience in academia, Researcher.Life All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $17 a month !    

Related Posts

research funding sources

What are the Best Research Funding Sources

experimental groups in research

What are Experimental Groups in Research

What is research?

  • Published: 16 December 2021
  • Volume 20 , pages 407–411, ( 2021 )

Cite this article

articles research definition

  • Dong-Wook Song 1  

38k Accesses

8 Citations

Explore all metrics

Avoid common mistakes on your manuscript.

There is nothing so practical as a good theory.                Kurt Lewin (1890–1947)

One of the duties to be conducted by an editor-in-chief is to make an editorial decision by accepting, requesting for revision(s) or rejecting a submitted manuscript after a round of reviewing processes or even before putting it into the reviewing procedure: that is desk rejection. See more about the decision-making process in the previous editorial (Song 2020b ). Authors of rejected manuscripts are likely to think of why their works are refused to be published at a peer-reviewed journal. In this editorial, your editor-in-chief attempts to express an overview of his perspective and/or philosophy on the related matter.

Research in definition

In his well-known book What is history? , Carr ( 1961 ) defines the history as a never-ending conversation between the past and the present. Similarly, the authors of The Craft of Research put their definition of the research as a conversation by helping you (as a researcher) and your community (i.e. learned societies) free us (i.e. general public) from ignorance, prejudice and the half-baked ideas that so many charlatans try to impose on us (Booth et al., p. 11). Furthermore, Huff ( 2009 ) starts her well-articulated book Designing Research for Publication with the chapter headed ‘Finding the Right Conversation’. The chapter is composed of such sub-headings as ‘scholarship as a social, sensemaking activity’, ‘identifying scholarly conversations’, ‘choosing your conversation’, ‘developing a scholarly identity that informs scholarly choices’ and ‘balancing attraction, agreement and disagreement’.

All the three books, being widely recognised and used for educating learned people like you, do commonly mention the term ‘conversation’ in a way to elucidating research. When googling further for more, you will find the following definition given by the Western Sydney University ( 2021 ):

“Research is defined as the creation of new knowledge and/or the use of existing knowledge in a new and creative way so as to generate new concepts, methodologies and understandings. This could include synthesis and analysis of previous research to the extent that it leads to new and creative outcomes.”

Putting all those explications into a single frame, one could interpret that the research (more preciously, academic or scientific research) has to do with (i) linking (that is a ‘conversation’) what has been done (the past) with what has to be done (the present and/or future) in a way to generate new knowledge and (ii) objectifying what you are doing in a way to contribute to your chosen field (or community).

The former is named a literature review, while the latter a methodology. While acknowledging that these two activities are deemed to need further discussion in a detailed manner, Footnote 1 the current editorial aims to proceed towards the definition and types of research in a context of maritime studies as an applied science.

Applied research in definition

In a simple but distinctive manner, Booth et al. ( 2016 , pp. 51–65) define pure (or basic) and applied research as “We call pure research when it addresses a conceptual problem that does not bear directly on any practical situation in the world….. [we] call applied research when it addresses a conceptual problem that does have practical consequences…… ‘[what] we should think ’ is concerned with the conceptual problem, while ‘what we should do ’ is with the practical problem.” [emphases inserted].

On the same matter, Flexner ( 1939 ) went even further by quoting the Nobel laureate George Porter saying the two types as applied and ‘ not-yet-applied ’ research: the latter being regarded as pure research (or blue sky research). In his context, findings from pure research are treated by general public as ‘useless knowledge’ until they become applied for human’s wellbeing (that is the useless knowledge has been eventually transformed into being useful). He did, however, make an emphasis on the fact that pure scientists, like Albert Einstein, had not considered the practicality nor applicability of their theory when launching their exploration; they did simply out of curiosities. Applied scientists are those who see a potential by examining theories developed by pure scientists and apply them to human’s welfares; those who developed GPS from the Einstein’s theory are those categorised ones in this context.

Turning on to the domain of social sciences, we are still able to observe the similar trajectory that has been developed. For example, Kurt Lewin (1890–1947), whose works in the field of applied psychology or organisation and management sciences are widely cited, did firmly claim that those working in practice-geared disciplines are to be a practical theorist . This assertion is vindicated by his most frequently cited sentence as quoted in the beginning of this editorial. His stand on the nature of applied research does clearly indicate that theories and/or concepts are a starting point for applied scientists to commence their journey of investigation.

Types of research

Having the aforementioned points in mind, this editorial makes an effort to classify the types of applied research using the following diagram. Footnote 2 In a simple way, we are to generate a concept on our way towards theory by carefully observing the practice: so-called theory-building. Consequently, the developed concepts/theories are to be tested in an incremental manner to better reflect the practice: named ‘theory-testing’. In this sense, we could illustrate the related mechanism between theory on one side and practice on the other in a either direct or indirect format (expressed in a dotted line in the figure). In other words, some theories remain in a stage where they have not yet applied or related to the practice, while others are practically attached to the world.

The spectrum spread across the line between theory and practice could be approximately pointed into four spots (I to IV) in terms of nature of applied research.

figure a

Type I is a theory-focused research, while Type IV is a practice-driven one. Most of the applied research could fall into somewhere between the two—Type II or Type III. Specifically speaking, the editorial defines the Type I to be ‘close-to-blue-sky-research’ as it conducts for the sake of developing, enhancing or improving related concept/theory. The Type II could be the one that performs theory-dominated and practice-considered research. Its example could include, amongst others, those researches in responding to the call for applications commissioned by research councils, non-profit-making foundations or similar institutes whose interests are in making the world a better place by enhancing knowledge beneficial to the wide public. Research is considered principally as public goods under this category. The editorial names it ‘responsive research’ . The Type III could be the one that conducts the research having specific beneficiaries in mind from the beginning. The editorial calls the Type III as ‘contracted research’ including consultancies. Finally, the Type IV would be the in-house research executed exclusively for their own interest, the outputs of which are often produced in a form of company or organisation reports. Some of those reports are at times used either partially or fully for the purpose of promoting companies/organisations in question. This Type IV can be termed ‘in-house research’ .

Expected types of papers

Having once again defined the discipline of maritime studies in a broad sense (see more at Song 2020a ) as an applied science, the WMU Journal of Maritime Affairs (JOMA) as a peer-reviewed ‘academic’ dissemination outlet would welcome the Type I and Type II papers with the expectations that the Typed-II-papers could be majority. At the same time, however, JOMA as an ‘industry’-geared outlet would also welcome the Type III papers, subject to those works to be objectified Footnote 3 prior to submission to the journal for consideration. The Typed-IV-papers could be treated as a special case under the title of views from industrial professionals: that is the issues of contemporary interest as indicated in the editorial (Song 2020a ). Those authoritative voices from the industry would be ‘invited’ to express their views for the case of this Type IV of papers.

Final words

Assuming that most of the present and prospective authors, readers, reviewers or other stakeholders for JOMA are an ‘academic’ applied researcher, the editorial would like to summarise what has been discussed in the section by quoting the following point made by Kurt Lewin (1890–1947) who claimed himself as a practical theorist.

“Theory should fulfil two main functions: first, it should account for what is known; second, it should point out the way to new knowledge. ….. [research] should therefore be undertaken with the purpose of testing theoretical concepts, instead of merely collecting and analysing elemental facts or classifying behaviour statistically.” (Marrow 1969 , p. 30)

Having attempted to discuss what might be sensitive, subjective or perspective-biased to some, as usual, your editor-in-chief looks forward to receiving comments and feedbacks from you as a current and future contributor to the discipline of maritime studies in general and JOMA in specific. We could then collectively develop our beloved maritime communities as a backbone to the global economies. Please drop him an email whenever you feel it could be helpful and useful to the common good of the journal and/or maritime communities.

Dong-Wook Song

Editor-in-Chief

[email protected]

These issues will be also discussed in the forthcoming editorials in due course.

The editorial does fully acknowledge and appreciate that expressing the complexity involved with dynamism between theory and practice as a dichotomised form would be too simplistic to be convincing. The current effort is, however, made to convey the editor’s perspective and philosophy towards maritime studies (as a branch of applied research) as simplest as possible.

The subject of ‘how to objectify’ will be another topic to be dealt with at the forthcoming editorial in due time.

Booth W, Colomb G, Williams J, Bizup J, FitzGerald W (2016) The craft of research, 4th edn. University of Chicago Press, London

Google Scholar  

Carr E (1961[2001]) What is history? Palgrave Macmillan, London

Flexner A (1939[2017]) The usefulness of useless knowledge. Princeton University Press, Oxford

Huff A (2009) Designing research for publication. Sage Publications, London

Marrow A (1969) The practical theorist: the life and work of Kurt Lewin. Basic Books, London

Song D-W (2020a) Editorial: looking back for the future. WMU J Marit Aff 19(1):1–3

Article   Google Scholar  

Song D-W (2020b) Editorial: decision-making process for journal articles. WMU J Marit Aff 19(2):159–162

Western Sydney University (2021) Definition of Research. https://www.westernsydney.edu.au/research/researchers/preparing_a_grant_application/dest_definition_of_research. Accessed on 15th November

Download references

Author information

Authors and affiliations.

World Maritime University, Malmö, Sweden

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Dong-Wook Song .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Song, DW. What is research?. WMU J Marit Affairs 20 , 407–411 (2021). https://doi.org/10.1007/s13437-021-00256-w

Download citation

Published : 16 December 2021

Issue Date : December 2021

DOI : https://doi.org/10.1007/s13437-021-00256-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

Banner

What is a Scholarly Article: What is a scholarly article

Determineif a source is scholarly, determine if a source is scholarly, what is a scholarly source.

Scholarly sources (also referred to as academic, peer-reviewed, or refereed sources) are written by experts in a particular field and serve to keep others interested in that field up to date on the most recent research, findings, and news. These resources will provide the most substantial information for your research and papers.

What is peer-review?

When a source has been peer-reviewed, it has undergone the review and scrutiny of a review board of colleagues in the author’s field. They evaluate this source as part of the body of research for a particular discipline and make recommendations regarding its publication in a journal, revisions prior to publication, or, in some cases, reject its publication.

Why use scholarly sources?

Scholarly sources’ authority and credibility improve the quality of your own paper or research project.

How can I tell if a source is scholarly?

The following characteristics can help you differentiate scholarly sources from those that are not. Be sure to look at the criteria in each category when making your determination, rather than basing your decision on only one piece of information.

  • Are author names provided?
  • Are the authors’ credentials provided?
  • Are the credentials relevant to the information provided?
  • Who is the publisher of the information?
  • Is the publisher an academic institution, scholarly, or professional organization?
  • Is their purpose for publishing this information evident?
  • Who is the intended audience of this source?
  • Is the language geared toward those with knowledge of a specific discipline rather than the general public?
  • Why is the information being provided?
  • Are sources cited?
  • Are there charts, graphs, tables, and bibliographies included?
  • Are research claims documented?
  • Are conclusions based on evidence provided?
  • How long is the source?

Currency/Timeliness

  • Is the date of publication evident?

Additional Tips for Specific Scholarly Source Types

Each resource type below will also have unique criteria that can be applied to it to determine if it is scholarly.

  • Books published by a University Press are likely to be scholarly.
  • Professional organizations and the U.S. Government Printing Office can also be indicators that a book is scholarly.
  • Book reviews can provide clues as to if a source is scholarly and highlight the intended audience. See our  Find Reviews  guide to locate reviews on titles of interest.
  • Are the author’s professional affiliations provided?
  • Who is the publisher?
  • How frequently is the periodical published?
  • How many and what kinds of advertisements are present? For example, is the advertising clearly geared towards readers in a specific discipline or occupation?
  • For more information about different periodical types, see our  Selecting Sources  guide.
  • What is the domain of the page (for example: .gov, .edu, etc.)?
  • Who is publishing or sponsoring the page?
  • Is contact information for the author/publisher provided?
  • How recently was the page updated?
  • Is the information biased? Scholarly materials published online should not have any evidence of bias.

Is My Source Scholarly? (Accessible View)

Step 1: Source

The article is most likely scholarly if:

  • You found the article in a library database or Google Scholar
  • The journal the article appears in is peer-reviewed

Move to Step 2: Authors

Step 2: Authors

The source is most likely scholarly if:

  • The authors’ credentials are provided
  • The authors are affiliated with a university or other research institute

Move to Step 3: Content

Step 3: Content

  • The source is longer than 10 pages
  • Has a works cited or bibliography
  • It does not attempt to persuade or bias the reader
  • It attempts to persuade or bias the reader, but treats the topic objectively, the information is well-supported, and it includes a works cited or bibliography

If the article meets the criteria in Steps 1-3 it is most likely scholarly.

Common Characteristics of a Scholarly Article

Common characteristics of scholarly (research) articles.

Articles in scholarly journals may also be called research journals, peer reviewed journals, or refereed journals. These types of articles share many common features, including:

  • articles always provide the name of the author or multiple authors
  • author(s) always have academic credentials (e.g. biologist, chemist, anthropologist, lawyer)
  • articles often have a sober, serious look
  • articles may contain many graphs and charts; few glossy pages or color pictures
  • author(s) write in the language of the discipline (e.g. biology, chemistry, anthropology, law, etc.)
  • authors write for other scholars, and emerging scholars
  • authors always cite their sources in footnotes, bibliographies, notes, etc.
  • often (but not always) associated with universities or professional organizations

Types of Scholarly Articles

Peer Review in 3 Minutes

North Carolina State University (NCSU) Libraries (3:15)

  • What do peer reviewers do?  How are they similar to or different from editors?
  • Who are the primary customers of scholarly journals?
  • Do databases only include peer-reviewed articles?  How do you know?

Is my source scholarly

Steps to determine if source is scholarly

Is My Source Scholarly?: INFOGRAPHIC

This infographic is part of the Illinois Library's Determine if a source is scholarly.

"Is my source scholarly" by Illinois Library  https://www.library.illinois.edu/ugl/howdoi/scholarly/

Anatomy of a Scholarly Article: Interactive Tutorial

articles research definition

Typical Sections of a Peer-Reviewed Research Article

Typical sections of peer-reviewed research articles.

Research articles in many disciplines are organized into standard sections. Although these sections may vary by discipline, common sections include:

  • Introduction
  • Materials and Methods

It's not hard to spot these sections; just look for bold headings in the article, as shown in these illustrations:

  • Last Updated: Oct 22, 2020 11:31 AM
  • URL: https://libguides.mccd.edu/WhatisaScholarlyArticle
  • More from M-W
  • To save this word, you'll need to log in. Log In

Definition of research

 (Entry 1 of 2)

Definition of research  (Entry 2 of 2)

transitive verb

intransitive verb

  • disquisition
  • examination
  • exploration
  • inquisition
  • investigation
  • delve (into)
  • inquire (into)
  • investigate
  • look (into)

Examples of research in a Sentence

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'research.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

Middle French recerche , from recercher to go about seeking, from Old French recerchier , from re- + cerchier, sercher to search — more at search

1577, in the meaning defined at sense 3

1588, in the meaning defined at transitive sense 1

Phrases Containing research

  • marketing research
  • market research
  • operations research
  • oppo research

research and development

  • research park
  • translational research

Dictionary Entries Near research

Cite this entry.

“Research.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/research. Accessed 17 Aug. 2024.

Kids Definition

Kids definition of research.

Kids Definition of research  (Entry 2 of 2)

More from Merriam-Webster on research

Nglish: Translation of research for Spanish Speakers

Britannica English: Translation of research for Arabic Speakers

Britannica.com: Encyclopedia article about research

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Plural and possessive names: a guide, commonly misspelled words, how to use em dashes (—), en dashes (–) , and hyphens (-), absent letters that are heard anyway, how to use accents and diacritical marks, popular in wordplay, 8 words for lesser-known musical instruments, it's a scorcher words for the summer heat, 7 shakespearean insults to make life more interesting, 10 words from taylor swift songs (merriam's version), 9 superb owl words, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

Banner

  • UNO Criss Library

Social Work Research Guide

What is a research journal.

  • Find Articles
  • Find E-Books and Books

Reading an Academic Article

  • Free Online Resources
  • Reference and Writing
  • Citation Help This link opens in a new window

Anatomy of a Scholarly Article

TIP: When possible, keep your research question(s) in mind when reading scholarly articles. It will help you to focus your reading.

Title : Generally are straightforward and describe what the article is about. Titles often include relevant key words.

Abstract : A summary of the author(s)'s research findings and tells what to expect when you read the full article. It is often a good idea to read the abstract first, in order to determine if you should even bother reading the whole article.

Discussion and Conclusion : Read these after the Abstract (even though they come at the end of the article). These sections can help you see if this article will meet your research needs. If you don’t think that it will, set it aside.

Introduction : Describes the topic or problem researched. The authors will present the thesis of their argument or the goal of their research.

Literature Review : May be included in the introduction or as its own separate section. Here you see where the author(s) enter the conversation on this topic. That is to say, what related research has come before, and how do they hope to advance the discussion with their current research?

Methods : This section explains how the study worked. In this section, you often learn who and how many participated in the study and what they were asked to do. You will need to think critically about the methods and whether or not they make sense given the research question.

Results : Here you will often find numbers and tables. If you aren't an expert at statistics this section may be difficult to grasp. However you should attempt to understand if the results seem reasonable given the methods.

Works Cited (also be called References or Bibliography ): This section comprises the author(s)’s sources. Always be sure to scroll through them. Good research usually cites many different kinds of sources (books, journal articles, etc.). As you read the Works Cited page, be sure to look for sources that look like they will help you to answer your own research question.

Adapted from http://library.hunter.cuny.edu/research-toolkit/how-do-i-read-stuff/anatomy-of-a-scholarly-article

A research journal is a periodical that contains articles written by experts in a particular field of study who report the results of research in that field. The articles are intended to be read by other experts or students of the field, and they are typically much more sophisticated and advanced than the articles found in general magazines. This guide offers some tips to help distinguish scholarly journals from other periodicals.

CHARACTERISTICS OF RESEARCH JOURNALS

PURPOSE : Research journals communicate the results of research in the field of study covered by the journal. Research articles reflect a systematic and thorough study of a single topic, often involving experiments or surveys. Research journals may also publish review articles and book reviews that summarize the current state of knowledge on a topic.

APPEARANCE : Research journals lack the slick advertising, classified ads, coupons, etc., found in popular magazines. Articles are often printed one column to a page, as in books, and there are often graphs, tables, or charts referring to specific points in the articles.

AUTHORITY : Research articles are written by the person(s) who did the research being reported. When more than two authors are listed for a single article, the first author listed is often the primary researcher who coordinated or supervised the work done by the other authors. The most highly‑regarded scholarly journals are typically those sponsored by professional associations, such as the American Psychological Association or the American Chemical Society.

VALIDITY AND RELIABILITY : Articles submitted to research journals are evaluated by an editorial board and other experts before they are accepted for publication. This evaluation, called peer review, is designed to ensure that the articles published are based on solid research that meets the normal standards of the field of study covered by the journal. Professors sometimes use the term "refereed" to describe peer-reviewed journals.

WRITING STYLE : Articles in research journals usually contain an advanced vocabulary, since the authors use the technical language or jargon of their field of study. The authors assume that the reader already possesses a basic understanding of the field of study.

REFERENCES : The authors of research articles always indicate the sources of their information. These references are usually listed at the end of an article, but they may appear in the form of footnotes, endnotes, or a bibliography.

PERIODICALS THAT ARE NOT RESEARCH JOURNALS

POPULAR MAGAZINES : These are periodicals that one typically finds at grocery stores, airport newsstands, or bookstores at a shopping mall. Popular magazines are designed to appeal to a broad audience, and they usually contain relatively brief articles written in a readable, non‑technical language.

Examples include: Car and Driver , Cosmopolitan , Esquire , Essence , Gourmet , Life , People Weekly , Readers' Digest , Rolling Stone , Sports Illustrated , Vanity Fair , and Vogue .

NEWS MAGAZINES : These periodicals, which are usually issued weekly, provide information on topics of current interest, but their articles seldom have the depth or authority of scholarly articles.

Examples include: Newsweek , Time , U.S. News and World Report .

OPINION MAGAZINES : These periodicals contain articles aimed at an educated audience interested in keeping up with current events or ideas, especially those pertaining to topical issues. Very often their articles are written from a particular political, economic, or social point of view.

Examples include: Catholic World , Christianity Today , Commentary , Ms. , The Militant , Mother Jones , The Nation , National Review , The New Republic , The Progressive , and World Marxist Review .

TRADE MAGAZINES : People who need to keep up with developments in a particular industry or occupation read these magazines. Many trade magazines publish one or more special issues each year that focus on industry statistics, directory lists, or new product announcements.

Examples include: Beverage World , Progressive Grocer , Quick Frozen Foods International , Rubber World , Sales and Marketing Management , Skiing Trade News , and Stores .

Literature Reviews

  • Literature Review Guide General information on how to organize and write a literature review.
  • The Literature Review: A Few Tips On Conducting It Contains two sets of questions to help students review articles, and to review their own literature reviews.
  • << Previous: Find E-Books and Books
  • Next: Statistics >>
  • Last Updated: Jun 20, 2024 10:14 AM
  • URL: https://libguides.unomaha.edu/social_work
  • Library databases
  • Library website

Evaluating Resources: Research Articles

Research articles.

A research article is a journal article in which the authors report on the research they did. Research articles are always primary sources. Whether or not a research article is peer reviewed depends on the journal that publishes it.

Published research articles follow a predictable pattern and will contain most, if not all, of the sections listed below. However, the names for these sections may vary.

  • Title & Author(s)
  • Introduction
  • Methodology

To learn about the different parts of a research article, please view this tutorial:

Short video: How to Read Scholarly Articles

Learn some tips on how to efficiently read scholarly articles.

Video: How to Read a Scholarly Article

(4 min 16 sec) Recorded August 2019 Transcript 

More information

The Academic Skills Center and the Writing Center both have helpful resources on critical and academic reading that can further help you understand and evaluate research articles.

  • Academic Skills Center Guide: Developing Your Reading Skills
  • Academic Skills Center Webinar Archive: Savvy Strategies for Academic Reading
  • Writing Center Podcast: WriteCast Episode 5: Five Strategies for Critical Reading

If you'd like to learn how to find research articles in the Library, you can view this Quick Answer.

  • Quick Answer: How do I find research articles?
  • Previous Page: Primary & Secondary Sources
  • Office of Student Disability Services

Walden Resources

Departments.

  • Academic Residencies
  • Academic Skills
  • Career Planning and Development
  • Customer Care Team
  • Field Experience
  • Military Services
  • Student Success Advising
  • Writing Skills

Centers and Offices

  • Center for Social Change
  • Office of Academic Support and Instructional Services
  • Office of Degree Acceleration
  • Office of Research and Doctoral Services
  • Office of Student Affairs

Student Resources

  • Doctoral Writing Assessment
  • Form & Style Review
  • Quick Answers
  • ScholarWorks
  • SKIL Courses and Workshops
  • Walden Bookstore
  • Walden Catalog & Student Handbook
  • Student Safety/Title IX
  • Legal & Consumer Information
  • Website Terms and Conditions
  • Cookie Policy
  • Accessibility
  • Accreditation
  • State Authorization
  • Net Price Calculator
  • Contact Walden

Walden University is a member of Adtalem Global Education, Inc. www.adtalem.com Walden University is certified to operate by SCHEV © 2024 Walden University LLC. All rights reserved.

Finding Scholarly Articles: Home

Profile Photo

What's a Scholarly Article?

Your professor has specified that you are to use scholarly (or primary research or peer-reviewed or refereed or academic) articles only in your paper. What does that mean?

Scholarly or primary research articles are peer-reviewed , which means that they have gone through the process of being read by reviewers or referees  before being accepted for publication. When a scholar submits an article to a scholarly journal, the manuscript is sent to experts in that field to read and decide if the research is valid and the article should be published. Typically the reviewers indicate to the journal editors whether they think the article should be accepted, sent back for revisions, or rejected.

To decide whether an article is a primary research article, look for the following:

  • The author’s (or authors') credentials and academic affiliation(s) should be given;
  • There should be an abstract summarizing the research;
  • The methods and materials used should be given, often in a separate section;
  • There are citations within the text or footnotes referencing sources used;
  • Results of the research are given;
  • There should be discussion   and  conclusion ;
  • With a bibliography or list of references at the end.

Caution: even though a journal may be peer-reviewed, not all the items in it will be. For instance, there might be editorials, book reviews, news reports, etc. Check for the parts of the article to be sure.   

You can limit your search results to primary research, peer-reviewed or refereed articles in many databases. To search for scholarly articles in  HOLLIS , type your keywords in the box at the top, and select  Catalog&Articles  from the choices that appear next.   On the search results screen, look for the  Show Only section on the right and click on  Peer-reviewed articles . (Make sure to  login in with your HarvardKey to get full-text of the articles that Harvard has purchased.)

Many of the databases that Harvard offers have similar features to limit to peer-reviewed or scholarly articles.  For example in Academic Search Premier , click on the box for Scholarly (Peer Reviewed) Journals  on the search screen.

Review articles are another great way to find scholarly primary research articles.   Review articles are not considered "primary research", but they pull together primary research articles on a topic, summarize and analyze them.  In Google Scholar , click on Review Articles  at the left of the search results screen. Ask your professor whether review articles can be cited for an assignment.

A note about Google searching.  A regular Google search turns up a broad variety of results, which can include scholarly articles but Google results also contain commercial and popular sources which may be misleading, outdated, etc.  Use Google Scholar  through the Harvard Library instead.

About Wikipedia .  W ikipedia is not considered scholarly, and should not be cited, but it frequently includes references to scholarly articles. Before using those references for an assignment, double check by finding them in Hollis or a more specific subject  database .

Still not sure about a source? Consult the course syllabus for guidance, contact your professor or teaching fellow, or use the Ask A Librarian service.

  • Last Updated: Oct 3, 2023 3:37 PM
  • URL: https://guides.library.harvard.edu/FindingScholarlyArticles

Harvard University Digital Accessibility Policy

Different types of research articles

A guide for early career researchers.

In scholarly literature, there are many different kinds of articles published every year. Original research articles are often the first thing you think of when you hear the words ‘journal article’. In reality, research work often results in a whole mixture of different outputs and it’s not just the final research article that can be published.

Finding a home to publish supporting work in different formats can help you start publishing sooner, allowing you to build your publication record and research profile.

But before you do, it’s very important that you check the  instructions for authors  and the  aims and scope  of the journal(s) you’d like to submit to. These will tell you whether they accept the type of article you’re thinking of writing and what requirements they have around it.

Understanding the different kind of articles

There’s a huge variety of different types of articles – some unique to individual journals – so it’s important to explore your options carefully. While it would be impossible to cover every single article type here, below you’ll find a guide to the most common research articles and outputs you could consider submitting for publication.

Book review

Many academic journals publish book reviews, which aim to provide insight and opinion on recently published scholarly books. Writing book reviews is often a good way to begin academic writing. It can help you get your name known in your field and give you valuable experience of publishing before you write a full-length article.

If you’re keen to write a book review, a good place to start is looking for journals that publish or advertise the books they have available for review. Then it’s just a matter of putting yourself forward for one of them.

You can check whether a journal publishes book reviews by browsing previous issues or by seeing if a book review editor is listed on the editorial board. In addition, some journals publish other types of reviews, such as film, product, or exhibition reviews, so it’s worth bearing those in mind as options as well.

Get familiar with instructions for authors

Be prepared, speed up your submission, and make sure nothing is forgotten by understanding a journal’s individual requirements.

Publishing tips, direct to your inbox

Expert tips and guidance on getting published and maximizing the impact of your research. Register now for weekly insights direct to your inbox.

articles research definition

Case report

A medical case report – also sometimes called a clinical case study – is an original short report that provides details of a single patient case.

Case reports include detailed information on the symptoms, signs, diagnosis, treatment, and follow-up of an individual patient. They remain one of the cornerstones of medical progress and provide many new ideas in medicine.

Depending on the journal, a case report doesn’t necessarily need to describe an especially novel or unusual case as there is benefit from collecting details of many standard cases.

Take a look at  F1000Research’s guidance on case reports , to understand more about what’s required in them. And don’t forget that for all studies involving human participants, informed written consent to take part in the research must be obtained from the participants –  find out more about consent to publish.

Clinical study

In medicine, a clinical study report is a type of article that provides in-depth detail on the methods and results of a clinical trial. They’re typically similar in length and format to original research articles.

Most journals now require that you register protocols for clinical trials you’re involved with in a publicly accessible registry. A list of eligible registries can be found on the  WHO International Clinical Trials Registry Platform (ICTRP) . Trials can also be registered at  clinicaltrials.gov  or the  EU Clinical Trials Register . Once registered, your trial will be assigned a clinical trial number (CTN).

Before you submit a clinical study, you’ll need to include clinical trial numbers and registration dates in the manuscript, usually in the abstract and methods sections.

Commentaries and letters to editors

Letters to editors, as well as ‘replies’ and ‘discussions’, are usually brief comments on topical issues of public and political interest (related to the research field of the journal), anecdotal material, or readers’ reactions to material published in the journal.

Commentaries are similar, though they may be slightly more in-depth, responding to articles recently published in the journal. There may be a ‘target article’ which various commentators are invited to respond to.

You’ll need to look through previous issues of any journal you’re interested in writing for and review the instructions for authors to see which types of these articles (if any) they accept.

articles research definition

Conference materials

Many of our medical journals  accept conference material supplements. These are open access peer-reviewed, permanent, and citable publications within the journal. Conference material supplements record research around a common thread, as presented at a workshop, congress, or conference, for the scientific record. They can include the following types of articles:

Poster extracts

Conference abstracts

Presentation extracts

Find out more about submitting conference materials.

Data notes  are a short peer-reviewed article type that concisely describe research data stored in a repository. Publishing a data note can help you to maximize the impact of your data and gain appropriate credit for your research.

articles research definition

Data notes promote the potential reuse of research data and include details of why and how the data were created. They do not include any analysis but they can be linked to a research article incorporating analysis of the published dataset, as well as the results and conclusions.

F1000Research  enables you to publish your data note rapidly and openly via an author-centric platform. There is also a growing range of options for publishing data notes in Taylor & Francis journals, including in  All Life  and  Big Earth Data .

Read our guide to data notes to find out more.

Letters or short reports

Letters or short reports (sometimes known as brief communications or rapid communications) are brief reports of data from original research.

Editors publish these reports where they believe the data will be interesting to many researchers and could stimulate further research in the field. There are even entire journals dedicated to publishing letters.

As they’re relatively short, the format is useful for researchers with results that are time sensitive (for example, those in highly competitive or quickly-changing disciplines). This format often has strict length limits, so some experimental details may not be published until the authors write a full original research article.

Brief reports  (previously called Research Notes) are a type of short report published by  F1000Research  – part of the Taylor & Francis Group. To find out more about the requirements for a brief report, take a look at  F1000Research’s guidance .

Vector illustration of a large open laptop, with four puzzle pieces that are blue and pink on the screen, and three characters stood around the laptop pointing at the puzzle pieces.

Method article

A method article is a medium length peer-reviewed, research-focused article type that aims to answer a specific question. It also describes an advancement or development of current methodological approaches and research procedures (akin to a research article), following the standard layout for research articles. This includes new study methods, substantive modifications to existing methods, or innovative applications of existing methods to new models or scientific questions. These should include adequate and appropriate validation to be considered, and any datasets associated with the paper must publish all experimental controls and make full datasets available.  

Posters and slides

With F1000Research, you can publish scholarly posters and slides covering basic scientific, translational, and clinical research within the life sciences and medicine. You can find out more about how to publish posters and slides  on the F1000Research website .

Registered report

A  Registered Report  consists of two different kinds of articles: a study protocol and an original research article.

This is because the review process for Registered Reports is divided into two stages. In Stage 1, reviewers assess study protocols before data is collected. In Stage 2, reviewers consider the full published study as an original research article, including results and interpretation.

Taking this approach, you can get an in-principle acceptance of your research article before you start collecting data. We’ve got  further guidance on Registered Reports here , and you can also  read F1000Research’s guidance on preparing a Registered Report .

Research article

Original research articles are the most common type of journal article. They’re detailed studies reporting new work and are classified as primary literature.

You may find them referred to as original articles, research articles, research, or even just articles, depending on the journal.

Typically, especially in STEM subjects, these articles will include Abstract, Introduction, Methods, Results, Discussion, and Conclusion sections. However, you should always check the instructions for authors of your chosen journal to see whether it specifies how your article should be structured. If you’re planning to write an original research article, take a look at our guidance on  writing a journal article .

articles research definition

Review article

Review articles provide critical and constructive analysis of existing published literature in a field. They’re usually structured to provide a summary of existing literature, analysis, and comparison. Often, they identify specific gaps or problems and provide recommendations for future research.

Unlike original research articles, review articles are considered as secondary literature. This means that they generally don’t present new data from the author’s experimental work, but instead provide analysis or interpretation of a body of primary research on a specific topic. Secondary literature is an important part of the academic ecosystem because it can help explain new or different positions and ideas about primary research, identify gaps in research around a topic, or spot important trends that one individual research article may not.

There are 3 main types of review article

Literature review

Presents the current knowledge including substantive findings as well as theoretical and methodological contributions to a particular topic.

Systematic review

Identifies, appraises and synthesizes all the empirical evidence that meets pre-specified eligibility criteria to answer a specific research question. Researchers conducting systematic reviews use explicit, systematic methods that are selected with a view aimed at minimizing bias, to produce more reliable findings to inform decision making.

Meta-analysis

A quantitative, formal, epidemiological study design used to systematically assess the results of previous research to derive conclusions about that body of research. Typically, but not necessarily, a meta-analysis study is based on randomized, controlled clinical trials.

Take a look at our guide to  writing a review article  for more guidance on what’s required.

Software tool articles

A  software tool article  – published by  F1000Research  – describes the rationale for the development of a new software tool and details of the code used for its construction.

The article should provide examples of suitable input data sets and include an example of the output that can be expected from the tool and how this output should be interpreted. Software tool articles submitted to F1000Research should be written in open access programming languages. Take a look at  their guidance  for more details on what’s required of a software tool article.

Submit to F1000Research

Further resources

Ready to write your article, but not sure where to start?

For more guidance on how to prepare and write an article for a journal you can download the  Writing your paper eBook .

articles research definition

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

articles research definition

What is Research?

Research is an often-misused term, its usage in everyday language very different from the strict scientific meaning.

This article is a part of the guide:

  • Definition of Research
  • Research Basics
  • Steps of the Scientific Method
  • Purpose of Research
  • What is the Scientific Method?

Browse Full Outline

  • 1 Research Basics
  • 2.1 What is Research?
  • 2.2 What is the Scientific Method?
  • 2.3 Empirical Research
  • 3.1 Definition of Research
  • 3.2 Definition of the Scientific Method
  • 3.3 Definition of Science
  • 4 Steps of the Scientific Method
  • 5 Scientific Elements
  • 6 Aims of Research
  • 7 Purpose of Research
  • 8 Science Misconceptions

In the field of science, it is important to move away from the looser meaning and use it only in its proper context. Scientific research adheres to a set of strict protocols and long established structures.

Definition of the Scientific Method

Often, we will talk about conducting internet research or say that we are researching in the library. In everyday language, it is perfectly correct grammatically, but in science , it gives a misleading impression. The correct and most common term used in science is that we are conducting a literature review .

articles research definition

The Guidelines

What is research ? For a successful career in science, you must understand the methodology behind any research and be aware of the correct protocols.

Science has developed these guidelines over many years as the benchmark for measuring the validity of the results obtained.

Failure to follow the guidelines will prevent your findings from being accepted and taken seriously. These protocols can vary slightly between scientific disciplines, but all follow the same basic structure.

articles research definition

Aims of Research

The general aims of research are:

Observe and Describe

Determination of the Causes

Purpose of Research - Why do we conduct research? Why is it necessary?

Steps of the Scientific Process

The steps of the scientific process has a structure similar to an hourglass - The structure starts with general questions, narrowing down to focus on one specific aspect , then designing research where we can observe and analyze this aspect. At last, the hourglass widens and the researcher concludes and generalizes the findings to the real world.

Steps of the Scientific Method

  • Summary of the Elements in Scientific Research

1) Setting a Goal

Research in all disciplines and subjects, not just science, must begin with a clearly defined goal . This usually, but not always, takes the form of a hypothesis .

For example, an anthropological study may not have a specific hypothesis or principle, but does have a specific goal, in studying the culture of a certain people and trying to understand and interpret their behavior.

The whole study is designed around this clearly defined goal, and it should address a unique issue, building upon previous research and scientifically accepted fundamentals. Whilst nothing in science can be regarded as truth, basic assumptions are made at all stages of the research, building upon widely accepted knowledge.

2) Interpretation of the Results

Research does require some interpretation and extrapolation of results.

In scientific research, there is always some kind of connection between data (information gathered) and why the scientist think that the data looks as it does. Often the researcher looks at the data gathered, and then comes to a conclusion of why the data looks like it does.

A history paper, for example, which just reorganizes facts and makes no commentary on the results, is not research but a review .

If you think of it this way, somebody writing a school textbook is not performing research and is offering no new insights. They are merely documenting pre-existing data into a new format.

If the same writer interjects their personal opinion and tries to prove or disprove a hypothesis , then they are moving into the area of genuine research. Science tends to use experimentation to study and interpret a specific hypothesis or question, allowing a gradual accumulation of knowledge that slowly becomes a basic assumption.

3) Replication and Gradual Accumulation

For any study, there must be a clear procedure so that the experiment can be replicated and the results verified.

Again, there is a bit of a grey area for observation-based research , as is found in anthropology, behavioral biology and social science, but they still fit most of the other criteria.

Planning and designing the experimental method , is an important part of the project and should revolve around answering specific predictions and questions . This will allow an exact duplication and verification by independent researchers, ensuring that the results are accepted as real.

Most scientific research looks at an area and breaks it down into easily tested pieces.

The gradual experimentation upon these individual pieces will allow the larger questions to be approached and answered, breaking down a large and seemingly insurmountable problem, into manageable chunks.

True research never gives a definitive answer but encourages more research in another direction. Even if a hypothesis is disproved, that will give an answer and generate new ideas, as it is refined and developed.

Research is cyclical, with the results generated leading to new areas or a refinement of the original process.

4) Conclusion

The term, research , is much stricter in science than in everyday life.

It revolves around using the scientific method to generate hypotheses and provide analyzable results. All scientific research has a goal and ultimate aim , repeated and refined experimentation gradually reaching an answer.

These results are a way of gradually uncovering truths and finding out about the processes that drive the universe around us. Only by having a rigid structure to experimentation, can results be verified as acceptable contributions to science.

Some other areas, such as history and economics, also perform true research, but tend to have their own structures in place for generating solid results. They also contribute to human knowledge but with different processes and systems.

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth (Feb 2, 2008). What is Research?. Retrieved Aug 16, 2024 from Explorable.com: https://explorable.com/what-is-research

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Save this course for later.

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

articles research definition

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

Research Methods | Definitions, Types, Examples

Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs. quantitative : Will your data take the form of words or numbers?
  • Primary vs. secondary : Will you collect original data yourself, or will you use data that has already been collected by someone else?
  • Descriptive vs. experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyze the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analyzing data, examples of data analysis methods, other interesting articles, frequently asked questions about research methods.

Data is the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs. quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

Qualitative to broader populations. .
Quantitative .

You can also take a mixed methods approach , where you use both qualitative and quantitative research methods.

Primary vs. secondary research

Primary research is any original data that you collect yourself for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary research is data that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data . But if you want to synthesize existing knowledge, analyze historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Primary . methods.
Secondary

Descriptive vs. experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Descriptive . .
Experimental

Prevent plagiarism. Run a free check.

Research methods for collecting data
Research method Primary or secondary? Qualitative or quantitative? When to use
Primary Quantitative To test cause-and-effect relationships.
Primary Quantitative To understand general characteristics of a population.
Interview/focus group Primary Qualitative To gain more in-depth understanding of a topic.
Observation Primary Either To understand how something occurs in its natural setting.
Secondary Either To situate your research in an existing body of work, or to evaluate trends within a research topic.
Either Either To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study.

Your data analysis methods will depend on the type of data you collect and how you prepare it for analysis.

Data can often be analyzed both quantitatively and qualitatively. For example, survey responses could be analyzed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that was collected:

  • From open-ended surveys and interviews , literature reviews , case studies , ethnographies , and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias .

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that was collected either:

  • During an experiment .
  • Using probability sampling methods .

Because the data is collected and analyzed in a statistically valid way, the results of quantitative analysis can be easily standardized and shared among researchers.

Research methods for analyzing data
Research method Qualitative or quantitative? When to use
Quantitative To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations).
Meta-analysis Quantitative To statistically analyze the results of a large collection of studies.

Can only be applied to studies that collected data in a statistically valid manner.

Qualitative To analyze data collected from interviews, , or textual sources.

To understand general themes in the data and how they are communicated.

Either To analyze large volumes of textual or visual data collected from surveys, literature reviews, or other sources.

Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words).

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

Other students also liked, writing strong research questions | criteria & examples.

  • What Is a Research Design | Types, Guide & Examples
  • Data Collection | Definition, Methods & Examples

More interesting articles

  • Between-Subjects Design | Examples, Pros, & Cons
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | Guide, Methods & Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Control Variables | What Are They & Why Do They Matter?
  • Correlation vs. Causation | Difference, Designs & Examples
  • Correlational Research | When & How to Use
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definition, Uses & Examples
  • Descriptive Research | Definition, Types, Methods & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory and Response Variables | Definitions & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Definition, Types, Threats & Examples
  • Extraneous Variables | Examples, Types & Controls
  • Guide to Experimental Design | Overview, Steps, & Examples
  • How Do You Incorporate an Interview into a Dissertation? | Tips
  • How to Do Thematic Analysis | Step-by-Step Guide & Examples
  • How to Write a Literature Review | Guide, Examples, & Templates
  • How to Write a Strong Hypothesis | Steps & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs. Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs. Deductive Research Approach | Steps & Examples
  • Internal Validity in Research | Definition, Threats, & Examples
  • Internal vs. External Validity | Understanding Differences & Threats
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs. Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide & Examples
  • Multistage Sampling | Introductory Guide & Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalization | A Guide with Examples, Pros & Cons
  • Population vs. Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs. Quantitative Research | Differences, Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Random vs. Systematic Error | Definition & Examples
  • Reliability vs. Validity in Research | Difference, Types and Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Reproducibility vs. Replicability | Difference & Examples
  • Sampling Methods | Types, Techniques & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Single, Double, & Triple Blind Study | Definition & Examples
  • Stratified Sampling | Definition, Guide & Examples
  • Structured Interview | Definition, Guide & Examples
  • Survey Research | Definition, Examples & Methods
  • Systematic Review | Definition, Example, & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity in Research | Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Guide & Examples
  • Types of Variables in Research & Statistics | Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Is a Case Study? | Definition, Examples & Methods
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Controlled Experiment? | Definitions & Examples
  • What Is a Double-Barreled Question?
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Data Cleansing? | Definition, Guide & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Definition, Guide & Examples
  • What Is Face Validity? | Guide, Definition & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition, Uses & Methods

Get unlimited documents corrected

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

12th August 2024: digital purchasing is currently unavailable on Cambridge Core. Due to recent technical disruption affecting our publishing operation, we are experiencing some delays to publication. We are working hard to restore services as soon as possible and apologise for the inconvenience. For further updates please visit our website: https://www.cambridge.org/news-and-insights/technical-incident

We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings .

Login Alert

articles research definition

  • < Back to search results
  • Open access policies
  • Read and publish agreements

Article type definitions

  • All services
  • Publishing partners
  • Researchers
  • Introduction to open access
  • Social sharing
  • Open access journals
  • Open access books
  • Open access Elements
  • Open access resources
  • Open access waivers and discounts

Article types definitions

Research article:  Research articles are the most common type of article in the journals publishing world. They contain pieces of original research that contribute directly to their field.  Research articles apply to all disciplines and subject areas. Research articles are written by experts, for experts and must adhere to the highest standards of peer review and scholarly communications.

Review article:  Review articles provide a comprehensive summary or discussion of an area of scientific research alongside a new perspective or conclusion. Review articles are a vital companion to research articles as they enable research to evolve. Typically, review articles are very highly cited and draw a high number of downloads.

Rapid communication:  Concisely-written, high-quality research reports for which rapid publication is considered desirable. Papers in this category will follow a streamlined schedule and must meet the high standards expected of all papers published by the journal, presenting fully developed primary research. They often benefit from prioritized peer review and rapid online publication. Just as with standard submissions, everything that is required for the understanding of the paper must be contained in the submission itself.

Brief report:  A short version of a research article; short being defined as substantially shorter that the subject area's standard for research articles. Contains original research findings or analysis, and situates that research within the established literature.

Case report : A case study, case report, or other description and discussion of a case based on original observations.

Article types not covered by transformative agreements:

In general, the following article types are not eligible under a transformative agreement. Please refer to the agreement page for more information on article types covered by an agreement.

  • Book reviews
  • Introductions
  • Meeting reports

Please note some journals may categorize articles types differently - refer to the journal's information pages for more details.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of springeropen

What is Basic Research? Insights from Historical Semantics

Désirée schauz.

Technische Universität München, Fachgebiet Technikgeschichte, c/o Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany

For some years now, the concept of basic research has been under attack. Yet although the significance of the concept is in doubt, basic research continues to be used as an analytical category in science studies. But what exactly is basic research? What is the difference between basic and applied research? This article seeks to answer these questions by applying historical semantics. I argue that the concept of basic research did not arise out of the tradition of pure science. On the contrary, this new concept emerged in the late 19th and early 20th centuries, a time when scientists were being confronted with rising expectations regarding the societal utility of science. Scientists used the concept in order to try to bridge the gap between the promise of utility and the uncertainty of scientific endeavour. Only after 1945, when United States science policy shaped the notion of basic research, did the concept revert to the older ideals of pure science. This revival of the purity discourse was caused by the specific historical situation in the US at that time: the need to reform federal research policy after the Second World War, the new dimension of ethical dilemmas in science and technology during the atomic era, and the tense political climate during the Cold War.

For some years now, the concept of basic research has been under attack. Its relevance has been questioned empirically as a result of changes in academic research, normatively with respect to science policy, and even theoretically in science and technology studies. Yet while the significance of the concept is in doubt, basic research is still a very common analytical category, deployed not least as a means of distinguishing the new future science policy from the old ideal of basic research. But what exactly is basic research? What is the difference between basic and applied research? Aside from a few exceptional studies (Calvert 2006 ; Godin 2005a ; Pielke 2012 ), science studies have only just begun to seriously reflect upon these questions. When and why did the concept of basic research emerge in the first place? Is the ideal of basic research nothing more than a relaunch of the older pure-science discourse? Historical semantics appears to be a useful approach for answering these questions because its historical perspective provides the conceptual clarity required both in current debates in science and technology studies and public debates on science policy.

In the 1990s, sociological studies claimed that science was undergoing profound changes. Since then, prominent labels such as “Mode 2” or “triple helix” have come to signify a new way of organizing science and technology that transgresses institutional boundaries between universities, industry, and governmental research. According to the alleged paradigm shift from Mode 1 to Mode 2, application-oriented research programmes with cooperative and transdisciplinary project teams have replaced the former university-centred basic research mode. Proponents of this new way of comprehending knowledge production even call for science policy to be modified in order to reflect the altered research mode (Gibbons et al. 1994 ; Etzkowitz and Leydesdorff 1997 ). Our “Leonardo world”, as portrayed by Jürgen Mittelstraß, is ruled by the imperative of technology. The interplay of science and technology raises society’s expectations of research applications, even when the outcomes sometimes turn out to be risky (Mittelstraß 1994 ). These arguments have certainly shaped the debates in science and technology studies and science policy in recent years, although discussions about the degree of change and how to evaluate it remain controversial (Weingart 2008 ; Greenberg 2007 ).

According to studies addressing these historical shifts in science, basic research determined the status quo ante. These studies describe basic research as an application-disinterested mode of research embedded in a disciplinary and academic setting that contrasts, in respect of every analytical feature, to Mode 2. The concept of Mode 1, however, is not based upon profound historical analysis; it rather appears to represent the previously prevailing sociological perspective on science in the tradition of Robert Merton, who emphasized disinterestedness and universalism as central characteristics of modern science. Yet historical studies suggest that the way in which science was organized had already undergone significant change in the early 20th century, as politicians, scientists, and industry formed a new alliance from which all three groups hoped to benefit (Ash 2002 ; Mowery and Rosenberg 1993 ).

Moreover, although recent debates in science studies have demonstrated high levels of discontent with the notion of basic research, producing instead new analytic labels like triple helix or Mode 2, the term “basic research” and its antonym “applied research” continue to frame the discourse about science, without any awareness of both terms’ historical conditionality as discursive strategies in research policy. The semantic dichotomy merely gives way to a continuum between basic and applied research in which the favourite mode, the “use-inspired basic research” (in German “ anwendungsorientierte Grundlagenforschung ”), is located somewhere in the middle of the continuum (Stokes 1997 ; Mittelstraß 1994 ). However, aside from the motif of application, we lack an explicit set of distinctive criteria because studies persist in assuming basic research to be a given category.

In other studies, categories such as basic and applied research no longer play a major role. Research grounded in approaches such as actor-network theory, that is studies emphasizing the societal context of science, anthropological studies focusing on day-to-day laboratory work, and the new – although still vague – concept of technoscience are united in their critique of discursive boundaries, which they claim to obstruct the view on the reality of research. While research dealing with Mode 2 indicates the change within the historical development of science, those supporting these new approaches call for a change in theoretical perspective. Bruno Latour, one of the most famous proponents of this idea, identifies demarcations such as nature/society or science/technology as a typically modern delusion covering, albeit quite successfully, the hybrid character of research (Latour 1993 ). Claiming an overall paradigm shift for the social sciences, Latour suspects that traditional sociology has frozen thought within boundaries and institutional separations in its studies for quite a long time and levels his criticisms at a static display of society blind to the dynamics of interactions (Latour 2005 ). For Latour, the distinction between basic and applied research is supposed to be part of these delusive demarcations: such a simple dichotomous order cannot represent the “complicated and unpredictable relations between scientists and other agencies” (Latour 1987 : 117). Latour argues that the high esteem in which basic science is held does not correspond with the reality of technoscience. In his early call for the concept of technoscience, he even argued statistically, interpreting the high proportion of spending on development and applied research in contrast to that spent on basic research evident in research and development statistics as indicative of the real importance of technology and the level of overall support it receives within society (Latour 1987 : esp. 168–173).

Latour’s argument about modern delusions and his opposition to a basic-research-centred perspective on science have found resonance among some historians of science. For instance, Peter Dear identifies the ideology of modern science as misrepresenting the reality of research in the natural sciences. Although, according to Dear, some effort has been made to integrate the instrumental and useful character of the natural sciences in the tradition of science since Francis Bacon, natural philosophy, with its ideal of contemplative understanding, has retained the upper hand (Dear 2005 : 404). From an historical point of view, this discrepancy between the philosophical notion of science and research practice appears as an anachronism requiring explanation. In general, criticism levelled at the long-prevailing ideal of pure science has led to a reorientation in the history of science that includes the applied side of science and opens up the field to the history of technology (Forman 2010 ). Recent studies look beyond the academic core – the universities – and into industrial laboratories, where the majority of researchers have worked throughout the 20th century (Shapin 2008 ).

Despite this growing awareness of the ideological or normative character of basic research, the majority of historians still use the concept as a given, analytical category without questioning its relationship to varying historical contexts. Studies on German war-time science, for instance, try to determine to which extreme of the basic-applied continuum the examined research projects tended. 1 As to the history of US science and innovation policy, the concept of basic research seems to be inevitably associated with the name of Vannevar Bush and the reorganization of US science after the Second World War. The basic-applied taxonomy is therefore primarily regarded as representation of the institutional logic of modern research organization: the so-called linear model which coined the idea of innovation process for so many years. Investigating the negotiation of science policy in the 1940s, historical studies have revealed dissenting political preferences and conflictive institutional interests, demonstrating that the post-war order in science policy had initially been highly contested. However, although the historical contingency of the concept has thus become more and more apparent, many historians still do not reflect on the meanings and functions of the concept of basic research. Even the meteoric career of this relatively young term does not seem to be puzzling historians. They rather interpret the concept as additional part of an existing taxonomy, “supplementing” the former “language of pure and applied science” (Dennis 2004 : 225). As a result, the concept of basic research has been locked up in a black box next to “pure science” whose meaning is also still enigmatic (Galison 2008 ). It is only recently that the investigation of shifting functions, varying meanings and symbolic dimensions of the concept of basic research – beyond the institutional level of research organization and funding – have become an object of interest in the history of science (Krige 2006 ). 2

What remains of the current debates in science and technology studies is the question as to why demarcations such as basic and applied research have occurred at all. If Latour is right in pointing out that the concepts of basic and applied research do not represent actual research practices, why have these terms become so important? Which (other) functions have they fulfilled? More precisely, what has “basic research” meant for the identity of science and for its relationship to technology? Which role has the concept of basic research played in science policy, that is in the negotiations between science and society about aims and values of research? And how has the concept affected the public image of science?

This article therefore seeks to analyze the genesis of the concept of basic research up until the early 1960s, by which time it had become a common concept in science policy in the West. It will also take a brief look at discourses on pure science prevalent in the 19th century as a means of establishing the effects of historical legacy and variation over time. This study has two central aims. Firstly, it intends to detect the different semantic dimensions of basic research – its institutional, epistemic, ethical, social, and political attributions. Secondly, it discusses the significance of the concept of basic research in the natural sciences, in research policy, and in science studies: to which historical challenges faced by research in the 20th century did the concept of basic research respond?

I argue that the concepts of basic research and fundamental research did not arise out of the 19th-century tradition of pure science, which had idealized research as an intrinsically philosophical search for eternal truth. On the contrary, these new concepts emerged in the late 19th and early 20th centuries at a time when society’s expectations regarding the utility of science were rising sharply. In the knowledge that research output is hard to predict, scientists used these concepts to bridge the gap between the promise of utility and the uncertainty of scientific endeavour. Only after 1945, when US policy strongly shaped the notion of basic research, did these concepts revert to the older ideals of pure science. In order to understand this revival of the purity discourse, we need to take the specific historical situation of the post-war US into account, in particular the new plans for federal funding of research, the new dimension of ethical dilemmas faced by science and technology following Hiroshima, and the overall political climate of the Cold-War era. The insights gained from historical semantics show that basic research was not – and cannot be – considered a clearly distinguishable analytical mode of research. After 1945, the concept of basic research formed part of a discursive strategy that adjusted scientific research to complex and even contradictory societal requirements; it was for these socio-political reasons that the concept became so important. Consequently, moral and ideological attributions were and still are inseparably tied to the concept of basic research.

American and German discourses provide the empirical basis of this study. Yet this article is not intended as a fully-fledged comparative study of two countries. Rather, I analyze Germany and the US because these countries were considered best-practice models in science at varying points in time and they both share a long history of mutual exchange and learning. At different points in time, each of the two countries allows us to trace the emergence and evolution of specific understandings of the role of science in society. The first section on the older pure-science ideals of the 19th century revolves mainly around Germany, which had become a leading science nation at that time. In the following section, which discusses how the concept of basic research emerged and evolved until 1945, the German experience also takes centre stage. The third section covers US science policy from the Second World War until the early 1960s, when the term basic research had become established as a key concept in science policy. The article ends, on a more comparative note, with a short history of the concept of basic research in post-war Germany. The second and the third sections overlap in time because the Second World War and the post-war period require a more comparative perspective. For a long time, scientific research during the Nazi period was thought to represent a turning away from all fundamental principles of science. The war, however, confronted both US and German scientists with similar political demands and requirements. After 1945, US policy became a role model for the Federal Republic of Germany (West Germany). Before the empirical analysis commences, however, the next section will introduce readers to historical semantics and discuss how I will use this approach to structure the empirical discussion.

Some Remarks on Historical Semantics

This study resorts to approaches in conceptual history and discourse analysis. Discourse analysis fits with the research questions for several reasons. Firstly, it is designed to make visible what is taken for granted when people think or talk about social phenomena and the implicit rules that apply in the practice of framing topics. Secondly, discourse analysis identifies classifications and demarcations, such as the distinction between basic and applied research, as essential strategies in discursive practice. Thirdly, it is based on the assumption that discursive production is historically contingent. Whereas discourse analysis strives, in the main, to analyze patterns of assertions, conceptual history focuses on semantics and key concepts. Especially the latter takes the polysemy of language and communication into account. Moreover, conceptual history’s foundation in the philosophy of history means that it offers us assumptions about semantic shifts over time.

In contrast to the tradition of semantic analyses in the philosophy of science, which is mainly interested in the epistemic impact of metaphors (Blumenberg 2010 ), my study is based on a strand of historical semantics rooted in historical studies on the dawn of modernity. It focuses on key concepts in social and political language. If we assume that basic research is largely a concept of science policy or of negotiations between the scientific community and the public, then this approach seems more suitable for this study. Moreover, conceptual history is embedded in reflections about the philosophy of history. According to Reinhart Koselleck, the major proponent of the German school of conceptual history, a shifting societal dictionary – the emergence of neologisms or changes in semantic attributions – indicates historical upheaval. Key concepts and parts of their meanings, however, may persist, so that old and new semantic dimensions coexist. Koselleck’s approach thus corresponds with approaches in the philosophy of history that take different layers of time into account. Koselleck clearly demonstrates that language is not an epiphenomenon of reality, but rather that it frames both human experience and the way in which society perceives the world. He conceives key concepts as cognitive strategies designed to deal with reality, especially in situations where expectation and experience diverge. Ideologies, in particular, are supposed to compensate semantically for a lack of convergence between expectations and experiences (Koselleck 2006 : 85).

Whereas Koselleck’s conceptual history defines key concepts primarily as cognitive strategies of the human that deal with reality, discourse analysis goes further in assuming that discursive strategies might serve various societal functions. In his commentary on the concept of the dispositive, Michel Foucault emphasized that discourses, non-discursive practices, institutions, and objects are linked by common strategic functions. This does not mean, however, that the outcome of such a strategic dispositive necessarily corresponds to the initial function. On the one hand, novel discourses have the power to set new practices or different forms of institutional organization. On the other hand, it is also possible that emerging discourses provide existing institutions or operations with new legitimacy. The history of dispositives also turns out to be quite complex. Taking Foucault’s remarks on the philosophy of history into account, the concept of the dispositive is quite similar to Koselleck’s idea of a complex history of different layers of time lying upon one another (Schauz 2010 ).

Since discourse analysis has progressed by adapting aspects of polysemy, the combination with conceptual historical approaches has become more obvious. One approach appears to be particularly fruitful for investigating the history of basic research: Jürgen Link’s idea of “collective symbols”, which came about when Link dealt with the problem of interdiscursive processes. Link believes that multiple meanings of metaphors and symbols are capable of linking different discourses demonstrating diverse patterns of assertions (Link 1986 ). In other words, metaphors can bridge discursive gaps. With regard to this study, science policy may be described as one such interdiscursive process in which scientific expectations encounter society’s expectations. And, without anticipating the detailed analysis of the concept of basic research below, it is obvious that “basic” as the first part of the compound offers a variety of possible interpretations.

Of course, discourse analysis also has a tradition in science studies, in particular regarding demarcation discourses. Most relevant in this context is Thomas F. Gieryn’s study ( 1999 ) on the cultural boundaries of science, which he identifies as resulting from professional boundary work. According to Gieryn, boundary work does not represent fixed or institutional demarcations, but is rather a dynamic process of negotiations with contested boarders and regenerated situations of uncertainty. Gieryn stresses that boundaries linked to key concepts such as pure science vary according to special situations and social circumstances. Unlike Gieryn, however, I do not expect that discursive practices revolving around basic research are strategies exclusively used by scientists to protect their professional interests. Moreover, I doubt that the discursive function of basic research can be restricted to boundary work.

In summary, this study is based upon the followings assumptions derived from conceptual history, discourse analysis, and studies on scientific boundary work. The attributions and linked demarcations of basic research are expected to vary according to space and time. Prior semantic dimensions, however, might persist or experience revival. The emergence of basic research as a new term may at least indicate an historical shift in either science or its role in society. The abstractness of the term basic research offers a wide range of meanings and discursive strategies. The concept has the potential to function as a collective symbol for science policy that links different discourses within society. Given its variability, this key concept of science policy, together with its antonyms, cannot be interpreted as representing fixed institutional boundaries. Rather, the concepts seem to emerge in situations of uncertainty or cognitive dissonance. Yet they may legitimize the institutional organization of research or define operative goals. Moreover, the discourses revolving around basic research communicate a wide range of ideals, expectations, promises, as well on professional and public claims.

Finally, there are some preliminary methodological remarks that need to be addressed. Although the study focuses on the concept of basic research, it also has to detect conceptual variations and alternative or concurrent terms, not to mention antonyms. Relevant terms for the US case are basic research, fundamental research, pure science and basic science. Antonyms and concurrent terms like applied research, applied science, contract research and mission-oriented research are included as far as they are needed to analyze the meanings of basic research, but their own conceptual histories will not be analyzed at full length. For the German case, these terms are Grundlagenforschung , reine Wissenschaft , reine Forschung , angewandte Forschung , angewandte Wissenschaft and Zweckforschung .

With regard to conducting the discourse analysis, it was most relevant to compile a broad sample of documents enabling me to identify prevalent, repeated patterns of assertions. 3 Besides key texts from scientists well-established in research organization, the sample also covers texts produced for normal-science communication. 4 The study is thus based on published documents relating to science policy as well as on scientific articles and books. Especially the volumes of the American journal Science and its German counterpart Die Naturwissenschaften have been subjected to systematic analysis. Furthermore, electronic search functions, in particular those enabling full-text searches with the keywords listed above, have been most useful for periods in which concepts were not yet commonplace. The digital library of Google Books is an important tool for historical semantics because it enables us to detect texts which might otherwise be overlooked by more traditional research strategies based on library holdings and cross references. As such, Google Books provides a unique tool for tracing both the emergence and diffusion of concepts. However, given that text acquisition in Google Books is dynamic and not entirely transparent to the user, it is difficult to delineate the corpus of books actually contained within its database. Thus Google Books may not be easy to use for scholars interested in exact bibliometric analysis, but it can help researchers gain a rough idea of when certain concepts began to be used and how use of these concepts became more or less common across different periods of time and within different language communities. This is how the current article uses the information derived from Google Books.

Pure Science in the 19th Century: The Natural Sciences and the Philosophical Tradition of Academia

As studies have so far located the concept of basic research in the tradition of pure-science ideals, the following section will deal with the term’s prehistory as a means of tracking continuities and breaks in the way science perceived itself. The notion of pure science and the conceptual opposition between “pure” and “applied” in science can be traced back to the 18th century. The attributes of “pure” and “applied” referred in turn to the much older, classical distinction between theory and practice that had undergone reinterpretation during the Scientific Revolution. Back then, Francis Bacon and his contemporaries had tried to conflate the new empirical and instrumental form of knowledge of nature with the older tradition of natural philosophy and its idea of contemplative understanding (Dear 2005 : 393–397). In the late 18th century, these attributes became important once again for natural scientists positioning themselves within the academic community for the purposes of finding a way into the university system. Although states such as Prussia demanded ever more instrumental knowledge and technical education for their mining industries or other state-owned enterprises (Klein 2010 ), natural scientists had to adjust to the predominant philosophical understanding of science 5 at universities, which, even then, consisted only of philosophical, theological, legal, and medical faculties.

In the case of chemistry, Christoph Meinel has already demonstrated that, in the Age of Enlightenment, chemists labelled their discipline as “pure and applied” so that chemistry could become an acceptable subject at universities, shedding its older status as an auxiliary science of medicine (Meinel 1985 ). Due to its empirical approach and its utilitarian orientation, chemistry was still classified as an “art” rather than as a “science” in the 18th century. Academic teaching had hitherto focused on imparting theoretical knowledge and established theorems, that is pure science. In contrast, the applied sciences represented experience-based knowledge on the epistemic level; at the same time “applied” denoted research with a practical purpose. Both aspects of these so-called applied sciences did not (yet) fit into the philosophical tradition of universities. By striving to become a part of this academic institution, chemists had to stress both the pure scientific and applied aspects of their discipline (Meinel 1985 ; Bud and Roberts 1984 ).

At the very same time, philosophy was engaged in reviving the controversy between rationalism and empiricism that solidified a hierarchical concept of knowledge. As a consequence of the philosophical longing for the wholeness and absoluteness of ideas, a posteriori approaches continually played a subordinate role in contrast to a priori and metaphysical ways of knowing (Ross 1962 : 68–69). The concept of cognition process in science turned out to be one-way: from the general to the particular. This concept of scientific progress implied the possibility of deducing endless applications and specific, context-linked knowledge from universal principles such as the laws of nature. The advancement of knowledge, however, was not supposed to take place the other way around. This distinction between pure and applied science thus corresponded to institutional and epistemic settings in the scientific community of the late 18th and 19th centuries.

The Natural Sciences Face Challenges from Engineering and Technological Success

In the mid-19th century the pure/applied boundary started focusing on the distinction between the natural sciences and technology. The common definition of technology as applied natural sciences represented a special version of this one-way concept of knowledge. This definition was widespread – even economists believed in the one-way relationship between science and technology. They assumed that only scientific discoveries and theories paved the way for innovations: “Technical science may stimulate pure science to a certain extent, but, on the whole, technology is much more at the receiving end. Pure science is always further ahead of applied science, and never the other way round. However, technology finally turns science into a common good” (Rössler 1857 : 179, translation by DS).

It was above all the community of natural scientists that wanted to preserve the hierarchical distinction between science and technology. The scientific foundation and the aspiring academic status of engineering in the second half of the 19th century challenged the scientific profession, in particular physicists (Gieryn 1999 : 51–62). As the natural sciences had only recently assumed their place within the university, the legacy of natural philosophy and its epistemic and moral ideals, such as the unrewarded dedication to science for its own sake, was even stronger than the century before (Dear 2005 : 401–404). Having scarcely ascended to the league of the pure sciences, the natural sciences even adopted the idea of an eternal truth defined by the discovery of natural laws.

The words of German physician Rudolf Virchow represent this adapted concept of pure science, but, more importantly, they also show that this purity discourse was not without contradictions. With the economic success of technical innovations and the growing appreciation of engineers within society throughout the German Empire, Virchow and his colleagues increasingly forged a link between themselves and the promise of technical progress in order to promote the idea of indispensable scientific endeavour:

All the benefits that have emerged from the steam engine, from telegraphy, photography, chemical discoveries, the production of colours and so on and so forth, all these benefits are based on scientific theorems that we men of science have unveiled, and not until we are absolutely sure that they are laws of nature, we pass these truths on to the general public so that others can work with them and create new things that nobody could imagine before, that no one has ever dreamt of, that see the light of day for the first time and transform the character of society and the state. (Virchow 1877 : 8–9, translation by DS)

Compared with the great engineering inventions of the 19th century and their noticeable effects on everyday life and society as a whole, scientific progress was less visible. In a way, this poor visibility was one aspect of the ideal of the pure scientist in its philosophical tradition: a scholar who, in solitude, dedicates life and work to science, driven by the sole motive of finding the truth – or at least contributing his tiny part to the scientific community’s joint effort – even without any prospect of public acknowledgement. In fact, as Peter Dear put it, “the authority of science in the modern world rests to a considerable extent on the idea that it is powerful, that it can do things” (Dear 2005 : 404). Yet, the scientific strategy of technological promise in order to gain greater visibility, support, and acknowledgment appeared risky; the scientific pledge to technological progress needed a show of confidence. Given the uncertainty and contingency of scientific advancement, it seemed even harder to predict if or when discoveries would lead to new technologies. Scientists thus defined their work as a long-term endeavour in contrast to engineering, which they classified as a medium-term project aimed at satisfying immediate need. In any case, the fact that researchers such as the chemist Justus von Liebig felt it necessary to defend the scientific profession reflects the growing pressure the scientific community faced from societal expectations in the course of the 19th century:

Even the most powerful effect of science on the life and spirit of men is so slow, noiseless, creeping and barely perceptible that a superficial observer would be hard pressed to assess its impact. The expert, however, knows that no real progress in this world is currently achieved without science and that the accusation whereby it is not of public benefit preoccupies the general public and not the men of science, who each in their own way, unwaveringly follow their goals. Indeed, they remain untroubled about the future benefits of their work since these accrue neither to them nor to an individual country but to the whole of mankind. (Liebig 1862 : 33, translation by DS)

Blurring Boundaries in the Late 19th and Early 20th Centuries: Scientists in Transition

The fact that scientists felt compelled to do boundary work indicates that scientific practice had already begun to change and that the hierarchical epistemic order no longer applied across the board. It was the birth of engineering as an academic discipline that set off this dynamic process of boundary work. By acquiring the right to award doctorates in the late 19th and early 20th centuries, the German technical colleges enhanced their academic status (König 1999 ). Leading figures of this new group of aspiring engineers such as Alois Riedler, a mechanical engineer and rector of the Technische Universität Berlin-Charlottenburg from 1899 to 1900, persistently stressed that the relationship between science and technology was a two-way process:

Technology has its natural share in the progress of the natural sciences; in many areas technology has even run ahead of the natural sciences until deeper scientific insights in turn paved the way for perfecting technical development; … [T]hrough the magnificence of its tangible achievements, technology has raised the public’s awareness of the natural sciences and has contributed enormously to making science, in general, more popular. (Riedler 1900 : 12, translation by DS)

Conversely, scientists themselves began to overcome the gap between (pure) science and technology. Related distinctions, for instance, between discovery and invention were also blurring. Within the expanding field of the natural sciences in the late 19th century, researchers had to transcend the limits of both established disciplines and methods in order to find out something new. The development of instruments became, more than ever before, an integral part of scientific work; the act of designing new techniques became as relevant as discovering new elements or laws of nature. The instrumentality of science, not only in terms of its methodological role of confirming theories but also in terms of its effectiveness, had finally become part of the image of the truthfulness of science in the modern world (Wilhelm Ostwald 1929 : 21; Dear 2005 : 404; Joerges and Shinn 2001 ).

Scientists such as the Nobel Prize winner and pioneer of physical chemistry Wilhelm Ostwald campaigned for closer cooperation between scientists and engineers. While criticizing the old supremacy of natural philosophy, he emphasized the similarities of scientific and technological endeavour, in particular a systematic approach to research and to the desire to venture into the unknown (Wilhelm Ostwald 1908 : 20). As far as Ostwald was concerned, scientists and engineers nonetheless differed in terms of their motivations (or goals) and their temporal perspective; having discovered a new technology, engineers abandoned scientific questioning, whereas scientists followed the path to its very end, hoping to find definitive explanations to their questions. Although this notion of the advancement of knowledge was less asymmetric than it had been a few decades earlier, the emphasis Ostwald placed on science’s long-term orientation and the continued ideal of human curiosity as a scientific value in itself demonstrated that a sense of the moral superiority of science endured. (Wilhelm Ostwald 1905 , 1911 ).

While the ideals of pure science were in the process of dissolving, by 1900, both the institutional settings of research and research practices in the natural sciences had already undergone significant change. The emergence of professional industrial laboratories with salaried researchers (initially in the chemical and electrical industry), the establishment of special research institutes outside of the universities (both national laboratories in the service of the state and research centres for specific research fields with mixed funding), the beginning of special funding programmes for science, and the more extensive involvement of the administration in science policy issues were some of the developments in science and in the attitudes within society towards science observable in different countries.

Studies into German science emphasize that two new types of institutes, the Notgemeinschaft der deutschen Wissenschaft (Emergency Association of German Science) and the Kaiser-Wilhelm-Gesellschaft (Kaiser Wilhelm Society), concluded an ongoing process of change in science at an institutional level that had come about in response to the limitations of the former university-centred organization of research and to the new expectations of industrialized mass society (Szöllösi-Janze 2005 ; Ash 2002 : 35–38). 6 The Kaiser Wilhelm Society, established in 1911 to promote the natural sciences in Germany, was a reaction to the increased requirements of disciplines such as chemistry and physics as well as a response to increasing industrial demand for scientific knowledge and growing international competition. With the financial support of both the state and influential entrepreneurs, scientists in the institutes on material research belonging to the Kaiser Wilhelm Society were able to concentrate their entire efforts on research, that is “pure science”, without needing to undertake teaching duties. The Emergency Association of German Science largely sponsored research projects at the universities. This fund, derived from a variety of sources and governed by academics, had been initiated by scientists after the First World War.

The funding programme Gemeinschaftsforschung (Collaborative Research), which sought to further public health, the economy, and the greater public good, together with the research areas pursued by several institutes belonging to the Kaiser Wilhelm Society provide evidence that the pure-science ideal was becoming less important. These self-governed academic institutions promoted research that responded directly to industrial and political demands. Collaborative Research, for example, financed projects which promised to either secure the production of raw materials or develop substitute materials, to improve material processing or technological development, and to increase food production.

To sum up the whole section, the historical overview from the 19th to the early 20th century shows that the pure-science ideal prevailed until the late 19th century when the cooperation between university scientists and industry started to become closer. The pure-science ideal was a legacy of the long-standing domination of philosophy in academic culture. Having worked hard to earn the status of academic disciplines, it was difficult for the natural sciences to overturn a notion of science that strove for eternal truth while ignoring the technical and economic fruitfulness of research. The fact that natural scientists continued to cling to the philosophical tradition, however, became a point of conflict in the late nineteenth century because the high social esteem enjoyed by the natural sciences was based primarily on their significance for technological innovation and economic success. German science had already begun to adjust to the new role of science in society on an institutional level, the conceptual distinctions between pure and applied science and between science and technology were set to blur in the early 20th century.

Science in the First Half of the 20th Century: Fundamental Research and the Promise of Utility

The scientific purity discourses lost importance around 1900 and new terms began to reshape the notion of science. This semantic shift suggests that the role of science in society had already changed. The German composite noun Grundlagenforschung (fundamental research), 7 is a relatively young term that first emerged in the early 20th century within a very specific context in the discipline of mathematics (Dingler 1911 : 35; Rulf 1913 ). In the late 19th century, mathematics underwent a disciplinary realignment known as mathematical modernism (Mehrtens 1990 ). German mathematicians played a leading role in this scientific movement, the main goal of which was disciplinary autonomy. The movement’s proponents created a special, self-referential language by freeing the discipline from any metaphysical grounds and providing mathematics with a theoretical framework that denied any reference to reality or other concepts in science and technology and favoured instead an intrinsic, formal logic. Journal articles such as “Mathematische Probleme” by David Hilbert ( 1901 ) delineated a future research programme for mathematics revolving around principal epistemic questions of proof. In summary, modern mathematicians created a new epistemic foundation for their discipline.

Although the role of applied mathematics was an issue for dispute within this reform movement, the term fundamental research was not actually used as an antonym that contrasted to applied mathematics. Within the particular context of mathematics, fundamental research denoted studies that contributed to solving fundamental logical problems like those Hilbert had put on the agenda. Herbert Mehrtens ( 1990 : 149) thus classifies fundamental research as a specific subdiscipline (“ Spezialdisziplin ”) within mathematics. Because this specific meaning was confined to mathematics, the term fundamental research first spread to adjacent disciplines such as philosophy and, in particular, the philosophy of science (Lewin 1922 ). In fact, the German version of fundamental research was not common throughout the 1920s and early 1930s, and the few times the term emerged, it referred mostly to fundamental epistemic questions within disciplines.

In contrast to the German scientific discourse, the English term “fundamental research” emerged slightly earlier and, more importantly, within a different context than in Germany. The English term basic research was initially less prevalent. Roger Pielke has detected a New York Times article from 1919 in which “basic research” emerged in the context of a Congressional hearing on agricultural policy. According to him, the concept was an offspring of the political discourse since its use was restricted to the political arena until the late 1930s (Pielke 2012 : 343). It must be added that “fundamental” and “basic” were, among other things, used as attributes to denote the core academic disciplines, such as physics, mathematics, or chemistry, upon which other disciplines were founded. Thus, fundamental science and basic science meant something completely different to fundamental research or basic research in the English/American context.

The initial use of fundamental research in fields such as plant breeding and technological or industrial research indicates that the term did not emerge from the 19th-century purity discourse. In the 1890s, scientists of agronomy at the American land-grant colleges called for more fundamental research in general aspects of plant physiology in order to continue making progress in plant breeding (Arthur 1895 : 360). Problem- and application-oriented research led them to new questions that “pure” botany had not yet raised. The land-grant colleges were the result of a federal initiative to foster education in agronomy and technology, and to offer higher education to the wider public. As a result of their agricultural focus, these colleges were provided with federally controlled land to establish agricultural experiment stations. Similar to the German technical colleges, the land-grant colleges were not originally on an equal footing with the universities in terms of scientific prestige (Thelin 2004 : 135–137). Yet researchers in these experimental centres faced high public expectations to provide results that could improve farming practices and increase crop yields (Marcus 1985 ).

The demand for more fundamental research expounded one problem: the uncertainty of scientific outcomes, even if a project had a clear task to fulfil right from the start. Given this uncertainty, doing fundamental research meant at least promising to lay a cornerstone for future technologies, new products, or new materials. If research failed to produce new knowledge proving useful, scientists could still legitimise their work via the ideal of pure science, that is the advancement of knowledge as a value in itself. As any reference to the intrinsic ideal of pure science was secondary, it served primarily as a back-up means of legitimisation and only secondarily as a way to claim recognition for applied botany among “pure” scientists. In the end, similar to the German example in engineering, scientists in applied botany declared the distinction between pure and applied science to be invalid: “All science is one. Pure science is often immensely practical, applied science is often very pure science, and between the two there is no dividing line” (Coulter 1917 : 228). Applied botanists called upon science to remain open to everyday needs and problems (Coulter 1919 : 366). Alongside these examples from botany, the term fundamental research can be found very early on in the context of technological and industrial research. Fundamental research denoted any scientific research revolving around basic technical problems with the goal of improving existing technology or, hopefully, developing new technology (Nutting 1917 : 250).

The fact that the concept of fundamental research arose in research fields with an explicit application-orientation reveals that the new term was not a synonym for pure science. Rather, it conveyed the promise that science would produce, sooner or later, useful knowledge. This semantic shift was a response to the growing expectations of science within society and the increasing number of possibilities that scientific research had been able to offer in the development of technology and other societal improvements since the late 19th century. However, researchers and scientists phrased their promise of utility very cautiously; the metaphorical meanings of “fundamental” express the idea that research is the first, but not the only step in a complex process. Hence, the strategic use of the term can be described as twofold: to promise utility and, at the same time, to confine expectations that may be far too high.

With respect to British science policy in the first half of the 20th century, Sabine Clarke ( 2010 ) has already pointed out that fundamental research did not emerge as a synonym for pure science. She shows that in Britain, the new Department of Scientific and Industrial Research, established in 1916, used the term first and foremost to stimulate industrial research. The new ministry was supposed to coordinate and support research that promised economic and social improvement. At first, manufacturers and scientists scarcely welcomed the new grants offered by the Department; according to Clarke, both parties wanted to avoid any kind of governmental interference. Confronted by this industrial opposition, the Department of Scientific and Industrial Research advertised long-term research projects dealing with the basic properties of materials or with technical processes with the new term “fundamental research”. In this particular context, the label pure science would have evoked the image of curiosity-driven research without any practical end.

As Clarke demonstrates, the new term can only be understood within its specific institutional and national setting; thus, we should not be too rash to conclude that the findings of the British study also apply to the German case. Furthermore, Robert Kline’s older study ( 1995 ) on the boundary discourse of pure and applied science in the US, which focuses on engineering and its relationship to the natural sciences, suggests that, even in the English-speaking world, the meaning of the term fundamental research varied greatly. According to Kline, the distinction between “pure” and “applied” had only become common in the 1870s, and so the ideal of pure science was a relatively recent phenomenon in the US. Although the demarcation between pure and applied science was becoming blurred in the interwar period, Kline argues that the majority of researchers in engineering eventually adopted the pure-science ideal in order to underscore their scientific capabilities and their growing professional status. Kline’s main argument is that because engineering was unable to assert an autonomous ideal of itself, technological knowledge continued to be subordinated to scientific knowledge in the 20th century. For Kline the new term fundamental research represented a modified ideal of pure science which could also apply to technology. Where engineering is concerned, Kline admits that he is unable to identify a clear strategy of autonomy forming an essential aspect of the traditional notion of pure science.

Nazi Opposition to the Notion of Pure Science

In Germany, the term Grundlagenforschung only became common in the sciences during the late 1930s. Its meanings certainly deviated from the original use of the concept within the context of German mathematics, as well as from the old semantics of pure science. After the scientific purity discourse ran out of steam in the 1920s, the National Socialist German University Lecturers’ League ( Nationalsozialistischer Deutscher Dozentenbund ), which represented the younger generation of lecturers attempting to bring the universities into line with Nazi ideology in particular, fought against the institutional, epistemic, and normative concepts that characterised the ideals of pure science (Nagel 2008 ). The Nazi discourse denounced the 19th-century humanistic notion of academia as a liberal bourgeois ideal that had permanently estranged science and scholarship from the German people.

On a detailed scale, the Nazi discourse criticized the older concept of science as being a selfish project pursued by scientists. This criticism was levelled at the epistemic norm of objective neutrality and the assumption that the natural sciences were unconditional – in particular in terms of the choice of research subjects – thus exposing the notion of pure science as a concept contrived by the ivory tower. Furthermore, Nazi critics blamed the self-referential concept of pure science for causing institutional fragmentation and disciplinary differentiation in science. Continuing the Weimar policy of collaborative research, the Nazi scientific ideal entailed joint efforts by researchers from different institutional and disciplinary backgrounds aimed at solving the problems of the day; problems that were, of course, defined by the politics of the Nazi regime. It is no surprise that the Nazi counter-concept of science quite openly called for a politicization of the academic world – in particular with regard to staff and research policy – and reinterpreted the ideals of universalism, academic freedom, and unity of science in light of the Volksgemeinschaft ideology (the ideology of the community of German people): academic universalism transformed into social universalism, which sought to overcome individual, institutional, and disciplinary interests. The political interpretation of freedom meant that science was in a position to contribute to the German people’s independence from foreign raw materials, in accordance with the Nazi quest for autarky. And lastly, by invoking the older ideal of the unity of science, they legitimized collaborative science, its different disciplines, and its various institutions in order to fulfil national tasks (Henkel 1933 ; Krieck 1933 ; Löhr 1938 ; W. Schultze 1938 ).

Research in Nazi Germany: Between Four-Year Plans and Long-Term Science Policy

In light of the official campaign against the old pure-science ideal at the beginning of the Nazi regime, the use of fundamental research in the late 1930s can hardly be understood as a new version of pure science presenting the search for knowledge of nature and truth both as an a priori goal of research and a value in itself. The terms Grundlagenforschung and Zweckforschung (goal-oriented research) gained hold as political efforts to acquire control over academic and industrial research increased. In 1937, the Nazi regime established a research council, the Reichsforschungsrat (Reich Research Council), which was responsible for funding research. During the war, the Research Council was directly responsible to the Army Ordnance Office (Flachowsky 2008 : 232–462).

The Research Council’s first president, military general and professor of army technology Karl Becker, defined fundamental research as science that could not be “commanded and accelerated”. He guaranteed, therefore, that “as far as researchers and facilities in the institutions [for fundamental research] in question offer even some guarantee of success”, there would be no interference from the Research Council (Becker 1937 : 26). Becker made particular mention of the various institutions for aeronautical research and the institutes of the Kaiser Wilhelm Society, promising to abstain from exerting any control over these institutions in light of their close relationships to industry. Goal-oriented research, which was meant to be built on fundamental research, was to fit into the schedule of the four-year plan. In this context, goal-oriented research denoted first and foremost industrial research leading to the development of advanced technology. Against the backdrop of the four-year plan, the Nazi regime demanded that industry give complete insight into its research activities (Becker 1937 : 25, 27).

In 1940, the Illustrierte Zeitung , a well-established illustrated magazine published in Leipzig, devoted an entire issue to the topic of German research in the service of the people in order to present Nazi science policy. The magazine included articles from leading scientists such as the biochemist and Noble Prize winner Adolf Butenandt, journalists specializing in scientific topics such as Hans Hartmann 8 , and ministry officials (No. 4956, 22 August 1940). To some extent, the issue was a response to continuing foreign criticism of the way the Nazis had incorporated German academia into National Socialism (Rust 1940 ; Hartmann 1940 ). Completely ignoring criticism of racist staffing policy, the articles presented a concept of science that responded to the needs of society without compromising scientists’ research freedom. “The freedom of research would not be endangered when the state ensures that state-funded institutes are given the task of conducting fundamental research in order to solve problems within the national economy” (Krauch 1940 : 122, translated by DS).

The articles, however, also addressed German scientists on the question of how a more utility-oriented research affected its institutional setting. The issue of organizing science in order to quickly achieve societal and technological progress without duplicating efforts in both academic and industrial research had already been under discussion within the paradigm of rationalisation prior to the Nazi’s seizure of power. From the late 19th century onwards, industry conducted more and more research in its own laboratories, and the good salaries attracted talented researchers. The future role of universities as training and research institutions and the initial division of labour between academic and industrial research thus became a vital question of science policy. Furthermore, the changing research practices also led to an organizational discussion about individual or team research. The terms fundamental research and goal-oriented research were part of these ongoing negotiations (Krauch 1941 : 2; Brüche 1944 : 114–115; Stadlinger 1944 : 227, 229; Verein Deutscher Chemiker 1943 ; Drescher-Kaden 1941 : 10, 16–17).

Overall, the articles in this special issue sought mainly to demonstrate to the public how German scientists, whose work was less visible, contributed to the nation during war time. Authors such as Butenandt tried to explain their ongoing experimental work in terms of both its meaning for society and its potential impact to a wider lay audience (Butenandt 1940 ). Following the initial hostility demonstrated by Nazi ideology towards the academic elite and elitist institutions such as the academies of sciences, this issue of the Illustrierte Zeitung promoted science wholesale by emphasizing that it was necessary for society to support research.

Within the natural sciences up to 1939, the new term “fundamental research” was rarely used and did not yet have an established, fixed set of meanings. In physics, for example, fundamental research could denote theoretical physics or, alternatively, it referred to the older distinction between the natural sciences and technology (Reichenbächer 1937 : 285; Hiedemann 1939 : V, 1). Despite this semantic variation, the strategic uses of the new term in most of the disciplines bore some resemblance to one another when it came down to combining the term with goal-oriented research. It is striking that as the term fundamental research became more widespread after 1939, scientists tended to mention Grundlagenforschung and Zweckforschung in the same breath (Witzell 1944 : 212–217). In fact, the term fundamental research emerged in the natural and technical sciences mainly when the individual field of research was close to application or demonstrated promise for military, economic, and political aims. This was the case, for instance, with innovations in weaponry and military strategy, maintaining public health, ensuring food supply, rationalizing the production and use of raw materials, inventing substitute materials, and encouraging industrial production. In the humanities, the term fundamental research was still less common. This observation leads us to the question of whether the use of the two terms really worked as a boundary discourse.

Interdisciplinary research fields, such as forestry, represented a utility-oriented notion of science in the first place. In the case of forestry, research promised more profitable cultivation and effective technical treatment of the raw material wood. Germany’s rise as a colonial power in the late nineteenth century had already transformed forestry into a politically and economically significant discipline, fostered since by the German state. In the Nazi war economy, the issue of raw materials, and with it the supply of wood, gained even greater importance (Steinsiek 2008 ). In this disciplinary context, fundamental research and goal-oriented research represented two equivalent sub-areas of forestry: one that studied the nature of the substance wood, and one that analyzed its material properties and the effects of technical treatment. The overall goal of both research fields was to acquire knowledge about the optimal use for the raw material wood (Runkel 1942 : 305–306). 9

The majority of scientists defined fundamental research as pursuing fundamental questions of nature, its substances, and its processes. This contrast to goal-oriented research still adhered to the old demarcation between nature, on the one hand, and society and its relationship to natural resources, on the other. But questions about nature, labelled by scientists as fundamental research in the late 1930s and 1940s, arose within the context of technical and practical problems (Kaiser Wilhelm-Gesellschaft zur Förderung der Wissenschaften 1939 : 322; Hoffmann and Suhr 1944 : 550), that is in applied science disciplines such as aeronautics, armament, forestry, plant breeding, and nutrition.

In the majority of cases, scientists simply stressed the necessity of both fundamental research and goal-oriented research, in other words, the general necessity of research for any kind of progress. This is where the views of the scientific community converged with the goals of Nazi economic policymakers, who were aware that the US and British governments were providing massive support to research for economic and military purposes (Krauch 1939 ). When it came to clearly defining terminology in this period, scientists surprisingly described fundamental research as the study of nature, devoid of any concrete notion of how it might be applied in terms of technology or societal utility. Yet having just drawn a distinction between utility-oriented research and research driven simply by the urge for knowledge, scientists immediately strove to emphasize that limiting fundamental research was not possible in terms of research practice and its institutional settings, whether in industry, in universities, or in other research institutions (Bauermeister 1938 ; Wolfgang Ostwald 1942 : 130–131; Niemeier 1944 : 106–107). Moreover, the distinction between fundamental research and goal-oriented research was often criticized as misleading because it suggested that fundamental research was far removed from any notion of useful application (Zenneck 1944 : 10; Endell 1942 : 113; Wolfgang Ostwald 1942 : 130–131).

These definitions must be seen as a vestige of patterns characterizing scientists’ former understanding of science. However, one question remains unanswered: if this differentiation of research types appeared to have little consequence for the scientific community, why did scientists introduce new terminology that could be understood as part of a dichotomy and that, moreover, was reminiscent of former boundary discourses? As the use of the term fundamental research was prevalent in engineering as well as in those research fields in chemistry, physics, biology, and geography that responded, in particular, to the concrete needs of the economy and the political regime, the intention was hardly to reactivate either the old demarcation between science and technology or the ideal of science for its own sake. The fact that new terms emerged reveals two things. Firstly, under the Nazi regime the scientific community felt the need to renegotiate the conditions under which science and research were conducted. Secondly, the old concepts of science no longer fit with existing practices in science.

The term fundamental research was fresh; Zweckforschung , which was highly unusual in the natural sciences until the mid 1930s, was even more so. 10 In fact, the latter only gained importance during the Nazi period. Some scientists explicitly considered goal-oriented research as a temporary focus of science responding to a situation of national emergency. In 1936, the chemist Wolfgang Ostwald, son of Wilhelm Ostwald and former president of the Kolloid-Gesellschaft (Colloid Society), stated that “[o]ver the last years, much has been said about so-called ‘Zweckforschung’. It means the entirety of efforts to draw more extensively than usual on scientific research for solving major economic problems” (Kolloid-Gesellschaft 1936 : 159, translation by DS). To be precise, the term goal-oriented research was spreading at the very same time that the creation of the new government administration in 1937, the Reich Research Council, institutionalised the four-year plan. This new authority and the second four-year plan that ensued broadened the field of activities in which science henceforth was understood as an important prerequisite for economic progress. Thus, in contrast to free research, goal-oriented research meant target-oriented research according to the goals of the four-year plan (Bachér 1937 ; Willing 1937 ). 11

In order to explain the emergence of this new scientific nomenclature, it is most revealing to look at the chronology governing the spread of new terms. With the foundation of the new Reich Research Council ( 1937 ), which claimed to bring German research efficiently into line with Nazi policies, some scientists were concerned about the future funding of fundamental research (Bauermeister 1938 : 476). It would be misleading to interpret this plea for fundamental research as a struggle for freedom of science that ignored the expectations of society in favour of absolute professional independence; the concerns expressed do not reveal an objection to the idea that science should serve political aims or national tasks. Yet the scientists’ worries certainly revolved around the question of how to govern science. The concern was, in fact, that scientific knowledge as a resource for innovation might dwindle in the long run. It can be described as an argument of knowledge sustainability meaning that knowledge will run short if scientists and policymakers align knowledge production exclusively with immediate needs. Within this sustainability discourse, fundamental research represented the experiences that, firstly, scientific progress was often unexpected and, secondly, that even the research output that sought practical solutions was unpredictable and needed time before its application was possible. According to these researchers, science had to conquer new ground deemed necessary for the long-term advancement of technology. Only a few scientists actually recognized the semantic shift in scientific nomenclature and criticized the new term fundamental research for constraining science to technological ends (Richter 1943 : 207).

The reference to the long-term and unpredictable nature of scientific research was, of course, not new. Back in the 19th century, this had already served as an argument in the science-technology boundary discourse. Yet it was not until the 20th century that this aspect of scientific and technological progress became an everyday experience in many fields of research. The problem of how to find the right balance between venturing into the unknown and, at the same time, abiding by a research policy that sought to keep the aims of research in its sights had been under discussion in the 1920s, in particular within the context of industrial research. Faced by the Nazi Regime’s four-year plan and the increasing pressure of the expectations on science during the war, it became even more important for researchers to communicate to the regime that their work contributed to political aims, even if they were unable to guarantee any immediate success.

The argument that research had its own temporal logic was also present in research fields devoid of a science-technology nexus. In 1943, Joachim H. Schultze, professor of geography in Jena, expressed the belief that science ought to be one step ahead of the demands of the day. He defined fundamental research as “general research regardless of its practical application and regardless of the benefits of everyday life” (J. H. Schultze 1943 : 197). He described research in geography as the task of depicting the overall research areas in the discipline, which included topics as diverse as the earth’s surface, landscapes, and the cultural and demographic depiction of countries. The central aim of Schultze’s article was not, however, to protect a self-referential concept of science, but rather to praise the utility of geography in general as well as the research carried out thus far for the purpose of warfare. Referring to historical examples of the huge political and economic interest in geography, Schultze argued that science, rather than being left to its own devices, needed both a societal mission and interest from the public. He advocated the idea of a central German geographical institute which would carry out fundamental and goal-oriented research for the state and for economic purposes. Schultze called for the combination of fundamental and goal-oriented research for an epistemic reason: research needs time and the future utility of scientific outcomes is not foreseeable as readily as future societal needs (J. H. Schultze 1943 : 201). Thus, the term fundamental research stood for sustainable knowledge with potential benefit, or a sort of stock of knowledge (Ziegelmayer 1936 : 253; Stock 1938 : 150–151; Brüche 1944 : 113).

The Discursive Strategy of Fundamental Research and the Reassessment of German Science in the Nazi Period

Over the last decade, German science and its research endeavours under National Socialism have undergone a historical re-evaluation, namely within two major projects on the history of the Kaiser Wilhelm Society and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). The focus has shifted to some extent from the effects of Nazi ideology and the participation of the humanities, anthropology, and medicine in racist and eugenic policies, to the hard and technical sciences that contributed to the military and economic goals of the Nazi regime. Whereas former studies stressed the negative effects of Nazi science policy, such as, the international isolation of the German scientific community, the experience of being cut off from raw materials required by the experimental sciences and the focus on substitute research as a result of a policy of autarky, and, since 1933, the incredible loss of excellent researchers as a result of racist science policy, recent studies present a more differentiated picture of science under the Nazi regime when focusing on research output and technical innovation.

Despite the regulatory claims of the Reich Research Council and the German Research Foundation’s loss of autonomy, recent studies show that researchers were still able to shape research policy according to their own interests. Provided that researchers showed a political affinity to the Nazi regime, scientific reputation and peer review continued to define the allocation of research funding (Flachowsky 2010 ). In particular after 1942, the year in which the Reich Research Council was reorganized and military technical equipment assumed greater importance in the German war effort, it appears that the regulatory claims of German research policy finally gave way to a more efficiency-oriented policy. As Mitchell Ash puts it, normal science existed throughout the Nazi period (Ash 2006 : 34–35).

In this reassessment of German science and scholarship, the question of whether Nazi science policy led to a shift in focus from Grundlagenforschung (fundamental research) to angewandte Forschung (applied research) plays a crucial role. Recent studies provide evidence that fundamental research and applied research did not work as clearly demarcated, transdisciplinary, and supertemporal categories. Current studies on the history of the natural sciences during the Nazi period attest to a continuity of – what they call – fundamental research. Some studies suggest that German professors adjusted to the new conditions by combining applied research that accorded to political and economic requirements with fundamental research that earned greater appreciation within the scientific community in their projects. Although full professors apparently still honoured the ideal of pure science, most of them had contact with industry as individual consultants and/or via collaboration. Other studies identify fundamental research in especially applied contexts such as armament and defence research, but also in economically promising research fields such as metals research and polymer chemistry (Luxbacher 2010 ; Erker 2010 ; Flachowsky 2010 ; Epple 2002 : 318–322). In the case of metals research, Günter Luxbach differentiates between research on the composition of metal, which was labelled as fundamental research, and research that tested the technical properties of metals, which was known as applied research. In contrast to this classical distinction between the quest for knowledge of nature and the quest for technological progress, Paul Erker describes polymer chemistry as a discipline that strove to combine these two motives. Erker employs the label of basic research for a heterogeneous and innovative research policy. Thus the meaning of fundamental research differs in historical studies on the natural sciences, not least because these studies investigate different disciplines.

By countering older historical interpretations that see German science in decline since its political instrumentalization in 1933, the main thrust of these recent contributions is, of course, that the Nazi’s war and policy of autonomy did not cause the profile of academic research to change overall. The insight that fundamental research went hand-in-hand with goal-oriented research is a novelty only if we analyse science on the premise that basic and applied research constitute two fundamentally different forms of research. Most of the historians quoted above still do not question the distinction between basic and applied research. The long-established categories still appear to be so self-evident that these authors do not feel obliged to define them explicitly for the specific research fields upon which they focus. Moreover, most of them still fail to reflect on how scientists employed terms such as Grundlagenforschung and Zweckforschung during the Nazi period.

Only a few of these historians have reconsidered their analytic vocabulary in light of new evaluations of the Nazi period. Moritz Epple, for instance, no longer believes in the opposition of the terms basic and applied. As in recent propositions in the philosophy of science, he suggests that we should speak of application-oriented fundamental research within the context of Nazi science (Epple 2010 : 213). Another interpretation suggests that as German professors were increasingly involved in applied research, the use of the term fundamental research was merely symbolic, for the purpose of scientific reputation (Wagner 2010 : 26–27, 33). Surprisingly, semantic sensibility is on the rise when it comes to discussing the aftermath of the Second World War. Within this context, the use of the term fundamental research is more often identified as a simply rhetorical strategy deployed by German scientists in order to retrospectively downplay their involvement in the Nazi system. Carola Sachse argues that this strategy of moral relief also worked in the American context: it was supposed to dispel fear of German post-war science (Sachse 2010 : 480).

So far, this analysis of the first half of the 20th century has shown that the new terms fundamental and basic research initially emerged in mission-oriented or technical research fields. In Germany the concept only gained importance since the 1930s when research had to meet high political expectations. With regard to the historical context of the Nazi regime, the results suggest that the interpretation of a simply rhetorical strategy, whether as a strategy of individual moral relief or as a professional strategy for protecting a scientist’s guaranteed freedoms, is not entirely convincing. Because many German scientists demonstrated their commitment to the Nazi regime by offering their research services, the terms fundamental research did not serve to protect the old intrinsic ideal of science. In a period when the political expectations placed on science were high, the terms expounded instead the experience that scientific progress and procedures leading to exploitable results were difficult to predict.

From Knowledge Sustainability to Purity Discourse: US Science Policy Between the Second World War and the Cold War Period

As the rise of basic research as a pivotal keyword in science policy during the post-war era was not peculiar to Germany, it is now time for a more comparative perspective. Although the two terms fundamental and basic research had gained greater currency throughout the 1930s in US science and, more generally, in science throughout the English-speaking world than had the term Grundlagenforschung in German science, they had not yet spilled over into all the different disciplines. 12 Analysis of the journal Science demonstrates that, at that time, the use of these terms was still limited to biology (agriculture as well as studies on vitamins and proteins, which attracted pharmaceutical companies, also employed these terms), industrial research, and engineering. Once again, the terms denoted long-term studies focusing on fundamental problems in biology, chemistry, or physics emerging within the context of technical and application-related questions. The term fundamental research did not constitute an antonym to applied research; it was not part of a boundary discourse. In 1942, the research administrator of the US Department of Agriculture described basic research as follows:

In all these cases, either basic research precedes the practical applications of science, or a certain amount of this kind of research is found to be necessary somewhere along the line to clear-up obscurities that block further progress. … the point I am making is that in research there is no single road to practical results. If we keep our eyes constantly and exclusively on what seem to be immediate needs, we miss some of the richest fruits of scientific work – the fruits that grow from the discovery of important fundamental facts. … The emphasis I have given to basic research and freedom of inquiry does not mean that we should pay any less attention than we do to homely experimentation directed toward solving everyday problems. (Auchter 1942 : 287, 288)

In the case of engineering, the concept of fundamental research largely represented the ongoing process of the scientification of technology (Gibb 1937 : 233–234; Jewett 1944 ). Institutes such as the Mellon Institute of Industrial Research at the University of Philadelphia, which defined itself as a link between science and technology (or in the words of Edward Weidlein “between the world of science and the industry”), used the term fundamental research as a general label for their projects and training (Weidlein 1935 : 562).

In light of these examples, the argument that the new concepts reflected the increasing expectation that science should be beneficial to the economy and to society as a whole also applies to the US case. Scientists were aware of the epistemic and institutional challenges to research that the 20th century brought forth. As a result of the increasing commercial potential of fundamental research, patents became a major issue at US universities quite early on. In contrast to the German universities, where the right to hold patents appeared to be considered part of the individual academic freedom of German professors (at least until the rise of the Nazi reign), 13 the American land-grant colleges introduced patent regulations as early as the 1920s. Nevertheless, the administrative, legal, and ethical problems of patenting within institutions of higher education remained a controversial issue over the next few years (Potter 1940 ).

After dealing bit-by-bit with the shifting situation of science in the early 20th century, the Second World War marked an incisive and formative experience for the scientific community. When the US entered the war, the national mobilisation of science acquired the same level of importance there as in the other warring countries. In the early 1940s, the US debate on the effects of wartime revolved first and foremost around financial redistribution in science. The US universities, which depended mostly on private donations, were considered to be the losers in this process. In 1941, the long-standing idea of a federal fund that aimed to guarantee research funding on a regular and permanent basis was reignited. Although the financial crisis of the American universities had begun earlier during the Great Depression and bore several failed attempts to secure federal support for academic research (K. T. Compton 1934 ; Geiger 1986 : 246–255), proponents of this initiative blamed the war for worsening the financial situation of the universities and diagnosed a crisis in fundamental research (Blakeslee 1941 ).

Those advocating federal support argued that a new form of funding was necessary because research in the basic sciences, that is in basic disciplines such as physics or chemistry, laid the indispensable foundation for future benefits: “We are all familiar with the material conveniences and comforts which science has given us, but we often forget the original patient, fundamental research which made them possible and will be the basis for future advances” (Robbins 1941 : 8). As the concept of fundamental research had thus far denoted only research with a clear reference to application, the novelty here was the fact that the supporters of such a fund classified the entire endeavour of academic research at universities as fundamental research. Moreover, the lack of financial support for the universities was in opposition to the better funding of industrial and governmental research, which was only supposed to favour research that could demonstrate the prospect of immediate benefits (Robbins 1941 ).

From Wartime to Peacetime: Vannevar Bush’s Plans for Transforming Science Policy

During the war, scientists had discussed the future conditions of science (Science 1942 ). At the end of the war, plans for a new science policy were already on the table. In the literature on research and development policy, funding for basic research and the dissociative model of basic and applied research in the post-war era are still inseparably linked to the name Vannevar Bush (Braun-Thürmann et al. 2010 : 17). The MIT professor for electrical engineering served as presidential science adviser and, in particular, as chairman of the National Defense Research Committee and director of its successor organization, the Office of Scientific Research and Development. While coordinating the American military research programmes, including the Manhattan Project (the project devoted to constructing the atomic bomb), he began to make plans for a federal peacetime science policy. Based on the negotiations of four scientific committees (a Medical Advisory Committee, a Committee on Science and the Public Welfare, a Committee on Discovery and Development of Scientific Talent, and a Committee on Publication of scientific Information), in July 1945, Bush presented guidelines for future governmental promotion of scientific activity in the natural sciences and in medicine to the public. As well as providing financial support for academic research and junior scientists in the natural sciences, the proposals encompassed a reform of patent law and tax incentives for industrial research, the promotion of medical research, the plea for open science by fostering international exchange and strategies of declassification, and, finally, the sponsorship of basic research on military matters. Bush’s report “Science—The Endless Frontier” essentially sought to institutionalize federal science policy on a permanent basis (Bush 1945 ).

We should interpret his draft against the background of the war experience. The Second World War had demonstrated, once again, the importance of research for society and the fast-growing need for scientific knowledge. During the war, scientists and engineers had found that the search for technical innovation in the service of national defence spawned new questions and new problems for the natural sciences, the implication of which was long-term research. Given the immense expectations concerning immediate results within the context of warfare, some scientists feared that researchers would no longer be able to meet the demand of new knowledge for technical development (Simons 1943 : 391). Despite the achievements made during the war, researchers warned of an exhaustion and future shortage of scientific knowledge: only by exploiting existing knowledge, they claimed, had it been possible to invent penicillin and radar, two of research’s major wartime success stories. In other words, there was a fear that the equilibrium between the production of scientific knowledge and its application would be disturbed (Bush 1945 : 5, 8). The argument of knowledge sustainability thus became also important within the US community of scientists facing the war-time conditions of research.

This scarcity anxiety also applied to personnel resources in science (Barton and Burnham 1943 : 176; H. S. Taylor 1944 : 250). Bush’s report criticized the fact that, due to radical recruitment practices, the shortage of scientific personnel in the US was greater than in other countries (Bush 1945 : 19). Bush’s colleagues, such as the Nobel Prize winner Arthur H. Compton, believed that the training situation and the support afforded to fundamental research 14 at the universities were even worse in the US than in Germany (A. H. Compton 1945 : 208). A lack of scientifically trained researchers also posed a problem for science-based industry. Thus the four committees suggested programmes for fostering scientific talent that included the generation in uniform returning from the war, particularly through doctoral fellowships for basic research.

In spite of this crisis and the discourse of epistemic and personnel shortage, wartime research efforts had, after all, strengthened the position of science in society. As the US government had spent more money on science throughout the course of the Second World War than ever before (Bush 1945 : 82), scientists had a particular interest in perpetuating this federal commitment to science in peacetime. Since the US were traditionally characterized by less state intervention and a scientific infrastructure based largely on philanthropy and private donations, the federal support for academic research and training had been much lower than in Germany or in other European countries. It thus became necessary to legitimize the regular government funding envisioned through science’s role in the overall welfare of the nation. The Bush report justified the government’s obligation to support basic research in three ways. Firstly, medical research would improve public health. Secondly, research would advance the overall public welfare, which was almost synonymous with economic growth and job security due to innovations and new products. And finally, long-term civilian research promised to give the US a technological edge in armaments which was supposed to guarantee national security. Only then did basic research become a real keyword in research funding. And the metaphor of “basic” did the trick; by laying the basics for all kinds of future benefits, the federal government financed basic research as for the common good.

Bush’s proposal also reacted to the organizational conditions of wartime research, in particular with regard to security restrictions. The problem of secrecy policy had already been discussed openly during the war (K. T. Compton 1942 : 28). Bush’s report called for the prompt release of classified research after the war. This request also involved a secrecy strategy in which projects were split up into small, isolated research groups, each of which worked on a specialised problem without the opportunity for any kind of exchange between them. 15 It is worth mentioning that the work on these specialized problems within isolated research groups was sometimes denoted as fundamental or basic research during the war (Simons 1943 : 392), which indicates that Bush’s use of the term deviated from the former understanding. In order to near the ideal of open science once again, Bush believed that the federal government was also obliged to encourage publication, international communication, and cooperation following the war. In general, the report restricted the role of federal science policy to financial support and the provision of coordinating infrastructure (Bush 1945 : 22–24). Bush sought to prevent the government and the military from continuing to pursue the managerial approach to science policy they had applied in wartime. Bush criticized the military leadership for being too narrow-minded, a characteristic that did not fit with his understanding of the speculative and multidimensional nature of research (Reingold 1987 : 338–341). Failed attempts to establish federal research funding had already demonstrated that the majority of the scientific community disapproved of any governmental intervention in science (Geiger 1986 : 255).

Other scientists shared with Bush the rising concerns over free scientific exchange toward the end of the war (H. S. Taylor 1944 : 255; Jewett 1944 : 3), but Bush’s report was the first to link the relatively new notion of basic research with an institutional guarantee of scientific autonomy in such a close fashion. This also included his contrasting juxtaposition of basic research with applied research and development. By then, applied research had not been an antonym to basic research. Basic research thus not only meant that science should be freed from the burden of high expectations tied to immediately exploitable results; it also entailed the freedom of both inquiry and scientific communication. The different agendas and arguments – the strengthening of US universities as research and training institutions, the switch from war to peace, and attracting federal support for science in the name of national welfare – converged in the report’s recommendation to enhance the universities and non-profit research institutions as centres of basic research.

Following the release of the report, US scientists, politicians, and industry representatives entered into controversial discussions on various aspects of Bush’s proposals, which delayed the establishment of the National Science Foundation for nearly five years. The patent issue, the suggestion that the social sciences be excluded from federal support, the uneven distribution of excellent research universities in the individual states coupled with the corresponding problem of how to fairly allocate federal funding, and, finally, the envisioned scientific expertocracy within the federal foundation proved to be particularly delicate subjects. Bush’s proposal faced opposition, in particular from the military, liberal and democrat activists, and even from scientific colleagues. At the universities, which stood to benefit most from the funding, some scientists considered the plea for basic research as restricting their funding and research habits, which included contract research for industry or the army. There is no need to go into the details of this debate here since a mass of literature has already revealed these conflicting institutional interests and the political dimension of the controversy on science policy in the early years following the Second World War (Kevles 1977 ; Reingold 1987 ; Owens 1994 ; Zachary 1997 : 218–239, 249–260; Guston 2000 ; Dennis 2004 ). Most interpretations allude to Bush’s political conservatism aiming at the restoration of the pre-war political order. More generally speaking, studies on post-war research policy have so far presented a mainly political reading of these debates, which essentially revolved around the issue of more or of less intervention of the federal government into research. Even Roger Pielke’s ( 2012 ) current interpretation confines the concept basic research to this political dimension: in his view, the symbolic capacity of the term accommodated the conflicting parties, striving for the organization of science by the federal government on the one side and the autonomous organization of research by scientists on the other side, by promising potential utility.

What this analysis can add to the previous literature is a more nuanced interpretation of the conflicts within the scientific community. I argue that the scientific controversy over Bush’s “Endless frontier” partly stemmed from differences or even misunderstandings in the semantics of basic research. Although Bush developed the concept from the common discourse on knowledge sustainability, he added new semantic dimensions that had to meet multiple requirements of a new funding programme. In what follows, I demonstrate how the various problems in research organization and the overall political climate during the Cold-War period were turning this sustainability discourse by and by into a purity discourse.

Bush’s Definition of Basic Research: The Beginning of a History of Misconceptions?

Bush’s report marked a semantic shift in basic research that made a clear break with existing practices and notions in order to reorganize research in the post-war period. His specific use of the concept of basic research thus gave rise to misunderstandings and confusion. Moreover, the history of basic research in the second half of the 20th century has been characterized, in part, by these misunderstandings, which in the long run evoked anachronisms over which science and technology studies are still puzzling today. Bush’s short definition of basic research as “research performed without thought of practical ends” (Bush 1945 : 13), still singled out by most studies (Stokes 1997 : 116; Godin 2005b : 265; Popp Berman 2012 : 21), definitely contradicted the original understanding of basic/fundamental research in the context of application. Even more so, this reduction fails to represent the conceptual range of basic research in the report and the wider debates that took place right after the war.

Bush’s definitions of research, science, and applied science confused his peers and even one of his closest companions James Conant, who reflected critically on the new conceptual boundaries (Conant 1948 ). Representatives of national or military laboratories felt particularly compelled to argue against an institutional separation of basic and applied research. A member of the Naval Ordnance Laboratory, for instance, argued that “the naval laboratory programmes make it necessary for us to carry on basic research in certain parts of certain fields simply because no other agency is interested in, or has the facilities for, doing this work” (Bennett 1946 ). Bush’s peers in engineering were certainly confused by the different ways of denoting basic research. Universities specializing in the applied sciences and engineering, such as the California Institute of Technology (Caltech), understood basic research – inseparable from the overall pragmatic goal of inventing new technology – as an integral part of modern engineering (DuBridge 1959 : 109–110).

Following the publication of “Endless frontier”, scientists and other policymakers tried to differentiate and redefine the concept of basic research, which indicates that Bush’s understanding of basic research was not taken for granted and that researchers struggled with it because it did not fit the existing research landscape. John Steelman, science adviser to President Truman, for instance, divided basic research into two subcategories: firstly, fundamental research defined as “theoretical analysis … directed to the extension of knowledge of the general principles governing natural or social phenomena”, and secondly, “background research” defined as “systematic observation, collection, organization, and presentation of facts using known principles to reach objectives that are clearly defined before the research is undertaken to provide a foundation for subsequent research” (Steelman 1947a : 6). Others tried to introduce a distinction between “fundamental research, which leads to an understanding of the laws of nature, the discovery of new facts and laws, and the theoretical development”, and “basic research as it applies to industrial or military development involving basic studies of the fruits of fundamental work to determine their potentialities antecedent to application” (Leob 1946 : 540). An industrial researcher defined basic research as an intermediate category, which he located between pure research as “inquiry after knowledge for its own sake” and applied research as “the investigation carried out in response to immediate, direct, and obvious needs” (Spaght 1955 : 785). The gradual emergence of new variations such as “mission-oriented basic research” indicates, at least, that the criterion of intention, whether utility-oriented or not, became problematic in the long run (Tuve 1959 : 174; Kistiakowsky 1966 : 18).

While all these redefinitions can be interpreted as a claim to reintegrate application goals into the concept of basic research, Bush himself actually did not exclude the idea of mission-oriented research. Nathan Reingold sees “the pursuit of new knowledge” – and not the pursuit of knowledge for its own sake – as the real core of Bush’s notion of basic research. Reingold further refines his interpretation by quoting Bush’s argument that “there is no specification as to whether the knowledge is or is not of direct utility” (Reingold 1987 : 305). That sheds a very different light on the story of basic research. The importance of new scientific knowledge becomes even clearer if we take into account Bush’s metaphor of “the endless frontier”, which emphasized the cutting-edge role of scientific research. It thus placed scientific problems at the border of the unknown, reflecting the uncertainty of scientific outcomes and their long lead time in a world increasingly reliant upon scientific progress. Not least, Bush’s outline for a federal funding programme entailed financial support for basic research (long-range scientific research) on military matters.

Nevertheless, some of Bush’s contemporaries interpreted the report as an attempt to return to the old intrinsic ideal of pure science. They criticized the report for favouring a selfish notion of scientific autonomy that did not respond to any societal or economic needs (Shepard 1946 ). 16 My analysis thus far reveals that the discursive strategy of basic research initially aimed to acquire regular financial support from the government by promising utility in spite of the uncertainty of scientific research. This happened to conform to the interests of the scientific profession, so long as this support did not affect the ideal of open science. In the long run, however, the allegation of a return to an ancient pure-science ideal proved to be true. As the promotion of basic research continued, the sustainability discourse was transformed into a purity discourse, which revealed aspects of a past notion of science deemed to have been superseded in the 20th century.

After having become the spearhead of scientific endeavour, surprisingly enough American researchers looked back towards continental Europe. Post-war proposals for higher education in the US idealized the European university system and its humanistic tradition by associating it with democracy (Bender 1997 : 4–5). The old model of the European research university and its success story in basic disciplines such as physics and chemistry became a role model. According to Bush’s report, the arguments for reinvigorating the university within an increasingly pluralistic research landscape were twofold: immense need for scientifically trained researchers and the demand for scientific autonomy.

American scientists had repeatedly commented on the short-sighted focus of armaments research and on the threat Hitler’s regime implied for the freedom of science, presenting the liberal democratic order as the only safeguard for the fundamental principles of science (Fosdick 1934 : 380; Simons 1943 : 392; Goudsmit 1947 : XI). The debates on lessons to be drawn from the war experience, however, demonstrate that American scientists were chiefly worried about the threat to scientific freedom with regard to their own national conditions (H. S. Taylor 1944 : 255; Goudsmit 1947 : 232–246). Bush’s report blamed previous federal policy – from the Morill Land-Grant Colleges Act to the more recent practice of contract research – for being primarily interested in immediate benefits. The report argued that, due to an alleged inclination towards more utility-based research, the American nation depended entirely on the European production of new scientific knowledge (Bush 1945 : 2; see also Astin 1959 : 146–147).

By reproaching the societal and governmental focus on the utility of science, Bush’s sustainability argument was just about to tilt over towards the purity ideal of science. This explains why some scientists initially reclaimed the application aspect of research. The related aspect of academic autonomy, however, met with the approval of most scientists. Aside from the politicians supporting a science policy agency like the Democrat Harley M. Kilgore ( 1945 : 636), only a few scientists argued frankly against the anxiety about governmental interference by pointing out that the increasing social and economic demand for scientific research and the necessary political coordination of research in response to these needs were facts which scientists in the 20th century had to accept (Dunn 1945 ). Although the final establishment of the National Science Foundation turned out to be a compromise for all parties having negotiated this new form of federal science funding, Bush’s altered definition of basic research, in the end, became accepted.

At the end of the 1950s, after the National Science Foundation had been operating for several years, scientists continued to criticize the low federal base rate for basic research in comparison to that of contract research in the Department of Defense, which was twice as high (Elvehjem 1959 : 94; Waterman 1959 : 26–27). Some deployed the sophisticated argument that many projects were not truly basic research, but actually mission-directed basic research. In fact, the Korean War had meanwhile intensified the Cold War conflict and the Soviet’s launch of the Sputnik satellite turned the ideological competition between West and East into a science and technology race (Tuve 1959 : 173–176). As a consequence, basic research stood primarily for federally financed academic research – with or without any concept of practical use.

From the outset, the various drafts of the documents formally establishing the National Science Foundation included fellowships for graduates and junior scientists, so that the concept of basic research was closely linked to training scientific talent (Steelman 1947b : 29–30). From the late 19th century onwards, the modern research university inevitably moved further and further away from the traditional concept of a university as a specialized institution of higher education that excluded any notion of material benefit or practical aims. Yet the post-war debate on support for basic research led to a new version of the old boundary discourse of pure versus applied and theory versus practice. At a major symposium on basic research in May 1959, one representative of a private technical university reasoned that the

most difficult questions arise as to what is fundamental research, what is practical development, and which projects could be more appropriately done in commercial laboratories. … One useful criterion which helps many decisions in this field is that to be acceptable in any area a research program must be one which is consistent with and contributes to the educational program. This means it must be one in which graduate students can participate. This means, among other things, it must not be ‘classified’, either for reasons of trade secrecy or military security. (DuBridge 1959 : 109–110)

In the discourse among academic teachers, the ideal of training “good scientists” was not compatible with military or other contract research (Elvehjem 1959 : 94). Even engineering sciences felt compelled to adopt pure-science ideals whereby profit and research projects with self-serving interests should be taboo in institutions of higher education as long as they were part of scientific training. Given the fact that the growing number of military-related research projects at universities during the Cold-War years often included doctoral students, these statements certainly did not mirror the actual practice in the higher education of engineers (Dennis 1994 ). They rather seem to reflect the increasing uneasiness with the security guidelines related to contract research for the armed forces and the increasing number of military-related research projects.

The call for new knowledge through basic research in the post-war era also reached industry. Big companies such as DuPont or the Bell Telephone Company, which could afford their own well-equipped laboratories, intended to expand their participation in basic research after the war had ended (Fisk 1959 ). However, since economic rationales entailed selecting projects that were most likely to lead to innovation, these companies welcomed the idea of the federal government funding riskier projects to be carried out at the universities (Greenewalt 1959 : 130). After all, failures and deadlocks – all more or less inevitable parts of the scientific production of knowledge – would cause costs they wanted to avoid. Furthermore, industry representatives appreciated federal support for training the future generation of researchers they needed. This division of labour was financially promising for companies as “a technological savings account” (Greenewalt 1959 ).

While the amount of research carried out in direct response to economic and military demands had increased tremendously since the Korean War (Killian 1959a : 122), the university was meant to become a sort of reservation for long-term basic research within a changing research landscape. Academic freedom in the second half of the 20th century largely sought to liberate science from over-the-top societal expectations. Protecting scientific research “from the insistent demands of applied research” became a central argument deployed by scientists as well as industry and politics (Weaver 1959 : XIV; see also Greenewalt 1959 : 128). Yet what was initially intended to protect scarce knowledge resources could, in the long run, transform into an ideal of purity. The university was granted the status of a reservation in the midst of a rapidly changing research landscape in order to protect science against excessive expectations and thus guarantee the open development of scientific knowledge. With the status of reservation, however, also came the danger that research conditions be artificially conserved, making it difficult to respond to changes in scientific practices.

The Revival of 19th-Century Epistemic Norms and Virtues

The shift from a discourse of knowledge sustainability to a discourse of purity affected the epistemic concepts of science in particular and, in so doing, appeared to hark back to ideas coursing in the 18th and 19th centuries. First and foremost, this shift concerned the relationship between the natural sciences and technology. Although Vannevar Bush himself dealt with basic questions in mathematics – a central basic discipline in engineering – as well as with construction design in his own research, his proposals ended up reviving the old distinction between nature and technology because they made the distinction between engineering, on the one hand, and the natural sciences, on the other.

Historians have explained this distinctive position on the natural sciences with Bush’s personal concepts of administration and his ideas about achieving excellence in science through specialized researchers, based, of course, on the premise that the rationale of open science would guarantee the unhindered diffusion of knowledge for the benefit of technical progress (Reingold 1987 : 306–307). This relapse into outdated concepts of science, however, cannot be reduced to the personal preferences of Vannevar Bush. It should instead be seen as a broader academic phenomenon, which began as a move to counter the increasing demand on science for immediate benefits that reached its height during the Second World War, before finally turning into a political programme in the West, nestled within the ideological competition of the Cold War.

In order to protect basic research in the natural sciences, academic experts wanted these disciplines to steer clear of any kind of technical development. As Alan T. Waterman ( 1959 : 28) proclaimed in 1959, “the growing applications of physics, chemistry, and mathematics should be shifted to engineering departments and kept out of the regular science departments”. In other words, from the point of view of the natural sciences, applied research primarily meant research that sought to yield future technology.

An oceanographical study carried out within the context of naval research in the late 1940s and early 1950s reconfirms this one-dimensional understanding of applied research in contrast to basic research. The US Office of Naval Research was a staunch supporter of basic research in oceanography, yet the question of secrecy revealed that the Navy and scientists differed in their classification of basic and applied research and in their notion of utility. Oceanographers defined their investigations of the topographical features or meteorological conditions of the ocean as basic research as long as it did not expressly serve the development of technology destined for use by the Navy. The Navy, however, developed “a more sophisticated definition of basic research that would take its operational nature into account” and demonstrated strategic utility of geography for military purposes (Hamblin 2002 : 27).

This purification of the natural sciences even affected the existing research vocabulary. Science policy experts tried to find new labels for research fields in engineering formerly classified as fundamental or basic research. The term “analytical engineering” is a good example of this renaming practice (Killian 1959a : 122). Moreover, in the debates revolving around basic research in the post-war era, the whole attitude towards technology appeared to become more ambivalent. In the 1950s, the National Science Foundation still justified the support for basic research primarily by the goal of enhancing technical progress. At the same time, it became ever more common for statements on science to conclude with a declaration bearing the motivating force behind scientific endeavour; the pursuit of knowledge for its own sake and the quest for truth became the appendix of federal science policy (Waterman 1959 : 37–40; Astin 1959 : 154).

Researchers in innovation studies have associated post-war research policy with the “linear model”, that is with a linear trajectory from basic research in the natural sciences to technology (Edgerton 2004 ). Implicit in the new policy of basic research was a renaissance of the older epistemic notion of an asymmetry of knowledge and, by association, the scientific preference for research led by theoretical questions. Particular support for basic research in the natural sciences was grounded in the hope that a few basic discoveries would be sufficient to significantly broaden the potential for technological application (Elvehjem 1959 : 98). In the process of striving for the endless frontier of the unknown, the idea of major theories in the natural sciences came to be the ultimate driving force of scientific progress and thus a further argument for supporting basic research.

Even representatives of industrial research endorsed the orientation of academic research towards theory in order to provide mutual benefit:

[T]he existence of even a crude and preliminary physical theory and the heeding of it in the expectations and patterns of operation of scientific work would permit coupling of the individual, uncommitted, undirected researcher to the general objectives of economic and social programs. … In the still regrettably small list of findings from basic scientific research which have been quickly and directly connected with large advances in technology and useful operations are several important examples. In these, the really new idea came out because a unifying theory had displaced the true possibilities – the wide range of means rather than simply the ends themselves … (W. O. Baker 1959 : 54).

This hierarchical and linear notion of knowledge production contrasted with a more dynamic understanding of the relationship between fundamentally theoretical questions and approaches that started out from a concrete problem of application. Although the professional self-image of academic superiority certainly continued to have an effect on epistemic ideas and norms in the late 19th and early 20th centuries, shifting research practices had already begun breaking up this static epistemic model. As the special support of basic research and its distinctive position within the different research activities was beyond dispute in the late 1950s, representatives of industrial research or national laboratories only casually mentioned the mutual reinforcement of theoretical and application problems they encountered (Astin 1959 : 145, 151; Fisk 1959 : 160–161).

Debates on basic research eventually revealed another old epistemic ideal referring to the intellectual qualities of researchers and to research conditions that encouraged scientific creativity. New (federal) support for basic research initially focused on individual researchers in order to foster “the development of the individual scientist” (Waterman 1959 : 34; see also Weaver 1959 : XI; Greenewalt 1959 : 128–131; Morison 1959 : 230). Experts esteemed individual creativity as the main property of outstanding scientists, enabling them to move forward into the unknown. The free flow of unconstrained intellectual creativity was thus defined as basic research. Not least, the financial relief stemming from regular federal funding was well received as a guarantee of intellectual freedom (Tuve 1959 ).

This particular position was backed up by the revival of old academic virtues. “[T]ruly ‘basic research’ was driven by a passionate love for knowledge. Basic research thus meant ‘support for ideas’ in the first place” (Tuve 1959 : 174, 175; see also Waterman 1959 ). This definition of basic research tended to be averse to technology. Furthermore, the hierarchy of basic and applied research implied the moral superiority of academic research over benefit-oriented industrial research, even on the personal level of researchers (Elvehjem 1959 : 94–96). In the end, the epistemic virtue of disinterestedness – according to Robert Merton one of four imperatives of modern science – got mixed up with social and moral values.

This deep appreciation of individuality was partly a reaction to the growing experience of scientific teamwork, which had become common within large military or industrial research projects. Individual creativity contrasted with the conservative atmosphere of research groups, which tended to object to fresh, radical ideas (Waterman 1959 : 30; Tuve 1959 : 176). Even those involved in industrial research highlighted the advantage of academic research because companies were only able to offer limited space for the individuality of their researchers. Furthermore, the freedom of investigation was supposed to be a special incentive for academic research – an incentive that had to compete with the high salaries and the technologically well-equipped laboratories in industrial research (Elvehjem 1959 : 96–97). Praise for individuality in science, however, derived partly from the ideological value of individualism in Western civilization. The first director of the National Science Foundation, Alan T. Waterman, put it like this: “Surely one of the great assets of democracy is the encouragement of individual initiative” (Waterman 1959 : 25).

Democracy at Risk: The Ideological Role of Basic Research in the Cold-War US

The ideological potential of the basic-research concept contributed significantly to the shift from a discourse of sustainability to one of purity. Politicians, for example US President Dwight D. Eisenhower, translated the new science policy directly into political slogans such as “Science: Handmaiden of Freedom” (Eisenhower 1959 ). Politicians still placed great hopes and expectations on science as the pacemaker of technical progress, capable of securing national security, national welfare, and prosperity. At the same time, their support of basic research enabled politicians to praise academic freedom as an overall value of liberal Western society. In addition to this, federal funding for basic research, defined as support for individual initiative and creativity, symbolized the individualism within democracy (Waterman 1959 : 25). As a collective symbol bridging the gap between scientific and public discourse by the polysemy of metaphors, basic research offered a true ideological surplus. Politicians further contrasted the “limited or local application” within mission-directed research with the universality of basic research designed to “benefit all mankind” (Eisenhower 1959 : 137). Leading the technological race with the launch of its Sputnik satellite, the Soviet Union then stood for an application-oriented understanding of science in the service of communist goals, whereas the Western argument pertaining to the universality and openness of basic research claimed ethical superiority.

During the 1950s, this high praise for free basic research stood in opposition to the high percentage of projects funded by the military and the increased demands for secrecy imposed on large areas of research in physics or other fields relevant to military projects by US security policy. It is telling that, in 1951, Alan Waterman, first director of the National Science Foundation and former technical director of the Office of Naval Research, emphasized the role of science in the situation of national emergency in the wake of conflict with the communist world; in spite of the National Science Foundation’s basic research programme, he underlined the need for science to focus on urgent application problems (Waterman 1951 ). According to the literature (Forman 1987 ; Westwick 2000 ), patriotic mobilization among scientists was still high. Many classified their research voluntarily, or adjusted to political pressure for security by compartmentalizing research and forming classified communities. Although these strategies were supposed to guarantee as much scientific exchange as possible, secrecy meant that research largely took place within a national context.

Moreover, the debates in Science during the 1950s demonstrate that the secrecy policy and the effects of a dominating military grip on science gave more and more cause for concern within the scientific community. Scientists criticized the idea that the military had a “sophisticated understanding of the needs of basic research”, arguing, moreover, that “those branches of pure science that lack military appeal are as badly off financially as they ever were” (Phillips 1952 : 440). In the early 1960s, military or military-related institutes, such as the Office of Naval Research, were still financing most academic research, in particular at prestigious universities (Leslie 1993 ). Against this backdrop, the political reading of basic research was not merely an aspect of portraying the US as a liberal society to the outside world. The debate on basic research also reflected, more controversially, the internal effects of the cold war on research. The debate was embedded in a more general intellectual discourse on the consequences of the predominant security policy and the growing power of the military for democratic society (see, for example, Shils 1956 : 176–191).

Eisenhower’s statements demonstrated this growing ambiguity. In his well-known “Farewell Address” from 1961, the departing president, former supreme allied commander and president of Columbia University, warned against the growing power of a “military-industrial complex”:

[W]e must guard against the acquisition of unwarranted influence, whether sought or unsought, by the military-industrial complex. The potential for the disastrous rise of misplaced power exists and will persist. We must never let the weight of this combination endanger our liberties or democratic processes. We should take nothing for granted. Only an alert and knowledgeable citizenry can compel the proper meshing of the huge industrial and military machinery of defense with our peaceful methods and goals, so that security and liberty may prosper together. (Eisenhower 2003 : 414)

Eisenhower construed financially attractive contract research as a threat to the academic “fountainhead of free ideas”. More importantly, he warned against the menace to public policy and civil society of a new “scientific-technological elite” (Eisenhower 2003 : 414–415). Although Robert Merton had already stressed the similarity or affinity between open science and Western democracy, in the late 1950s and early 1960s Eisenhower and other politicians identified science as a threat to democracy when a close connection between science, the military, and the economy remained intact (Wang 1999b ).

Along with the attribute of universality, another of Merton’s four imperatives of modern science, the notion of truth also gained importance in this ideological discourse (Waterman 1959 : 39). The ideal of truth had already been part of the ideological fight against fascism during the Second World War when researchers emphasized that science offered more than technical applications: “American science therefore has an especial duty to keep aflame the torch of free research for truth, which is dimmed or gone out in so many lands” (Blakeslee 1940 : 592).

As the natural sciences had needed a long time to set themselves apart from an understanding of science dominated by natural philosophy, the revitalization of the idea of universal truth appears anachronistic. In the 19th century, the natural sciences developed a mechanical and structural understanding of objectivity based on methodological processes that sometimes even stood in contradiction to the quest for truth and certitude (Daston 2000 : 32–34). At the beginning of the 20th century, the quest for truth had something old-fashioned about it in a scientific era in which research was constantly doing away with established certainties.

Coping with Ethical Dilemmas in the Cold-War Era

During the Cold War, however, the attributes of truth and universality were revitalized and became part of an effort to present science as a politically and ideologically independent authority in society. From the viewpoint of politics, science was able to act as a neutral authority upon which decision-makers could rely (Price 1962 : 1105). Scientists themselves praised the idea “that science has something more valuable than its material gifts to offer. … Science can have no dogma, no arbitrary authority, no ‘party line’” (Sinnott 1950 : 125). Scientific virtues of “objectivity, tolerance, reluctance to distort or suppress evidence, and willingness to accept sound logic and demonstrable fact” were transformed into political virtues (W. P. Taylor 1953 : 449). At the same time, however, the position of impartial experts tended to be morally overloaded when scientists were meant to become missionaries of “reason and good will” in the fight against “falsehood and hate” (Sinnott 1950 : 126; see also Szent-Györgyi 1957 ; Rapoport 1957 ; Weaver 1961 : 259). In fact, the democratic framing of basic research and the revival of knowledge ideals in the tradition of Humanism led to a politicization of science and, as a result, basic research itself became part of ideology, namely Western ideology.

Historians have already pointed to the various ideological dimensions of science in the post-war period (Wang 1999a ; Ash 2006 : 30; for the social sciences and humanities, see Bender 1997 ). Some scholars from science and technology studies blame Robert Merton’s comparison of science in democracy with science in fascist and communist regimes for the misconception of scientific ideals such as autonomy and universality, a misconception that they have been trying to correct ever since (see the overview in Daston 2000 : 18–20). But the societal, political, and ethical implications of the basic-research concept were embraced by the scientific community, even without sociological mediation.

After the atomic bomb was dropped on Hiroshima, the role of science in society certainly became more contradictory (Conant 1961 : 6–13). While researchers had wholeheartedly praised the salutary benefits of science before Hiroshima (A. H. Compton 1940 : 56), contemporaries noted afterwards that the “atom bomb once and for all explodes the ‘neutrality’ of technology” (Shepard 1946 : 66). The promise of progress was only one side of the coin. Scientists became increasingly aware of the burden of responsibility in their own research. Some of them hoped to avoid this problem by pursuing more theoretical research topics. Others tried to take political action, such as the atomic physicists’ movement, which fought for civilian use of scientific knowledge and technological invention. But the anxious atmosphere during the Cold War period – anti-communist harassment and the increasing public fear of a new scientific-technological elite – aggravated the ethical dilemmas of post-war science.

A statement made by the physicist Julius Robert Oppenheimer, a leading figure in the Manhattan Project, about the debate on basic research indicates scientists’ uneasiness when they were faced with these dilemmas: “The argument that the quest for new knowledge, which is basic science, is ennobling, and the argument that the quest for new knowledge produces new knowledge which is useful to technology and thus to practice, are disturbingly separate and unrelated arguments. … Yet science and technology are symbiotic” (Oppenheimer 1959 : 9; for a similar argument, see W. O. Baker 1959 : 43–47). Oppenheimer seemed to suspect that the debate on basic research simply reflected these modern dilemmas. It is striking, but also telling, that he tried hard to avoid the dualistic semantics that characterized science policy at this time. Oppenheimer explicitly raised the political problems brought about by the powerful scientific culture of the 20th century. Taking the growing criticism toward scientists into account, the physicist believed that making the public understand research goals had become difficult. While the impact of science on society had increased tremendously, the fast growth of scientific knowledge and technical innovations made it hard for laypersons to judge issues in science policy. Oppenheimer feared that this asymmetry of knowledge between experts and the lay public weakened democratic political decision-making (Oppenheimer 1959 : 12–13). 17

The charges brought by the McCarthy Committee in 1954 against Oppenheimer relating to his opposition to the hydrogen bomb illustrate that scientists who were willing to assume responsibility for their research by taking political action had to learn the hard way that there was little room in the political climate of the Cold War to deal openly with these dilemmas of modern science (Bird and Sherwin 2005 : 462–550). With regard to scientists of the progressive left advocating a more utility-oriented notion of science, Jessica Wang notes that “[a]lthough their views on the structure of postwar science were not directly responsible for their political difficulties in every case, these scientists and others who embraced a liberal-left politics of science were likely to hold other views that made them vulnerable to anti-communist attacks and excluded them from political influence” (Wang 1995 : 166). In the mid 1950s, the National Science Foundation and the Academy of Science included the criterion of national loyalty into their peer-review system for unclassified research. Both organisations thus sought to avoid allegations of supporting researchers who were suspected of sympathising with communist ideas (Waterman 1960 : 127; Committee on Loyalty in Relation to Government Support of Unclassified Research 1956 ).

The question of loyalty arose especially when it came to discussing technological application, as an official statement by the President of Associated Universities addressed to the Committee on Government Operations confirmed:

If a scientist expresses a strong view on some technological matter that may be contrary to the application of technology to current or to subsequent policy, he is open to the accusation of taking this view with the intent of deliberate subversion. … Moreover, secrecy prevents him from stating the essential technical grounds on which his view is based. Therefore, in the simple process of doing his job for his country well, he is open to damaging criticism against which he is permitted to produce little defense. (Berkner 1956 : 784–785)

Given this pitfall, the discursive separation of science from technology provided a strategy to avoid the risk of being forced to go “politicking”, which gradually came to be considered as the “disease” of the project research dominating American universities at that time (Gates 1958 : 234).

In this particular situation (the ethical dilemmas of the techno-scientific world, the fragile relationship between science and the public in democracy, and the ideological antagonism during the Cold War), the dissociation of the natural sciences from applied research and any practical application of scientific knowledge was thought to offer a strategy of individual, professional, and institutional relief: Firstly, a strategy that avoids assuming ethical responsibility for the changes caused by scientific knowledge. Secondly, a sort of self-protecting strategy that sought to avoid the direct line of political fire in a society entirely concerned with national security, the latter which produced an atmosphere of suspicion. And thirdly, a strategy of political neutrality and independence from any self-serving interests as a means of guaranteeing the institutional freedom of academic science and a self-regulating scientific community which, from a scientific point of view, was best capable of dealing with the open and often unpredictable process of epistemic progress. The scientific community retreated into a “satisfactory philosophy of ignorance”; as long as science was defined as institutionalized scepticism, it was still possible to maintain the belief in science or scientific knowledge as an indispensable value of modern civilization (Feynman 1955 : 15).

Conflicting Promises and Their Effects on the Public Image of Science

This neutral position secured the federal funding of research at universities in the US – something the universities had longed for since the 1920s. In return, academic researchers promised simply that science would lay the foundation for progress. They also offered their expertise to politics, thus acting as an independent authority over truth in a pluralistic, democratic society. The certainty academic scientists offered appeared to be especially welcome at a time in which society was driven by great anxiety. With regard to the outside image of the US during the Cold War, the universities’ role as reservations devoted to autonomous science served as a symbol for Western liberal society in the tradition of Humanism amid the great ideological competition, while simultaneously providing fig-leaf camouflage for the technology-based arms race. The post-war understanding of scientific autonomy was, in fact, the result of a broad process of the politicization of science arising from the growing importance of scientific knowledge for society.

Since there is, by definition, no clear solution for dilemmas, the strategy of basic research inevitably caused problems for the relationship between science and the public in the long run. Articles on this relationship and on topics such as the responsibility of science in the late 1950s show that public mediation between the needs of science and those of society became increasingly problematic (Killian 1959b : 136; Sayre 1961 ; Price 1962 ). According to Bender, this understanding of the autonomy of science, in particular the position of elitist experts and how they neglected their responsibilities, alienated science from society, evoked the impression of an academic ivory tower, and, finally, ended in federal budget cuts for academic research (Bender 1997 : 8–12).

Moreover, I argue that the simple promises of truth and progress scientists had avowed to society covered the complexity and uncertainty of research dynamics as well as the tentativeness of contested scientific knowledge. Moreover, the authority of scientific objectivity and methodologically certified knowledge revealed its limitations during political negotiations on values and societal goals; the position of moral neutrality might bewilder the public. It could thus lead to disappointment, misunderstanding, and even to the loss of science’s integrity in the public sphere. Furthermore, the increasing interlocking of technology and the natural sciences was also hidden behind praise for basic research. Since technological innovation had become part of the natural sciences, questions of risk and utility had inevitably arisen and transformed themselves into political and ethical issues: Who will profit from the results? How do we manage risks?

Only few researchers at that time anticipated that the excessive expectations of and contradictory demands on research might turn the public against science (W. O. Baker 1959 : 48; Dryden 1954 ). The shift from a discourse of knowledge sustainability to one of purity meant that the concept of basic research itself sent contradictory signals to the public: “The uneasiness of scientists on this score is revealed by the observation that, whereas they claim among themselves that their primary interest is in the conceptual, not in the applied, aspects of science, in public they justify basic research by asserting that it always leads to ‘useful’ results” (Dubos 1961 : 1209; see also Daniels 1967 ).

In fact, the concept of basic research and the underlying linear model of innovation had already come under attack in the late 1960s and early 1970s. The long-term and highly speculative nature of scientific research was difficult to communicate to a public that expected economic prosperity and welfare here and now. Society’s disappointment backfired on the scientific community and stimulated a debate about the appropriateness of dissociating basic from applied research (Abelson 1966 ; Reagan 1967 ). Yet this crisis is another chapter in the conceptual history of basic research and goes beyond the scope of this paper.

Despite recurring crises, the concept of basic research functioned as a collective symbol for science policy over quite a long period of time. Moreover, the semantics of the new US science policy spread across the entire Western world. Ever since the National Science Foundation established a periodical survey of overall research in the US based on the categories basic research, applied research, and development (the final stage of innovation, when technologies or ideas are turned into marketable products), nearly all countries in the Organisation for Economic Co-operation and Development (OECD) adopted this classification (OECD 1976 ). Basic research and its corresponding categories were converted into enduring statistical realities that played a crucial role in budget planning within industry and in funding allocation undertaken by government bodies (Godin 2005b ).

Fundamental Research in the Federal Republic of Germany: A Brief Overview

In the Federal Republic of Germany (hereafter referred to as West Germany), fundamental research also became a key concept in science policy. The impact of the American role model on West Germany is quite obvious. Within the context of re-education and development programmes, those representing US science promoted their concept of science in democracy with its special focus on fundamental research in West Germany (Conant 1953 ; Bush 1954 ). However, the national characteristics of the German research landscape coupled with the historical burden of the Nazi past meant that the way fundamental research and its corresponding discourses were implemented differed to a certain degree from the American experience. I will briefly mention some of these Germany-specific characteristics in order to maintain a balance between the two national perspectives.

After the Second World War, the Allies assumed control of science in Germany with the intention of suppressing all further research activities relevant to the development of armaments. Allied Control Council Acts and the ensuing executive regulations specified by each of the Western occupation zones forbade any fundamental or applied scientific research with military relevance (Frowein 1949 , 1950 ). 18 It is remarkable that the crucial criterion for prohibition was the military potential of research projects rather than the difference between fundamental and applied research.

Similar to the American reaction to Bush’s proposals, discussions within the German scientific community over the dissociation of basic from applied research were quite controversial in the initial post-war years. Those from engineering or the applied sciences were particularly confused by this distinction and felt insecure about their future position and status within academia (Vieweg 1950 : 731–732; Sörensen 1952 : 158). The creation of compounds such as “applied fundamental research” ( angewandte Grundlagenforschung ) was a further German strategy designed to overcome this confusion in engineering (Heiss 1950 : 121, 127; Wever 1952 : 1053).

In order to cope with the Nazi past, the concept of pure science was initially more attractive because of its moral connotation in the sense of innocence. Many scientists labelled their research activities during the Nazi period retrospectively as pure science in order to avoid being accused of complying with and supporting the former fascist regime (Mehrtens 1994 ). In general, the revival of ideals belonging to the 19th-century concept of pure science was more extensive than in the US. Reference to the Humanist notion of education became part of the programme to democratise society. This notion thus shaped the self-understanding of German universities, which culminated in a re-glorification of the Prussian university reformer Wilhelm von Humboldt, who had emphasized the educational function of science. 19 German professors embraced the older scientific ideal of truth-seeking as the ultimate motive for research. 20

Right after the war, German academics tried hard to avoid the impression that their research was driven by any political or economic interests. The US occupying forces certainly wanted to keep science at a great distance to politics, but they did not seek to suppress economically and technically promising research (Cassidy 1996 : 200–206). In fact, the growing tension with the Soviet Union meant that the Marshall Plan’s aim was speedy economic recovery in both Germany and Western Europe. John Krige has already pointed out that the basic-research concept played a key role in reconstructing European science under “American hegemony”. Firstly, the concept was important for communicating the US financial support for the former wartime enemies towards the American public. Secondly, it transported the Western ideology and was therefore part of the envisioned democratization process in central Europe. Finally, the US promoted basic research as unclassified research in the allied countries in order to increase its stock of scientific knowledge and thus to secure the American technological leadership (Krige 2010 ).

The German discourse on the general role of science in society defined scientific knowledge primarily as a cultural good in order to strip off the Nazi past: science was given a religious appeal (Walden 1946 ; Rein 1946 ; Reppe 1950 : 1; Erbe 1954 ). However, even scientists such as the physicist Otto Hahn, who argued strongly that research in the natural sciences should abstain from any economic or technological considerations, advocating instead that science ought to be driven by the thirst for knowledge, campaigned for research funding by highlighting examples of scientific discoveries that eventually led to successful products or innovative technology (Hahn 1949 , 1954 ).

Overall, the German concept of fundamental research resembled the US one in many ways. It encompassed the idea of the long-term perspective and that of the scientific knowledge reservoir or resource, the demand for scientific talent, individual creativity in research, and the belief in disciplinary specialisation (see, for instance, Reppe 1950 ). Eventually, fundamental research also became the key concept in the public funding of research in West Germany. However, the Germans’ attempt to institutionally dissociate academic research from research promising primarily economic utility was much more radical than in the US. West Germany founded the German Research Foundation in order to fund academic research and the Fraunhofer-Gesellschaft (Fraunhofer Society) as the funding body responsible for economically relevant research.

The German Research Foundation’s crucial criterion for defining fundamental research was the institutional autonomy of academic research. According to a number of historical studies, this particular focus on fundamental research implied a restoration of the power held by full professors (known in Germany as the Ordinariensystem ). As the demands for the applied and the technical sciences were growing continually, in 1956, the German Research Foundation also established a special commission for funding applied research. However, this commission failed to gain importance as an instrument for promoting research in the technical sciences (Deutsche Forschungsgemeinschaft 1956 ). Technical universities therefore had to look for financial support from another quarter. In the end, the ideal of fundamental research in West Germany seemed to slow down the institutional emancipation of technical colleges from universities. Furthermore, academic research lost contact with expensive, major scientific projects carried out in publicly funded research institutes (Orth 2011 ).

All in all, the shift from a discourse of sustainability to one of purity after the Second World War appears to have been a transnational process, although both the background and the intensity of the purity ideals in the US and in West Germany differed from one another. In both nations, the purity discourse implied a revival of scientific ideals dating back to the 19th century. West Germany adopted the American imperative of basic research, but German scientists referred more extensively to the Humanist tradition of academia because they had to dissociate themselves from their Nazi past. As universities were supposed to play an important role in Germany’s effort to progress towards democracy, academic science was defined by primarily educational ideals. The call for basic research after the Second World War in the US initially sought to maintain federal funding for academic research in order to enable scientific talent to flourish without it being subject to pressure from the expectation of benefit held by society. Basic research became a key concept in US federal science policy because the latter defined science as a common good with a long-term perspective. However, the fact that this key concept became crucial in the long run can be explained only by the fact that it functioned as a discursive strategy designed to cope with the political and ethical dilemmas of science during the Cold War.

Conclusions

This article has sought to demonstrate the importance of an historical approach in order to, firstly, understand the complex meanings of basic research and, secondly, answer the two questions of why science policy revolved around the concept of basic research and its dissociation from applied research for such a long time, and why this is still such a hot topic in science and technology studies today. If we continue to describe basic research as a timeless, clearly definable mode, even as an ideal type of research in contrast to applied research, we completely overlook the reason why this key concept in modern science policy emerged at all. In fact, this study has shown that the term basic research cannot be seen as a simple synonym for the older notion of pure science. As a consequence, the assumption made in social-scientific studies that the ideal of basic research structured modern science continuously up until the postmodern era, when application-oriented research was thought to gain predominance, needs to be corrected.

As the term basic research emerged in the early 20th century and became more common only in the late 1930s, it is actually quite young. Basic research is best described as a collective symbol of science policy designed to bridge the gap between the desire to support research, despite the fact that scientific output is unpredictable and that the expectations placed upon science by society have been growing constantly during the 20th century. For the history of basic research, it is crucial to note that the concept itself (as well as similar terms such as fundamental research) initially emerged in both the natural sciences within research fields that pursued explicitly practical ends and subdisciplines of engineering that targeted technological innovation and improvement.

While science profited financially from society’s growing demand for research, researchers simultaneously faced pressure from society’s expectation that science should produce immediately exploitable knowledge. In deploying the concept of basic research, scientists promised the public that research would lay the ultimate foundation for all sorts of progress and innovation, while at the same time conveying the experience that scientific research was time-consuming and its outcome and technical applications were hard to predict. Until 1945, basic research primarily meant long-term research in the natural sciences that was ultimately expected to solve practical problems.

After the Second World War, basic research became a central concept of US science policy, which particularly promoted research at universities and non-profit research institutes. Although the scientific promise of progress remained an important message in this concept after 1945, the discourse revolving around basic research shifted considerably in the post-war period from a discourse of knowledge sustainability to a discourse of purity. During the war, scientists had learnt to value massive governmental support of research, but they were concerned that the short-term planning of war-related research and its security restrictions would put the sustainability of both scientific knowledge and manpower at risk in the long run. Believing that scientists knew best when it came down to making science flourish and knowing what it took to explore the unknown, the challenge for scientists was legitimizing the continuance of federal science funding while at the same time advocating the institutional autonomy of science.

To this end, science policy advisers such as Vannevar Bush revived a long-lasting semantic reservoir of scientific ideals. By dissociating scientific knowledge from its potential applications, it became possible to define academic research as a common good capable of laying claim to federal protection, just as the older concept of pure science had done before. Bush’s proposal focused on the natural sciences, whose studies in the fundamental principles of nature were thought to offer nearly endless possibilities for technical innovation. Moreover, this new definition responded to the educational tasks undertaken by universities in which research projects were part of scientific qualification. The self-concept of higher education institutions traditionally kept their distance from any utilitarian aspects of scientific knowledge.

The distinction between basic and applied research thus served, first and foremost, as a criterion governing the allocation of federal funding, implemented through the newly founded National Science Foundation. Although the majority of researchers were grateful for the new federal support for research, the concept of basic research became the subject of controversies in the late 1940s because it reanimated ideals and norms of the older, European discourse of pure science. With these semantic references, basic research evoked older epistemic and social hierarchies. Research was seen to be more theory- than problem-oriented, the natural sciences assumed moral superiority over the technical sciences, and academic researchers were considered morally superior to industrial researchers. The individual pursuit of knowledge ennobled academic researchers, who became detached from immediate demands so that scientific creativity was given free rein.

To a certain extent, the re-establishment of older scientific ideals was a reaction to the exceptional conditions of wartime research. In many research fields, however, the ideals belonging to a former notion of science contradicted the changed practices in and demands placed on research in the 20th century. In particular, the idea of keeping technology apart from the natural sciences, which derived from an artificial funding demarcation, appeared anachronistic. These social and epistemic attributions of basic research looked like a cultural lag in modern science.

The reason why the concept of basic research, with all its reminiscences to former purity discourses, finally prevailed was that it functioned as a discursive strategy to cope with the difficult relationship between science and the public, the ideologically charged atmosphere of the Cold War, and the ethical dilemmas in science during the second half of the 20th century. When it comes to the political dimension of the concept of basic research, there are usually references to Robert Merton or Michael Polanyi, who stated that only democracy guaranteed full scientific autonomy and that, vice versa, scientific independence was a prerequisite of democratic pluralism because it presented a disinterested authority of truth (Merton 1942 ; Polanyi 1962 ). This self-image of science as being autonomous and disinterested was partly a result of Western ideology competing with the Soviet Union during the Cold War.

The effects of the Cold War on domestic politics were a major challenge to the scientific community. The first use of the atomic bomb rendered discussion of the goals of science unavoidable. Scientists who took part in the debate about the application of scientific knowledge for good or bad discovered that there was little room for negotiation in Cold-War America. At the same time, the relationship between the scientific community and the public became ever tenser as cooperation between science and the military increased. American intellectuals perceived this military-science nexus as a threat to US democratic culture. As a consequence, resorting to basic research was part of a strategy of relief – not only relief from society’s expectation of science to produce immediate benefits, but also from political controversies that might affect a researcher’s reputation and put his or her chances of acquiring funding at risk.

The success of this key concept in science policy lay in the polysemy of “basic”, which functioned as a kind of self-reassurance within the scientific community and could be used to signal societal utility when communicating to the wider public. The concept of basic research thus worked as collective symbol linking the public discourse to the scientific discourse. The label “basic” signified that research was a precondition for future scientific progress. At the same time, it communicated the fundamental importance of research for societal or economic and technological progress.

In the end, the concept of basic research could not solve the dilemmas of science in 20th-century societies. In fact, it produced its own confusion and misleading expectations. The simplified promise of progress depended on society’s confidence, which dwindled during the economic crisis of the 1970s. Particularly after the discourse on basic research referred to the intrinsic ideal of science for its own sake, society’s trust was put at risk. In addition, the simplified promise of scientific objectivity – the alleged neutrality of facts – obscured the actual complexity of research, where scientific truth is always contested.

Which lessons can we draw from this analysis for the current theoretical debate in science and technology studies? Bruno Latour’s argument against basic research is well taken in so far as the semantics of the concept do not represent the actual research practices and their institutional settings. As the above analysis has shown, the same type of criticism was already voiced by contemporaries of Vannevar Bush. Bush’s definition of basic research, especially his dissociation of the natural sciences from the technical sciences and its purity ideals, however, were more than just a simple misrepresentation: they had a long-lasting effect on the Western notion of science and research policy.

The resort to purity ideals can be blamed for retarding or interrupting this reflective process within the natural sciences. Moreover, there are hints that the reference to older scientific ideals led to taboos being placed on research topics leading to technical innovations, at least in some disciplines within the natural sciences. Eric J. Vettel has demonstrated how the revival of the policy of pure science in the 1950s altered research topics and institutional organization in microbiology and how the turn toward an application-oriented research policy during the 1960s led, in the long run, to biotechnology (Vettel 2006 ). The discipline of biology is thus a good example for demonstrating that parts of this purity discourse have, once again, faded away. The self-image of researchers like Craig Venter, geneticist and entrepreneur, no longer corresponds to the old image of the quiet academic scholar (Venter 2007 ). These recent historical shifts have indeed been noted by science studies. But we need more long-term historical studies on individual research fields and disciplines – studies tracing the historical development of research topics as far back as the late 19th and early 20th centuries – in order to understand the effects of the return of the purity discourse after 1945.

Bruno Latour has described purity discourses as a typically modern phenomenon that has since become less important. The results of this analysis, however, show that the concept of basic research had many functions. Aside from its role as a criterion for distributing research funding, the concept of basic research mainly served as a strategy for coping, firstly, with society’s increasing expectations of science, secondly, with the ethical dilemmas associated with the debate on the overall purpose of science, and, thirdly, with the political implications of science’s role as an increasingly powerful force in society. The case of the US shows that, despite the initial criticism of anachronism, the revival of the purity discourse succeeded because the concept of basic research became a strategy to cope with the uncertainties and dilemmas of the Cold-War period.

In fact, many of these dilemmas will continue to challenge science policy in the 21st century. As science and technology have become powerful forces in our societies, they will be subject to both conflicts of interest and political and ethical controversies. Whether the strategy of dealing with these controversies will continue to characterize basic research is, however, an open question. On the one hand, some representatives of science and technology studies believe that previous strategies have failed in coping with these dilemmas (Jasanoff 2005 : 6; Shapin 2010 : 387–391). On the other hand, new concepts like the European Research Council’s “frontier research” seem to revive the basic-research concept – at least with regard to its original function as part of a discourse on knowledge sustainability, which the current article has sought to reveal (High-Level Expert Group 2005 : 16). 21

Analysis of these discourses provides us with insights into expectations placed upon future research and into societal and scientific experiences from the past, which, among other things, frame decisions about what kind of research society wants and what kind of research should be funded by the public purse. Historical semantics can help to elucidate scientific taboos, which are taken for granted because they are the outcome of specific political or societal situations. All in all, historical semantics could be one useful approach among many in science and technology studies. It provides a critical perspective on the complex relationship between science and society. Moreover, it helps to reveal the historical legacy of our notions of science and technology, including their multiple attributes, which are still very present, although this seems to have gone unnoticed by many contemporary observers. This is why the analysis of concepts such as basis research is (still) an interesting, worthwhile subject for science studies. However, with regard to the legacy of the concept of basic research, this article suggests that it should not be used as a technical term whose meanings can be taken for granted. Scholars in the field of science and technology studies are thus well advised to explicate which of the many facets of the term they allude to when using the concept of basic research.

1 See the subsection “The discursive strategy of ‘fundamental research’ and the reassessment of German science in the Nazi period” below for more details.

2 Given the recently growing interest in the relationship between science and technology, the reflection on terms like “applied science” seems to have started a little bit earlier (Bud 2012a , b ; Gooday 2012 ; Karns Alexander 2012 ; Lucier 2012 ; Schatzberg 2012 ). This literature, however, focusses primarily on the 19th century.

3 In contrast to older approaches of historical semantics like intellectual history or the history of ideas, which cling to the idea of authorship and reception theory, discourse analysis does not aim at identifying the pedigree of new concepts or arguments in detail. Instead of singling out individual statements or discussing personal rationales, discourse analysis rather tries to find common patters of arguments that are shared by many discourse participants.

4 The cited sources and documents do not represent the whole sample of texts. The texts I refer to in this article were chosen because they exemplify broader discursive strategies revolving around the concept of basic research in a particularly typical way.

5 In the German-speaking context, the term science is not restricted to natural sciences. This also applied to the English-speaking academia in early modern times.

6 The history of both scientific organizations was the subject of two major research projects, which have recently been concluded. See the wealth of research published in the academic series Beiträge zur Geschichte der deutschen Forschungsgemeinschaft (Stuttgart: Franz Steiner Verlag, four volumes published so far) and Geschichte der Kaiser-Wilhelm-Gesellschaft im Nationalsozialismus (Göttingen: Wallstein Verlag, seventeen volumes published so far).

7 In this article, I will consistently translate the German term Grundlagenforschung as “fundamental research”. Unlike the Anglo-American science discourse, the German science discourse does not accommodate conceptual variations such as that between “basic research” and “fundamental research”.

8 Trained as a theologian, Hans Hartmann worked as an author specializing in writing about scientists and science policy issues.

9 In other disciplinary contexts, the study of material properties was also denoted as goal-oriented research (Bauermeister 1938 : 479).

10 In the natural sciences during this period, the term only appeared in a very specific context. In the 1920s, a group of biologists and psychologists discussed the question of the functional usefulness of organs or mental processes within organisms, an approach they also labelled as Zweckforschung (E. Becher 1921 : 296–304; H. Becher 1923 ).

11 It took a while before the new term Zweckforschung (goal-oriented research) was established. Confusingly, some Nazi partisans used the term goal-oriented research as a synonym for pure science, criticizing the idea of research as an end in itself (W. Schultze 1938 : 5; Löhr 1938 : 20).

12 In order to get a better idea of conceptual dissemination, I provide here some results of a statistical analysis of the electronically accessible journal Science (including the supplement The Scientific Monthly ). Between 1921 and 1930, the term basic research was used 14 times and fundamental research was used 121 times. Between 1931 and 1940, the term basic research showed up 51 times and fundamental research 154 times. Just five years later, the term basic research had been employed 69 times and fundamental research 182 times.

13 See, for instance, the decision of the Senate of the Ludwig Maximilian University in Munich in the early 1920s (Archive of the University, Sen. 523).

14 Bush consistently referred to “basic research” in his report. At the time, however, the term “fundamental research” was more widespread.

15 As the broader research context was hidden to scientific peers and to the researchers themselves, this strategy at least allowed the publication of detailed results.

16 In 1944 and 1945 there was already an ongoing debate in letters to the editor of the journal Science that critically reflected the re-idealization of the notion of pure science (Stern 1944 ; Pearson 1944 ; Robin 1944 ; Feibleman 1944 ; Alexander 1945 ; Stern 1945 ; Moore 1945 ; J. R. Baker 1945 ).

17 See also James C. Connant’s contribution to the debate on the relationship between science and the public ( 1951 ). For more details, see Hershberg ( 1993 : 554–577).

18 The exact German terms deployed in the two key laws, the Kontrollratsgesetz no. 25 from 29.04.1946 and the Militärregierungsgesetz, no. 23 from 12.09.1949 were “grundlegende wissenschaftliche Forschung” and “angewandte wissenschaftliche Forschung”. The regulations defined military relevance on the basis of several classified research fields. For more details of how the allies controlled research, see Heinemann ( 2001 ).

19 In the German university tradition, Humboldt represents the link between education and research. For the current state of research on Humboldt’s role in university discourse, see Eichler ( 2012 ), Jarausch ( 1999 ).

20 The semantic differences between the two versions of the speech held by philosopher Karl Jaspers in 1923 and 1946 are significant when defining the role of universities in the wake of changes to the respective political systems: while Jaspers emphasized the objectivity of scientific knowledge in 1923, he replaced the term “objectivity” with “truth” in 1946 (Jaspers 1923 ; 1946 ).

21 The definition of frontier research relies again on the basic-applied nomenclature. In contrast to recent trends of promoting more applied forms of research, it shifts the balance further towards the basic-research pole of the continuum. See also the mission statement on the ERC website: http://erc.europa.eu/mission .

This article is part of a larger research project on changing notions of science in modern history funded by the VolkswagenStiftung. I would like to thank Isabelle Huber and Johannes Wittlinger for their competent research assistance. I am also grateful for the valuable comments and suggestions of Oliver Treib, Claudia Stein, Ulrich Wengenroth, Peter Weingart, Florian Schmaltz, Anne Sudrow and the two anonymous referees. Finally, I am much obliged to Gabrielle Robilliard for her careful language editing.

  • Abelson Philip H. Pressure on basic research. Science. 1966; 153 :11. [ PubMed ] [ Google Scholar ]
  • Alexander Jerome. Pure science. Science. 1945; 101 :37–38. [ PubMed ] [ Google Scholar ]
  • Arthur JC. Development of vegetable physiology. Science. 1895; 2 :360–373. [ PubMed ] [ Google Scholar ]
  • Ash Mitchell G. Wissenschaft und Politik als Ressourcen für einander. In: vom Bruch Rüdiger, Kaderas Brigitte., editors. Wissenschaften und Wissenschaftspolitik. Bestandsaufnahmen zu Formationen, Brüchen und Kontinuitäten im Deutschland des 20. Jahrhunderts. Stuttgart: Franz Steiner; 2002. pp. 31–51. [ Google Scholar ]
  • Ash Mitchell G. Wissenschaftswandlungen und politische Umbrüche im 20. Jahrhundert - was hatten sie miteinander zu tun? In: v. Bruch Rüdiger, Gerhardt Uta, Pawliczek Aleksandra., editors. Kontinuitäten und Diskontinuitäten in der Wissenschaftsgeschichte des 20. Jahrhunderts. Stuttgart: Franz Steiner; 2006. pp. 19–37. [ Google Scholar ]
  • Astin Allen V. Basic research in government laboratories. In: Wolfle Dael., editor. Symposium on basic research. Washington, DC: American Assoc. for the Advancement of Science; 1959. pp. 143–157. [ Google Scholar ]
  • Auchter EC. Agricultural science and the people’s welfare. Science. 1942; 96 :283–289. [ PubMed ] [ Google Scholar ]
  • Bachér Franz. Rede anlässlich der Kundgebung des NSD-Dozentenbundes Gau Groß-Berlin. In: NSD-Dozentenbund Gau Groß-Berlin, editor. Wissenschaft und Vierjahresplan. Berlin: NSD-Dozentenbund; 1937. pp. 17–31. [ Google Scholar ]
  • Baker John R. The threat to pure science. Science. 1945; 101 :300–301. [ PubMed ] [ Google Scholar ]
  • Baker WO. The paradox of choice. In: Wolfle Dael., editor. Symposium on basic research. Washington, DC: American Assoc. for the Advancement of Science; 1959. pp. 41–72. [ Google Scholar ]
  • Barton Henry A, Burnham George H. The American Institute of Physics. A report to physicists. Science. 1943; 97 :172–176. [ PubMed ] [ Google Scholar ]
  • Bauermeister Hermann. Die Bedeutung der Forschung für die Wehrtechnik. Marine-Rundschau. 1938; 43 :476–479. [ Google Scholar ]
  • Becher Erich. Geisteswissenschaften und Naturwissenschaften. Untersuchungen zur Theorie und Einteilung der Realwissenschaften. München/Leipzig: Duncker & Humblot; 1921. [ Google Scholar ]
  • Becher Helmut. Über die Zweckmäßigkeitsforschung in der Embryologie und seine finale Betrachtung einiger Wachstumsvorgänge und Einrichtungen in der Placenta. Anatomischer Anzeiger. 1923; 56 :272–290. [ Google Scholar ]
  • Becker Karl. Rede des Generals Prof. Dr. Becker. In: Pressestelle des Reichserziehungsministeriums, editor. Ein Ehrentag der deutschen Wissenschaft. Die Eröffnung des Reichsforschungsrats am 25. Mai 1937. Berlin: Weidmann; 1937. [ Google Scholar ]
  • Bender Thomas. Politics, intellect, and the American University, 1945–1995. Daedalus. Journal of the American Academy of Arts and Sciences. 1997; 126 :1–38. [ Google Scholar ]
  • Bennett RD. Reply to Professor Reed (letters to the editor) Science. 1946; 103 :85. [ PubMed ] [ Google Scholar ]
  • Berkner Lloyd V. Secrecy and scientific progress. Science. 1956; 123 :783–786. [ PubMed ] [ Google Scholar ]
  • Bird Kai, Sherwin JM. American Prometheus. The triumph and tragedy of J. Robert Oppenheimer. New York: Random House; 2005. [ Google Scholar ]
  • Blakeslee Albert F. Ideals of science. Science. 1940; 92 :589–592. [ PubMed ] [ Google Scholar ]
  • Blakeslee Albert F. Origin and ideals of the national science fund. Science. 1941; 94 :356–358. [ PubMed ] [ Google Scholar ]
  • Blumenberg Hans. Paradigms for a metaphorology. Translated from the German with an afterword by Robert Savage. Ithaca, NY: Cornell University Library; 2010. [ Google Scholar ]
  • Braun-Thürmann Holger, Knie Andreas, Simon Dagmar. Unternehmen Wissenschaft. Ausgründungen als Grenzüberschreitungen akademischer Forschung. Bielefeld: Transcript Verlag; 2010. [ Google Scholar ]
  • Brüche Ernst. Grundlagenforschung im Krieg. Physikalische Blätter. 1944; 1 :112–115. [ Google Scholar ]
  • Bud Robert. “Applied science”: A phrase in search of a meaning. ISIS. 2012; 103 :537–545. [ PubMed ] [ Google Scholar ]
  • Bud Robert. Focus: Applied science—Introduction. ISIS. 2012; 103 :515–517. [ PubMed ] [ Google Scholar ]
  • Bud Robert, Roberts Gerylynn K. Science versus practice. Chemistry in Victorian Britain. Manchester: Manchester University Press; 1984. [ Google Scholar ]
  • Bush Vannevar. Science. The endless frontier. A report to the president. Washington, DC: United States Government Printing Office; 1945. [ Google Scholar ]
  • Bush Vannevar. Die Forschung von Heute und die Welt von Morgen. Essen-Bredeney: Stifterverb. für d. dt. Wissenschaft; 1954. [ Google Scholar ]
  • Butenandt Alfred. Der Chemiker und die Geheimnisse des Lebens. Illustrierte Zeitung - Leipzig. 1940; 195 :122–123. [ Google Scholar ]
  • Calvert Jane. What’s special about basic research? Science, Technology and Human Values. 2006; 31 :199–220. [ Google Scholar ]
  • Cassidy David. Controlling German science, II: Bizonal occupation and the struggle over West German science policy, 1946–1949. Historical Studies in Physical and Biological Sciences. 1996; 26 :197–239. [ Google Scholar ]
  • Clarke Sabine. Pure science with a practical aim. The meanings of fundamental research in Britain, circa 1916–1950. ISIS. 2010; 101 :285–311. [ PubMed ] [ Google Scholar ]
  • Committee on Loyalty in Relation to Government Support of Unclassified Research Loyalty and Research. Report. Science. 1956; 123 :660–662. [ PubMed ] [ Google Scholar ]
  • Compton Arthur H. The human meaning of science. Chapel Hill, NC: University of North Carolina Press; 1940. [ Google Scholar ]
  • Compton Arthur H. Science and our nation’s future. Science. 1945; 101 :207–209. [ PubMed ] [ Google Scholar ]
  • Compton, Karl T. 1934. Science still holds a great promise. An answer to those who contend that ills of today can be blamed on technology. The New York Times Magazine 16, December 6–8.
  • Compton Karl T. Scientists face the world. In: Compton Karl T, Trullinger Robert W, Bush Vannevar., editors. Scientists face the world of 1942. New Brunswick: Rutgers; 1942. pp. 3–45. [ Google Scholar ]
  • Conant James B. The role of science in our unique society. Science. 1948; 107 :77–83. [ PubMed ] [ Google Scholar ]
  • Conant James B. Science and common sense. London: Oxford University Press; 1951. [ Google Scholar ]
  • Conant James B. Gemeinsame Entwicklung der Industrie und der Naturwissenschaft. Essen: Stifterverb. für d. dt. Wissenschaft; 1953. [ Google Scholar ]
  • Conant James B. Modern science and modern man. New York: Columbia University Press; 1961. [ Google Scholar ]
  • Coulter John M. Botany as a national asset. Science. 1917; 45 :225–231. [ PubMed ] [ Google Scholar ]
  • Coulter John M. The botanical opportunity. Science. 1919; 49 :363–367. [ PubMed ] [ Google Scholar ]
  • Daniels George H. The pure-science ideal and democratic culture. Science. 1967; 156 :1699–1705. [ PubMed ] [ Google Scholar ]
  • Daston Lorraine. Die Kultur der wissenschaftlichen Objektivität. In: Otto Gerhard Oexle, editor. Naturwissenschaft, Geisteswissenschaft, Kulturwissenschaft: Einheit - Gegensatz - Komplementarität? Göttingen: Wallstein; 2000. pp. 9–39. [ Google Scholar ]
  • Dear Peter. What is the history of science the history of? ISIS. 2005; 96 :390–406. [ Google Scholar ]
  • Dennis Micheal Aaron. “Our first line of defense”: two university laboratories in the postwar American State. ISIS. 1994; 85 :427–455. [ Google Scholar ]
  • Dennis Micheal Aaron. Reconstructing sociotechnical order. Vannevar Bush and US science policy. In: Jasanoff Sheila., editor. States of knowledge. The co-production of science and social order. London: Routledge; 2004. pp. 225–253. [ Google Scholar ]
  • Deutsche Forschungsgemeinschaft. 1956. Angewandte Forschung in der Bundesrepublik Deutschland. Lage und Ausbaunotwendigkeiten. Denkschrift . Bad Godesberg: Deutsche Forschungsgemeinschaft.
  • Dingler Hugo. Die Grundlagen der angewandten Geometrie. Eine Untersuchung über den Zusammenhang zwischen Theorie und Erfahrung in den exakten Wissenschaften. Leipzig: Akademische Verlagsgesellschaft; 1911. [ Google Scholar ]
  • Drescher-Kaden, Friedrich Karl. 1941. Die Tätigkeit der Akademie der Wissenschaften im Jahre 1940/1941. Jahrbuch der Akademie der Wissenschaften in Göttingen 1940/41: 7–17.
  • Dryden Hugh L. The scientist in contemporary life. Science. 1954; 120 :1052–1055. [ PubMed ] [ Google Scholar ]
  • Dubos René. Scientist and public. Why is the scientist, once a “natural philosopher”, now considered a barbarian by many educated laymen? Science. 1961; 133 :1207–1211. [ PubMed ] [ Google Scholar ]
  • DuBridge Lee A. Basic research and the private university. In: Wolfle Dael., editor. Symposium on basic research. Washington, DC: American Assoc. for the Advancement of Science; 1959. pp. 107–120. [ Google Scholar ]
  • Dunn LC. Organization and support of science in the United States. Science. 1945; 102 :548–554. [ PubMed ] [ Google Scholar ]
  • Edgerton David. “The linear model” did not exist. Reflections on the history and historiography of science and research in industry in the twentieth century. In: Grandin Karl, Wormbs Nina, Widmalm Sven., editors. The science-industry nexus. History, policy, implications. Sagamore Beach: Science History Publications; 2004. pp. 31–57. [ Google Scholar ]
  • Eichler Martin. Die Wahrheit des Mythos Humboldt. Historische Zeitschrift. 2012; 294 :59–78. [ Google Scholar ]
  • Eisenhower Dwight D. Science: Handmaiden of freedom. In: Wolfle Dael., editor. Symposium on basic research. Washington, DC: American Assoc. for the Advancement of Science; 1959. pp. 133–142. [ Google Scholar ]
  • Eisenhower Dwight D. Farewell address, January 17, 1961 (broadcast by radio and television to the nation) In: Whitney Gleaves., editor. American presidents: Farewell messages to the nation, 1796–2001. Lanham: Lexington Books; 2003. pp. 413–416. [ Google Scholar ]
  • Elvehjem CA. Basic research and the state university. In: Wolfle Dael., editor. Symposium on basic research. Washington, DC: American Assoc. for the Advancement of Science; 1959. pp. 87–105. [ Google Scholar ]
  • Endell Kurd. Was bringt die moderne Tonforschung dem Keramiker. Berichte der Deutschen Keramischen Gesellschaft E.V. 1942; 23 :110–113. [ Google Scholar ]
  • Epple Moritz. Rechnen, Messen, Führen. Kriegsforschung am Kaiser-Wilhelm-Institut für Strömung1937–1945. In: Maier Helmut., editor. Rüstungsforschung im Nationalsozialismus. Organisation, Mobilisierung und Entgrenzung der Technikwissenschaften. Göttingen: Wallstein; 2002. pp. 305–356. [ Google Scholar ]
  • Epple Moritz. Kommentar zur Sektion Natur- und Technikwissenschaften. In: Orth Karin, Oberkrome Willi., editors. Die Deutsche Forschungsgemeinschaft 1920–1970. Forschungsförderung im Spannungsfeld von Wissenschaft und Politik. Stuttgart: Franz Steiner; 2010. pp. 211–215. [ Google Scholar ]
  • Erbe Walter. Autonomie und Weltoffenheit der Universität. Universitas. 1954; 9 :1171–1180. [ Google Scholar ]
  • Erker Paul. “Vierjahresplan-Chemie” und “Polymer Science”. Die Deutsche Forschungsgemeinschaft und die Chemische Forschung von den 1920er bis in die 1960er Jahre. In: Orth Karin, Oberkrome Willi., editors. Die Deutsche Forschungsgemeinschaft 1920–1970. Forschungsförderung im Spannungsfeld von Wissenschaft und Politik. Stuttgart: Franz Steiner; 2010. pp. 183–202. [ Google Scholar ]
  • Etzkowitz Henry, Leydesdorff Loet., editors. Universities and the global knowledge economy. A triple helix of university–industry–government relations. London: Printer; 1997. [ Google Scholar ]
  • Feibleman James. The threat to pure science. Science. 1944; 100 :521. [ PubMed ] [ Google Scholar ]
  • Feynman Richard P. The value of science. Engineering and Science. 1955; 19 :13–15. [ Google Scholar ]
  • Fisk James B. Basic research in industrial laboratories. In: Wolfle Dael., editor. Symposium on basic research. Washington, DC: American Assoc. for the Advancement of Science; 1959. pp. 159–167. [ Google Scholar ]
  • Flachowsky Sören. Von der Notgemeinschaft zum Reichsforschungsrat. Wissenschaftspolitik im Kontext von Autarkie, Aufrüstung und Krieg. Stuttgart: Steiner; 2008. [ Google Scholar ]
  • Flachowsky Sören. “Werkzeug der deutschen Kriegsführung”. Die Forschungspolitik der Deutschen Forschungsgemeinschaft und des Reichsforschungsrates zwischen 1920 und 1945. In: Orth Karin, Oberkrome Willi., editors. Die Deutsche Forschungsgemeinschaft 1920–1970. Forschungsförderung im Spannungsfeld von Wissenschaft und Politik. Stuttgart: Franz Steiner; 2010. pp. 53–69. [ Google Scholar ]
  • Forman Paul. Behind quantum electronics: National security as basis for physical research in the United States, 1940–1960. Historical Studies in the Physical and Biological Sciences. 1987; 18 :149–229. [ Google Scholar ]
  • Forman Paul. (Re)cognizing postmodernity: Helps for historians - of science especially. Berichte zur Wissenschaftsgeschichte. 2010; 33 :157–175. [ PubMed ] [ Google Scholar ]
  • Fosdick Raymond B. The work of the Rockefeller Foundation—The year in brief. Science. 1934; 97 :379–381. [ PubMed ] [ Google Scholar ]
  • Frowein F. Forschungskontrolle in der Bizone. Chemie Ingenieur Technik. 1949; 21 :160–161. [ Google Scholar ]
  • Frowein F. Forschungskontrolle in Westdeutschland. Chemie Ingenieur Technik. 1950; 22 :47. [ Google Scholar ]
  • Galison Peter. Ten problems in history and philosophy of science. The History of Science Society. 2008; 99 :111–124. [ Google Scholar ]
  • Gates David M. Basic research in Europe. Different countries favor different systems for the support and organization of scientific work. Science. 1958; 128 :227–235. [ PubMed ] [ Google Scholar ]
  • Geiger Roger L. To advance knowledge. The growth of American research universities, 1900–1940. Oxford: Oxford University Press; 1986. [ Google Scholar ]
  • Gibb Alexander. Research in engineering. Science. 1937; 86 :232–236. [ PubMed ] [ Google Scholar ]
  • Gibbons Michael, Limoges Camille, Nowotny Helga, Schwartzman Simon, Scott Peter, Trow Martin. The new production of knowledge. The dynamics of science and research in contemporary societies. London: Sage; 1994. [ Google Scholar ]
  • Gieryn Thomas F. Cultural boundaries of science. Credibility on the line. Chicago: University of Chicago Press; 1999. [ Google Scholar ]
  • Godin, Benoît. 2005a. The linear model of innovation. The historical construction of an analytical framework . Project on the History and Sociology of S&T Statistics Working Paper No. 30. Montreal: Canadian Science and Innovation Indicators Consortium. http://www.csiic.ca/PDF/Godin_30.pdf .
  • Godin Benoît. Measurement and statistics on science and technology. London: Routledge; 2005. [ Google Scholar ]
  • Gooday Graeme. “Vague and artificial”: The historically elusive distinction between pure and applied science. ISIS. 2012; 103 :546–554. [ PubMed ] [ Google Scholar ]
  • Goudsmit Samuel. Alsos. The failure in German science. London: Sigma Books; 1947. [ Google Scholar ]
  • Greenberg Daniel S. Science for sale. The perils, rewards, and delusions of campus capitalism. Chicago: University of Chicago Press; 2007. [ Google Scholar ]
  • Greenewalt Crawford H. Basic research: A technological savings account. In: Wolfle Dael., editor. Symposium on basic research. Washington, DC: American Assoc. for the Advancement of Science; 1959. pp. 127–132. [ Google Scholar ]
  • Guston David H. Between politics and science. Assuring the integrity and productivity of research. Cambridge: Cambridge University Press; 2000. [ Google Scholar ]
  • Hahn Otto. Ist Grundlagenforschung Luxus? Umwälzende Erfindungen sind die Frucht subtiler Kleinarbeit. Göttinger Universitäts-Zeitung. 1949; 4 :5–6. [ Google Scholar ]
  • Hahn Otto. Die Bedeutung der Grundlagenforschung für die Wirtschaft. Essen: Stifterverb. für d. dt. Wissenschaft; 1954. [ Google Scholar ]
  • Hamblin Jacob Darwin. The Navy’s “sophisticated” pursuit of science. Undersea warfare, the limits of internationalism, and the utility of basic research 1945–1956. ISIS. 2002; 93 :1–27. [ Google Scholar ]
  • Hartmann Hans. Was heißt Deutsche Forschung? Illustrierte Zeitung - Leipzig. 1940; 195 :108. [ Google Scholar ]
  • Heinemann Manfred. Überwachung und “Inventur” der deutschen Forschung. Das Kontrollratsgesetz Nr. 25 und die alliierte Forschungskontrolle im Bereich der Kaiser-Wilhelm-/Max-Planck-Gesellschaft. In: Mertens Lothar., editor. Politischer Systembruch als irreversibler Faktor von Modernisierung in der Wissenschaft? Berlin: Duncker & Humblot; 2001. pp. 167–199. [ Google Scholar ]
  • Heiss R. Bemerkenswerte ausländische Entwicklungen in der lebensmittelindustriellen Verfahrenstechnik. Chemie Ingenieur Technik. 1950; 22 :121–127. [ Google Scholar ]
  • Henkel Heinrich. Der Begriff der Wissenschaft in Forschung und Lehre. Die deutsche Hochschule Schriftenreihe zur Erneuerung und künftigen Gestaltung des gesamten deutschen Hochschulwesens. 1933; 1 :8–29. [ Google Scholar ]
  • Hershberg James B. James B. Conant. Harvard to Hiroshima and the making of the nuclear age. New York: Alfred A. Knopf; 1993. [ Google Scholar ]
  • Hiedemann Egon. Grundlagen und Ergebnisse der Ultraforschung. Berlin: Walter de Gruyter; 1939. [ Google Scholar ]
  • High-Level Expert Group. 2005. Frontier research: The European Challenge. High-Level Expert Group report. Brussels: European Commission. http://ec.europa.eu/research/future/pdf/hleg_fullreport_frontier_research_april2005.pdf .
  • Hilbert, David. 1901. Mathematische Probleme. Archiv für Mathematik und Physik 1: 44–63, 213–237.
  • Hoffmann Johannes, Suhr Otto. Stand der Verpackungstechnik. Zeitschrift des Vereines Deutscher Ingenieure. 1944; 88 :543–550. [ Google Scholar ]
  • Jarausch Konrad H. Das Humboldt-Syndrom: Die westdeutschen Universitäten 1945–1989—Ein akademischer Sonderweg. In: Ash Mitchell G., editor. Mythos Humboldt: Vergangenheit und Zukunft der deutschen Universitäten. Köln: Böhlau; 1999. pp. 58–79. [ Google Scholar ]
  • Jasanoff Sheila. Designs on nature. Science and democracy in Europe and the United States. Princeton, NJ: Princeton University Press; 2005. [ Google Scholar ]
  • Jaspers Karl. Die Idee der Universität. Berlin: Springer; 1923. [ Google Scholar ]
  • Jaspers Karl. Die Idee der Universität. Berlin: Springer; 1946. [ Google Scholar ]
  • Jewett Frank B. The promise of technology. Science. 1944; 99 :1–6. [ PubMed ] [ Google Scholar ]
  • Joerges Bernward, Shinn Terry. A fresh look at instrumentation. An introduction. In: Joerges Bernward, Shinn Terry., editors. Instrumentation between science, state and industry. Dordrecht: Kluwer; 2001. pp. 1–13. [ Google Scholar ]
  • Kaiser Wilhelm-Gesellschaft zur Förderung der Wissenschaften Tätigkeitsbericht der Kaiser Wilhelm-Gesellschaft zur Förderung der Wissenschaften (April 1939 bis März 1939) Die Naturwissenschaften. 1939; 27 :321–333. [ Google Scholar ]
  • Karns Alexander Jennifer. Thinking again about science in technology. ISIS. 2012; 103 :518–526. [ PubMed ] [ Google Scholar ]
  • Kevles Daniel J. The National Science Foundation and the debate over postwar research policy, 1942–1945: A political interpretation of science—The endless frontier. ISIS. 1977; 68 :4–26. [ PubMed ] [ Google Scholar ]
  • Kilgore Harley M. Science and the government. Science. 1945; 102 :630–638. [ PubMed ] [ Google Scholar ]
  • Killian James R. Capsule conclusions. In: Wolfle Dael., editor. Symposium on basic research. Washington, DC: American Assoc. for the Advancement of Science; 1959. pp. 121–126. [ Google Scholar ]
  • Killian James R. Science and public policy. Recent Actions by the Federal Government in helping science and technology help the nation are surveyed. Science. 1959; 129 :129–136. [ PubMed ] [ Google Scholar ]
  • Kistiakowsky George B. Allocating support for basic research—And the importance of practical applications. Bulletin of the Atomic Scientists. 1966; 21 :12–18. [ Google Scholar ]
  • Klein Ursula. Ein Bergrat, zwei Minister und sechs Lehrende. Versuche der Gründung einer Bergakademie in Berlin um 1770. N.T.M. 2010; 18 :437–468. [ Google Scholar ]
  • Kline Ronald. Construing “technology” as “applied science”. Public rhetoric of scientists and engineers in the United States, 1880–1945. ISIS. 1995; 86 :194–221. [ Google Scholar ]
  • Kolloid-Gesellschaft Bericht über die XI. Hauptversammlung der Kolloid-Gesellschaft am 21. und 22. September 1936 in Dresden. Kolloid-Zeitschrift. 1936; 77 :153–161. [ Google Scholar ]
  • König Wolfgang. 100 Jahre “Dr.-Ing.”. Ein “Ritterschlag der Wissenschaft”. Das Promotionsrecht der Technischen Hochschulen und der VDI Verein Deutscher Ingenieure. Düsseldorf: VDI-Verlag; 1999. [ Google Scholar ]
  • Koselleck Reinhart. Begriffsgeschichten. Studien zur Semantik und Pragmatik der politischen und sozialen Sprache. Frankfurt a.M: Suhrkamp; 2006. [ Google Scholar ]
  • Krauch Carl. Forschung tut not! Der Vierjahresplan. 1939; 3 :814–816. [ Google Scholar ]
  • Krauch Carl. Forschung in Hochschule und Werk. Illustrierte Zeitung - Leipzig. 1940; 195 :121–122. [ Google Scholar ]
  • Krauch Carl. Über den Einsatz der Forschung im Rahmen des Vierjahresplans. Der Deutsche Chemiker. 1941; 7 :1–2. [ Google Scholar ]
  • Krieck Ernst. Der Neubau der Universität. Die deutsche Hochschule. Schriftenreihe zur Erneuerung und künftigen Gestaltung des gesamten deutschen Hochschulwesens. 1933; 1 :1–7. [ Google Scholar ]
  • Krige John. American hegemony and the postwar reconstruction of science in Europe. Cambridge, MA: MIT Press; 2006. [ Google Scholar ]
  • Krige John. Building the arsenal of knowledge. Centaurus. 2010; 52 :280–296. [ Google Scholar ]
  • Latour Bruno. Science in action. Cambridge/MA: Cambridge University Press; 1987. [ Google Scholar ]
  • Latour Bruno. We have never been modern. Cambridge/MA: Harvard University Press; 1993. [ Google Scholar ]
  • Latour Bruno. Reassembling the social. An introduction to actor-network-theory. Oxford: Oxford University Press; 2005. [ Google Scholar ]
  • Leob Leonard B. Scientific research and national welfare. Science. 1946; 103 :540–541. [ PubMed ] [ Google Scholar ]
  • Leslie Stuart W. The Cold War and American science. The military–industrial–academic complex at M.I.T. and Stanford. New York: Columbia University Press; 1993. [ Google Scholar ]
  • Lewin Kurt. Der Begriff der Genese in Physik, Biologie und Entwicklungsgeschichte. Eine Untersuchung zur vergleichenden Wissenschaftslehre. Berlin: Springer; 1922. [ Google Scholar ]
  • Liebig Justus Freiherr von. Die moderne Landwirthschaft als Beispiel der Gemeinnützigkeit der Wissenschaften. Rede in der öffentlichen Sitzung der k. Akademie der Wissenschaften zu München am 28. November 1861. Braunschweig: Friedrich Vieweg und Sohn; 1862. [ Google Scholar ]
  • Link Jürgen. Interdiskurs, System der Kollektivsymbole, Literatur. Thesen zu einer generativen Diskurs- und Literaturtheorie. In: Eschbach Achim., editor. Perspektiven des Verstehens. Bochum: Studienverlag Dr. Nobert Brockmeyer; 1986. pp. 128–146. [ Google Scholar ]
  • Löhr Hanns. Wesen und Sinn der nationalsozialistischen wissenschaftlichen Akademie des NSD-Dozentenbundes der Christian-Albrechts-Universität. In: Reichsdozentenführung, editor. Grundfragen der deutschen Universität und Wissenschaft. Neumünster: Karl Wachholz; 1938. pp. 13–25. [ Google Scholar ]
  • Lucier Paul. The origins of pure and applied science in gilded age America. ISIS. 2012; 103 :527–536. [ PubMed ] [ Google Scholar ]
  • Luxbacher Günther. Werkstoff, Sparstoffe, Heimstoff. Metallforschung in Deutschland 1920–1970. In: Orth Karin, Oberkrome Willi., editors. Die Deutsche Forschungsgemeinschaft 1920–1970. Forschungsförderung im Spannungsfeld von Wissenschaft und Politik. Stuttgart: Franz Steiner; 2010. pp. 163–181. [ Google Scholar ]
  • Marcus Alan I. Agricultural science and the quest for legitimacy. Farmers, agricultural colleges and experiment stations, 1870–1890. Ames: Iowa State University Press; 1985. [ Google Scholar ]
  • Mehrtens Herbert. Moderne, Sprache, Mathematik. Eine Geschichte des Streits um die Grundlagen der Disziplin und des Subjekts formaler Systeme. Frankfurt a.M: Suhrkamp; 1990. [ Google Scholar ]
  • Mehrtens Herbert. Irresponsible purity: The political and moral structure of mathematical sciences in the National Socialist state. In: Renneberg Monika, Walker Mark., editors. Science, technology and National Socialism. Cambridge: Cambridge University Press; 1994. pp. 324–338. [ Google Scholar ]
  • Meinel Christoph. Reine und angewandte Chemie. Die Entstehung einer neuen Wissenschaftskonzeption in der Chemie der Aufklärung. Berichte zur Wissenschaftsgeschichte. 1985; 8 :25–45. [ PubMed ] [ Google Scholar ]
  • Merton Robert King. A note on science and democracy. Journal of Legal and Political Sociology. 1942; 1 :115–126. [ Google Scholar ]
  • Mittelstraß Jürgen. Leonardo-Welt. Über Wissenschaft, Forschung und Verantwortung. Frankfurt a.M: Suhrkamp; 1994. [ Google Scholar ]
  • Moore Jared S. The threat to pure science. Science. 1945; 101 :62. [ PubMed ] [ Google Scholar ]
  • Morison Robert S. Support of basic research from private philanthropy. In: Wolfle Dael., editor. Symposium on basic research. Washington, DC: American Association for the Advancement of Science; 1959. pp. 221–248. [ Google Scholar ]
  • Mowery David C, Rosenberg Nathan. The U.S. national innovation system. In: Nelson Richard R., editor. National innovation systems. A comparative analysis. New York: Oxford University Press; 1993. pp. 29–75. [ Google Scholar ]
  • Nagel Anne Chr. “Er ist der Schrecken überhaupt der Hochschule“ - Der Nationalsozialistische Deutsche Dozentenbund in der Wissenschaftspolitik des Dritten Reichs. In: Scholtyseck Joachim, Studt Christoph., editors. Universitäten und Studenten im Dritten Reich. Bejahung, Anpassung, Widerstand. XIX Königswinterer Tagung vom 17.–19. Februar 2006. Berlin: LIT Verlag; 2008. pp. 115–132. [ Google Scholar ]
  • Niemeier Georg. Grundlagenforschung und Zweckforschung. Physikalische Blätter. 1944; 1 :106–109. [ Google Scholar ]
  • Nutting PG. Organized knowledge and national welfare. Science. 1917; 46 :247–252. [ PubMed ] [ Google Scholar ]
  • OECD . The measurement of scientific and technical activities. Proposed standard practice for surveys of research and experimental development. Frascati manual. Paris: Director of Information, OECD; 1976. [ Google Scholar ]
  • Oppenheimer Robert J. The need for new knowledge. In: Wolfle Dael., editor. Symposium on basic research. Washington, DC: American Assoc. for the Advancement of Science; 1959. pp. 1–15. [ Google Scholar ]
  • Orth Karin. Autonomie und Planung der Forschung. Förderpolitische Strategien der Deutschen Forschungsgemeinschaft 1949–1968. Stuttgart: Steiner; 2011. [ PubMed ] [ Google Scholar ]
  • Ostwald Wilhelm. Theorie und Praxis. Zeitschrift des Österreichischen Ingenieur- und Architekten-Vereins. 1905; 57 :3–9. [ Google Scholar ]
  • Ostwald Wilhelm. Erfinder und Entdecker. Leipzig: Rütten & Loening; 1908. [ Google Scholar ]
  • Ostwald Wilhelm. Die Wissenschaft. Vortrag, gehalten auf dem Ersten Monisten-Kongresse zu Hamburg am 10. September 1911. Leipzig: Alfred Kröner; 1911. [ Google Scholar ]
  • Ostwald Wilhelm. Was ist Wissenschaft? Archiv für Philosophie und Soziologie. 1929; 33 :13–30. [ Google Scholar ]
  • Ostwald Wolfgang. Kolloidchemische Probleme der Zellwolle-Forschung. Kolloid-Zeitschrift. 1942; 98 :129–131. [ Google Scholar ]
  • Owens Larry. The counterproductive management of science in the Second World War: Vannevar Bush and the Office of Scientific Research and Development. Business History Review. 1994; 68 :515–576. [ Google Scholar ]
  • Pearson John M. The opportunity of pure science. Science. 1944; 100 :471–472. [ PubMed ] [ Google Scholar ]
  • Phillips Melba. Dangers confronting American science. Science. 1952; 116 :439–443. [ PubMed ] [ Google Scholar ]
  • Pielke Roger., Jr ‘‘Basic research’’ as a political symbol. Minerva. 2012; 50 (3):339–361. [ Google Scholar ]
  • Polanyi Michael. The republic of science. Its political and economic theory. Minerva. 1962; 1 :54–73. [ Google Scholar ]
  • Popp Berman Elizabeth. Creating the market university. How academic science became a economic engine. Princeton: Princeton University Press; 2012. [ Google Scholar ]
  • Potter AA. Research and invention in engineering colleges. Science. 1940; 91 :1–7. [ PubMed ] [ Google Scholar ]
  • Price Don K. The scientific establishment. The American system gives scientists in government a freedom and influence unmatched in other countries. Science. 1962; 136 :1099–1106. [ PubMed ] [ Google Scholar ]
  • Rapoport Anatol. Scientific approach to ethics. Science. 1957; 125 :796–799. [ PubMed ] [ Google Scholar ]
  • Reagan Michael D. Basic and applied research: A meaningful distinction? Science. 1967; 155 :1383–1386. [ PubMed ] [ Google Scholar ]
  • Reichenbächer Ernst. Gründzüge zu einer Theorie der Materie. Zeitschrift für Physik. 1937; 107 :285–309. [ Google Scholar ]
  • Rein FH. Die gegenwärtige Situation der deutschen Universität. Universitas. 1946; 1 :897–902. [ Google Scholar ]
  • Reingold Nathan. Vannevar Bush’s new deal for research: Or the triumph of the old order. Historical Studies in the Physical and Biological Sciences. 1987; 17 :299–344. [ Google Scholar ]
  • Reppe Walter. Lenkungs- und Nachwuchsprobleme der Forschung. Chemie Ingenieur Technik. 1950; 22 :1–5. [ Google Scholar ]
  • Richter Rud. “The Anwendbarkeit” - als Brandmal der deutschen Wissenschaft. Natur und Volk. Bericht der Senckenbergischen Naturforschenden Gesellschaft. 1943; 73 :205–207. [ Google Scholar ]
  • Riedler, Alois. 1900. Ueber die geschichtliche und zukünftige Bedeutung der Technik. Rede zum Geburtstagsfeste seiner Majestät des Kaisers und Königs Wilhelm II. in der Halle der Königlichen Technischen Hochschule zu Berlin am 26. Januar 1900 . [Halle].
  • Robbins William J. The support of fundamental science. Science. 1941; 94 :8. [ Google Scholar ]
  • Robin Eugene VD. The threat to pure science. Science. 1944; 100 :519–521. [ PubMed ] [ Google Scholar ]
  • Ross Sydney. Scientist. The story of a word. Annals of Science. 1962; 18 :65–85. [ Google Scholar ]
  • Rössler Constantin. System der Staatslehre. Leipzig: Falcke & Roessler; 1857. [ Google Scholar ]
  • Rulf Friedrich. Über die Grundlagenforschung in der Geometrie. Monatshefte für Mathematik und Physik. 1913; 24 :142–158. [ Google Scholar ]
  • Runkel Roland. Wesen, Ziele und Aufgaben der Zellwandforschung: Zugleich III: Mitteilung “Zur Kenntnis der Zellwände tropischer Laubhölzer“ European Journal of Wood and Wood Products. 1942; 5 :305–309. [ Google Scholar ]
  • Rust Bernhard. Nationalsozialismus und Wissenschaft. Illustrierte Zeitung - Leipzig. 1940; 195 (118–119):141. [ Google Scholar ]
  • Sachse Carola. Bedingte Umbrüche: Überlegungen zum Verhältnis von Wissenschaft und Politik in der Westdeutschen Nachkriegsgesellschaft. In: Orth Karin, Oberkrome Willi., editors. Die Deutsche Forschungsgemeinschaft 1920–1970. Forschungsförderung im Spannungsfeld von Wissenschaft und Politik. Stuttgart: Franz Steiner; 2010. pp. 471–481. [ Google Scholar ]
  • Sayre Wallace. Scientists and American science policy. Who speaks for science? The future offers more dilemmas than unequivocal answers in science policy. Science. 1961; 133 :864–895. [ PubMed ] [ Google Scholar ]
  • Schatzberg Eric. From art to applied science. ISIS. 2012; 103 :555–563. [ PubMed ] [ Google Scholar ]
  • Schauz Désirée. Diskursiver Wandel am Beispiel der Disziplinarmacht. Geschichtstheoretische Implikationen der Dispositivanalyse. In: Landwehr Achim., editor. Diskursiver Wandel. Wiesbaden: VS Verlag; 2010. pp. 89–111. [ Google Scholar ]
  • Schultze Joachim H. Grundlagenforschung und Zweckforschung in der Modernen Geographie. Petermanns Geographische Mitteilungen. 1943; 89 :193–203. [ Google Scholar ]
  • Schultze Walter. Grundfragen der deutschen Universität und Wissenschaft. Rede des Reichsdozentenführers Reichsamtsleiter SS-Brigadeführer Professor Dr. Walter Schultze gehalten zu der Einweihung der ersten Akademie des NSD-Dozentenbundes in Kiel. In: Reichsdozentenführung, editor. Grundfragen der deutschen Universität und Wissenschaft. Neumünster: Karl Wachholz; 1938. pp. 1–11. [ Google Scholar ]
  • Science Adjustments in the educational program at the Massachusetts Institute of Technology. Science. 1942; 95 :90–91. [ PubMed ] [ Google Scholar ]
  • Shapin Steven. The scientific life. A moral history of a late modern vocation. Chicago: University of Chicago Press; 2008. [ Google Scholar ]
  • Shapin Steven. Never pure. Historical studies of science as if it was produced by people with bodies, situated in time, space, culture, and society, and struggling for credibility and authority. Baltimore: Johns Hopkins Press; 2010. [ Google Scholar ]
  • Shepard Ward. Science for democracy. Science. 1946; 103 :65–68. [ PubMed ] [ Google Scholar ]
  • Shils Edward A. The torment of secrecy. The background and consequences of American security policies. Glencoe (Ill): Free Press; 1956. [ Google Scholar ]
  • Simons JH. Research in wartime. Science. 1943; 97 :390–392. [ PubMed ] [ Google Scholar ]
  • Sinnott Edmund W. Ten million scientists. Science. 1950; 111 :123–129. [ PubMed ] [ Google Scholar ]
  • Sörensen E. Organisation der Forschung. Zeitschrift des Vereines Deutscher Ingenieure. 1952; 94 :158–160. [ Google Scholar ]
  • Spaght Monroe E. Basic research in industry. Science. 1955; 121 :784–789. [ PubMed ] [ Google Scholar ]
  • Stadlinger Hermann. Rationalisierung auch im chemischen Laboratorium! Chemiker-Zeitung. 1944; 68 :224–229. [ Google Scholar ]
  • Steelman, John R. 1947a. Science and public policy . Vol. 3: Administration for Research. Washington, DC: U. S. Govt. Print. Off.
  • Steelman, John R. 1947b. Science and public policy. A report to the president . Vol. 1: A program for the nation. New York: Arno Press.
  • Steinsiek Peter-Michael. Forst- und Holzforschung im “Dritten Reich”. Remagen: Verlag Kessel; 2008. [ Google Scholar ]
  • Stern Alexander W. The threat to pure science. Science. 1944; 100 :356. [ PubMed ] [ Google Scholar ]
  • Stern Alexander W. Pure science. Science. 1945; 101 :38. [ PubMed ] [ Google Scholar ]
  • Stock Alfred. Rede auf der Hauptversammlung am 7. Mai 1938. Berichte der Deutschen Chemischen Gesellschaft. 1938; 71 :147–153. [ Google Scholar ]
  • Stokes Donald E. Pasteur’s quadrant. Basic science and technological innovation. Washington, DC: Brookings Institution Press; 1997. [ Google Scholar ]
  • Szent-Györgyi Albert. Science, ethics, and politics. Science. 1957; 125 :225–226. [ PubMed ] [ Google Scholar ]
  • Szöllösi-Janze Margit. Science and social space: Transformations in the institutions of Wissenschaft from the Wilhelmine Empire to the Weimar Republic. Minerva. 2005; 43 :339–360. [ Google Scholar ]
  • Taylor Hugh S. The organization, direction and support of research in the physical sciences. Science. 1944; 99 :249–256. [ PubMed ] [ Google Scholar ]
  • Taylor William Palmer. Dangers for science? Science. 1953; 118 :449–450. [ PubMed ] [ Google Scholar ]
  • Thelin John R. A history of American higher education. Baltimore: Johns Hopkins University Press; 2004. [ Google Scholar ]
  • Tuve Merle A. Basic research in private research institutes. In: Wolfle Dael., editor. Symposium on basic research. Washington, DC: The American Association for the Advancement of Science; 1959. pp. 169–184. [ Google Scholar ]
  • Venter Craig J. A life decoded. My genome, my life. New York: Viking; 2007. [ Google Scholar ]
  • Verein Deutscher Chemiker Versammlungsbericht: Institut für chemische Technologie synthetischer Fasern an der T.H. Breslau. Die Chemie N.F. 1943; 56 :61–62. [ Google Scholar ]
  • Vettel Eric J. Biotech. The countercultural origins of an industry. Philadelphia: University of Pennsylvania Press; 2006. [ Google Scholar ]
  • Vieweg Richard. Über einige Fragen der Hochschulreform. Zeitschrift des Vereines Deutscher Ingenieure. 1950; 92 :729–733. [ Google Scholar ]
  • Virchow, Rudolf. 1877. Die Freiheit der Wissenschaft im modernen Staat. Rede gehalten in der dritten allgemeinen Sitzung der fünfzigsten Versammlung deutscher Naturforscher und Ärzte zu München am 22. September 1877 . Berlin: Wiegandt, Hempel & Parey.
  • Wagner Patrick. “Reservat der Ordinarien”. Zur Geschichte der Deutschen Forschungsgemeinschaft zwischen 1920 und 1970. In: Orth Karin, Oberkrome Willi., editors. Die Deutsche Forschungsgemeinschaft 1920–1970. Forschungsförderung im Spannungsfeld von Wissenschaft und Politik. Stuttgart: Steiner; 2010. pp. 23–38. [ Google Scholar ]
  • Walden Paul. Persönlichkeit und Leistung in der Naturwissenschaft. Universitas. 1946; 1 :713–730. [ Google Scholar ]
  • Wang Jessica. Liberals, the progressive left, and the political economy of postwar American science. The National Science Foundation debate. Historical Studies in the Physical and Biological Sciences. 1995; 26 :139–166. [ PubMed ] [ Google Scholar ]
  • Wang Jessica. American science in an age of anxiety. Scientists, anticommunism, and the Cold War. Chapel Hill, NC: University of North Carolina Press; 1999. [ Google Scholar ]
  • Wang Jessica. Merton’s shadow: Perspectives on science and democracy since 1940. Historical Studies in the Physical and Biological Sciences. 1999; 30 :279–306. [ Google Scholar ]
  • Waterman Alan T. Present role of the National Science Foundation. The Bulletin of the Atomic Scientists. 1951; 7 :165–167. [ Google Scholar ]
  • Waterman Alan T. Basic research in the United States. In: Wolfle Dael., editor. Symposium on basic research. Washington, DC: American Assoc. for the Advancement of Science; 1959. pp. 17–40. [ Google Scholar ]
  • Waterman Alan T. The role of the National Science Foundation. The Annals of The American Academy. 1960; 327 :123–131. [ Google Scholar ]
  • Weaver Warren. Preface. In: Wolfle Dael., editor. Symposium on basic research. Washington, DC: American Assoc. for the Advancement of Science; 1959. pp. XI–XVII. [ Google Scholar ]
  • Weaver Warren. The moral un-neutrality of science. Science. 1961; 133 :255–261. [ PubMed ] [ Google Scholar ]
  • Weidlein Edward R. Various results of being researchful. Science. 1935; 82 :553–556. [ PubMed ] [ Google Scholar ]
  • Weingart Peter. Ökonomisierung der Wissenschaft. N.T.M. 2008; 16 :477–484. [ Google Scholar ]
  • Westwick Peter J. Secret science: A classified community in the national laboratories. Minerva. 2000; 38 :363–391. [ Google Scholar ]
  • Wever Franz. Aufgaben und Wege der Eisenforschung. Stahl und Eisen. 1952; 72 :1053–1055. [ Google Scholar ]
  • Willing Willi. Rede anlässlich der Kundgebung des NSD-Dozentenbundes Gau Groß-Berlin. In: NSD-Dozentenbundes Gau Groß-Berlin, editor. Wissenschaft und Vierjahresplan. Berlin: NSD-Dozentenbund; 1937. pp. 3–16. [ Google Scholar ]
  • Witzell Karl. Die Bedeutung von Wissenschaft und Forschung für die Entwicklung der Kampfmittel der Kriegsmarine. Nauticus. Jahrbuch für Deutschlands Seeinteressen. 1944; 27 :205–223. [ Google Scholar ]
  • Zachary GP. Endless frontier. Vannevar Bush, engineer of the American century. Cambridge, MA: MIT Press; 1997. [ Google Scholar ]
  • Zenneck J. Die Bedeutung der Forschung. Physikalische Blätter. 1944; 1 :6–12. [ Google Scholar ]
  • Ziegelmayer Wilhelm. Rohstoff-Fragen der deutschen Volksernährung. Eine Darstellung der ernährungswirtschaftlichen und ernährungswissenschaftlichen Aufgaben unserer Zeit. Dresden: Theodor Steinkopff; 1936. [ Google Scholar ]

What is Creative Research?

What is "creative" or "artistic" research how is it defined and evaluated how is it different from other kinds of research who participates and in what ways - and how are its impacts understood across various fields of inquiry.

After more than two decades of investigation, there is no singular definition of “creative research,” no prescribed or prevailing methodology for yielding practice-based research outcomes, and no universally applied or accepted methodology for assessing such outcomes. Nor do we think there should be.

photo from *this is not a drill* exhibit

We can all agree that any type of serious, thoughtful creative production is vital

But institutions need rubrics against which to assess outcomes. So, with the help of the Faculty Research Working Group, we have developed a working definition of creative research which centers inquiry while remaining as broad as possible:

Creative research is creative production that produces new knowledge through an interrogation/disruption of form vs. creative production that refines existing knowledge through an adaptation of convention. It is often characterized by innovation, sustained collaboration and inter/trans-disciplinary or hybrid praxis, challenging conventional rubrics of evaluation and assessment within traditional academic environments.

Image from The Fire Bird by Fernando Gregório

This is where Tisch can lead

Artists are natural adapters and translators in the work of interpretation and meaning-making, so we are uniquely qualified to create NEW research paradigms along with appropriate and rigorous methods of assessment. At the same time, because of Tisch's unique position as a professional arts-training school within an R1 university, any consideration of "artistic" or "creative research" always references the rigorous standards of the traditional scholarship also produced here.

photo from *this is not a drill* exhibit

The long-term challenge is two-fold

Over the long-term, Tisch will continue to refine its evaluative processes that reward innovation, collaboration, inter/trans-disciplinary and hybrid praxis. At the same time, we must continue to incentivize faculty and student work that is visionary and transcends the obstacles of convention.

As the research nexus for Tisch, our responsibility is to support the Tisch community as it embraces these challenges and continues to educate the next generation of global arts citizens.

American Psychological Association

Title Page Setup

A title page is required for all APA Style papers. There are both student and professional versions of the title page. Students should use the student version of the title page unless their instructor or institution has requested they use the professional version. APA provides a student title page guide (PDF, 199KB) to assist students in creating their title pages.

Student title page

The student title page includes the paper title, author names (the byline), author affiliation, course number and name for which the paper is being submitted, instructor name, assignment due date, and page number, as shown in this example.

diagram of a student page

Title page setup is covered in the seventh edition APA Style manuals in the Publication Manual Section 2.3 and the Concise Guide Section 1.6

articles research definition

Related handouts

  • Student Title Page Guide (PDF, 263KB)
  • Student Paper Setup Guide (PDF, 3MB)

Student papers do not include a running head unless requested by the instructor or institution.

Follow the guidelines described next to format each element of the student title page.

Paper title

Place the title three to four lines down from the top of the title page. Center it and type it in bold font. Capitalize of the title. Place the main title and any subtitle on separate double-spaced lines if desired. There is no maximum length for titles; however, keep titles focused and include key terms.

Author names

Place one double-spaced blank line between the paper title and the author names. Center author names on their own line. If there are two authors, use the word “and” between authors; if there are three or more authors, place a comma between author names and use the word “and” before the final author name.

Cecily J. Sinclair and Adam Gonzaga

Author affiliation

For a student paper, the affiliation is the institution where the student attends school. Include both the name of any department and the name of the college, university, or other institution, separated by a comma. Center the affiliation on the next double-spaced line after the author name(s).

Department of Psychology, University of Georgia

Course number and name

Provide the course number as shown on instructional materials, followed by a colon and the course name. Center the course number and name on the next double-spaced line after the author affiliation.

PSY 201: Introduction to Psychology

Instructor name

Provide the name of the instructor for the course using the format shown on instructional materials. Center the instructor name on the next double-spaced line after the course number and name.

Dr. Rowan J. Estes

Assignment due date

Provide the due date for the assignment. Center the due date on the next double-spaced line after the instructor name. Use the date format commonly used in your country.

October 18, 2020
18 October 2020

Use the page number 1 on the title page. Use the automatic page-numbering function of your word processing program to insert page numbers in the top right corner of the page header.

1

Professional title page

The professional title page includes the paper title, author names (the byline), author affiliation(s), author note, running head, and page number, as shown in the following example.

diagram of a professional title page

Follow the guidelines described next to format each element of the professional title page.

Paper title

Place the title three to four lines down from the top of the title page. Center it and type it in bold font. Capitalize of the title. Place the main title and any subtitle on separate double-spaced lines if desired. There is no maximum length for titles; however, keep titles focused and include key terms.

Author names

 

Place one double-spaced blank line between the paper title and the author names. Center author names on their own line. If there are two authors, use the word “and” between authors; if there are three or more authors, place a comma between author names and use the word “and” before the final author name.

Francesca Humboldt

When different authors have different affiliations, use superscript numerals after author names to connect the names to the appropriate affiliation(s). If all authors have the same affiliation, superscript numerals are not used (see Section 2.3 of the for more on how to set up bylines and affiliations).

Tracy Reuter , Arielle Borovsky , and Casey Lew-Williams

Author affiliation

 

For a professional paper, the affiliation is the institution at which the research was conducted. Include both the name of any department and the name of the college, university, or other institution, separated by a comma. Center the affiliation on the next double-spaced line after the author names; when there are multiple affiliations, center each affiliation on its own line.

 

Department of Nursing, Morrigan University

When different authors have different affiliations, use superscript numerals before affiliations to connect the affiliations to the appropriate author(s). Do not use superscript numerals if all authors share the same affiliations (see Section 2.3 of the for more).

Department of Psychology, Princeton University
Department of Speech, Language, and Hearing Sciences, Purdue University

Author note

Place the author note in the bottom half of the title page. Center and bold the label “Author Note.” Align the paragraphs of the author note to the left. For further information on the contents of the author note, see Section 2.7 of the .

n/a

The running head appears in all-capital letters in the page header of all pages, including the title page. Align the running head to the left margin. Do not use the label “Running head:” before the running head.

Prediction errors support children’s word learning

Use the page number 1 on the title page. Use the automatic page-numbering function of your word processing program to insert page numbers in the top right corner of the page header.

1

You might be using an unsupported or outdated browser. To get the best possible experience please use the latest version of Chrome, Firefox, Safari, or Microsoft Edge to view this website.

Social Media Marketing Strategy Tips For 2024

Jennifer Simonson

Published: Aug 15, 2024, 8:25am

Social Media Marketing Strategy Tips For 2024

Table of Contents

What is social media marketing, why social media marketing is important, 11 tips to build your social media marketing strategy, bottom line, frequently asked questions (faqs).

Social media marketing was born in the mid-2000s with the rise of platforms such as MySpace, Facebook and Twitter, but did not start hitting its stride until Facebook introduced “Facebook Flyers Pro” in 2007. Since then, it has revolutionized the marketing landscape by allowing companies to reach an unprecedented amount of potential customers worldwide.

But how exactly do businesses harness the power of the 5 billion-plus people using social media? In this article, we will dive into what exactly social media marketing is, why it is important and provide tips for you to up your social media marketing strategy in 2024.

Social media marketing is all about using social media platforms such as Facebook, Instagram, X and TikTok to chat with your audience, get your brand recognized and increase sales. It involves creating posts, images and videos that your audience will love, interact with and share. This method capitalizes on the interactive nature of social media to foster engagement, allow businesses to showcase their products and build a community around their brand. Creating an effective social media marketing campaign requires setting clear objectives, choosing the right social media platform or platforms, using analytics tools to track performance and adjusting strategies accordingly.

Traditional marketing methods such as print ads, television commercials and billboards often hoped to grab interested customers from a broad reach. The digital age of social media marketing has ushered in an era of personalization and precision targeting. Social media allows businesses to gather insights into user behavior, preferences, disinterests and online activities. Marketers can then create social media campaigns that target the direct audience that they want to attract. This new level of personalization has transformed the way businesses interact with their audiences.

Featured Partners

Sprout Social

Standard $199/seat/month; Professional $299/seat/month; Advanced $399/seat/month *pricing is based on annual subscriptions

30 day free trial (all plans)

Facebook, Instagram, Twitter, LinkedIn, Youtube, TikTok, Pinterest, Reddit, Tumblr, Yelp!, Glassdoor, Trip Advisor, Google My Business, and more

Sprout Social

On Sprout Social's Website

Professional $99/month; Team $249/month *pricing based on annual subscriptions

Facebook, Instagram, Twitter, LinkedIn, YouTube, TikTok, Pinterest, Threads (beta), Google Business Profile and more

Hootsuite

On Hootsuite's Website

Social media marketing is a game-changer for businesses because it allows you to reach so many people around the world in real time. It is no wonder why so many businesses have ditched old-school marketing strategies such as billboards or radio spots in exchange for comprehensive social media campaigns. Some of the biggest advantages of social media marketing include:

  • Increase brand awareness: You can expand your brand’s awareness by consistently posting on social media sites. This is especially useful for small or new businesses to be able to introduce themselves and their business personality to a new audience.
  • Drive traffic: Creating intriguing content with compelling calls to action can drive followers to visit your website. You can funnel users directly from your social media platform to your website by including tailored links in your posts, stories or reels. For example, promoting a new blog post on X with a “Read Now” button can bring followers onto your site.
  • Generate leads: Social media platforms provide tools for lead generation such as Instagram’s “Swipe Up” feature or LinkedIn’s lead-generation forms. Let’s say you’ve launched a new e-book. You can gather new leads to expand your email list by advertising the e-book on Facebook and attaching a direct download link in exchange for an email address.
  • Real-time discovery of industry trends: Social media serves as a live feed for market patterns and trends. You can capitalize on viral topics by watching trending hashtags or popular discussion points within your industry.
  • Cost-effective: In comparison to traditional marketing channels such as print or TV ads, social media marketing offers ways to publicize your product without spending a fortune. Social media marketing can be completely free if you do not have a marketing budget. You can, however, leverage your reach through sponsored content or ads on platforms such as Facebook, Instagram and LinkedIn.
  • Humanize your brand: Consumers appreciate brands with authentic personalities. You can create a relatable brand by sharing “behind-the-scenes” content or telling your company’s story through posts or stories. For example, Patagonia regularly shares posts highlighting its commitment to environmental conservation, which strongly resonates with its customer base.

At first glance, social media marketing might appear straightforward, but to truly make an impact it requires more than just a few posts online every now and again. Along with any successful marketing strategy, it involves meticulous planning, consistent content creation, thorough analysis and strategic adjustments. Here are 12 tips on building a comprehensive social media marketing strategy to help you harness the full potential of social media for your business.

  • Set S.M.A.R.T., relevant goals: Before starting your social media marketing strategy, make sure to set S.M.A.R.T. goals. S.M.A.R.T. stands for specific, measurable, achievable, relevant and time-bound. Begin by outlining clear, actionable goals using this criterion. For instance, instead of vaguely aiming to “increase sales,” strive to “increase sales by 15% over the next quarter through social media referral traffic.” This will provide a precise path for your strategy.In addition, set goals that are relevant to your business. Do you want to increase brand awareness? Do you want to increase your social media footprint? Do you want to drive traffic to your website? Reach, impressions and engagement rate are among the 13 essential social media metrics to measure in 2024 . Make sure the goals you set are relevant to your business’s objectives.
  • Identify target audience: Before you begin, it is important to know who you are talking to. Create a sketch of your ideal customer. Describe their demographic traits including age, location and gender as well as psychographic traits such as interests, problems and values. If you deal in luxury watches, your audience likely consists of older, affluent individuals with an interest in style and status. Or if you have a boutique yoga studio, your ideal audience is probably a woman between 25 and 50 who prioritizes health and wellness.
  • Choose the right platforms: The big seven social media platforms are Facebook, X, Instagram, TikTok, YouTube, Pinterest and LinkedIn. Each platform attracts a different type of audience. Analyze where your core audience spends the most time online and target those platforms. For example, if your brand caters to professionals or B2B clients, LinkedIn may prove more beneficial than TikTok.
  • Create valuable content: Never publish content just to post something. Always create content that your audience will find beneficial. Aim to inform, engage or inspire. For a fitness brand, this might include workout tips, healthy recipes or motivational posts. In addition, it is a good idea to occasionally incorporate interactive elements such as Q&As, polls or challenges to engage your audience actively and foster a sense of community.
  • Consistent branding: Maintain uniform design elements such as logo and brand colors and voice, whether it is formal or casual across platforms. This consistency will help with brand recognition.
  • Use visual content: As the old saying goes, a picture is with a thousand words. Make use of visuals—photos, infographics or videos—to increase engagement. Leverage visual storytelling in order to convey your brand’s personality. For example, a bakery might post mouthwatering photos of its cupcakes or a step-by-step video tutorial on dough kneading. Additionally, incorporating user-generated content such as customer photos or reviews can add authenticity to your feed.
  • Automate scheduling: Use social media management tools to schedule posts in advance. Not only will this help you save time, it will also ensure your content is delivered on a consistent basis. A regular posting schedule helps keep your brand’s presence fresh in the minds of your audience. Buffer, Hootsuite and Zoho Social are three of the best social media management software platforms on the market.
  • Engage actively: Join conversations and reply promptly to comments. Don’t be afraid to show a human side to your interactions. Chipotle, for instance, has more than 30 million followers on social media. The company is renowned for its witty, engaging responses in its social media interactions.
  • Collaborate with influencers: Partner with relevant influencers to get your brand in front of new eyes. Collaborating with these partners can help you tap into specific communities and boost your credibility by leveraging the trust they’ve established with their followers. A children’s clothing brand might collaborate with parenting bloggers while a new restaurant might collaborate with a local food blogger.
  • Analyze and adapt: Use analytics tools to track your performance. If Instagram Stories drive more engagement than regular posts, for instance, shift your focus accordingly. This data-driven approach allows you to understand your audience better so you can tailor your strategy for maximum impact.
  • Monitor trends: Social media trends evolve rapidly. Keeping up to date can unlock new avenues—be it new features such as Instagram Reels or trends such as the sustainability movement—to align your strategy with broader user behavior. Adapting to the latest trend helps keep you relevant and can even open doors to innovative methods of customer engagement and user-generated content.

Since its inception in the early 2000s, social media has revolutionized the marketing landscape by offering businesses an unprecedented ability to reach audiences, prioritize personalization and build real-time connections between brands and consumers. It helps businesses ramp up brand visibility, drives traffic, pulls in potential leads and catches the wave of trending topics—all while being budget-friendly. If your business wants to ride the social media wave, you should focus on creating clear and achievable goals, targeting your ideal audience and creating valuable content. Mix in some smart scheduling tools, actively engage with your followers and use analytics to continually fine-tune your strategies and you can significantly amplify your brand’s online impact.

What are the five Ps of social media marketing?

The five Ps of marketing—Product, Price, Promotion, Place and People—form the cornerstone of marketing strategies. “Product” refers to what a company sells, whether it is tangible goods or intangible services. “Price” is the cost consumers are willing to pay. “Promotion” is all communicative tactics used including advertising, PR or social media engagement. “Place” is the channels or physical locations where the product or service is sold. “People” refers to everyone involved in the business including customers, employees, vendors and partners.

What are the seven Cs of social media marketing?

The seven Cs of social media marketing are the guiding principles for building a robust social media marketing plan. They include “Community,” referring to the group of people your brand brings together, while “Collaboration” and “Communication” refer to the value of working alongside users and other brands to collaborate and share valuable insights. “Constraints” acknowledge the limitations that social media platforms can present to marketers. “Connectivity” and “Channels” focus on establishing a seamless link between social media platforms and choosing the right mediums to reach your target audience. “Content” is central to attracting an audience through relevant, engaging and high-quality content.

What is the golden rule of social media marketing?

The golden rule of social media marketing is to foster genuine interactions that build trust and community. Crafting content that initiates conversations enables brands to spark conversations and build a community. This strategy emphasizes authentic connection with the audience to help brands achieve enduring marketing success through active participation.

  • Best SEO Software For Small Business
  • Best Social Media Management Software
  • Best Email Marketing Software
  • Best SEO Services For Small Business
  • Best Mass Texting Services
  • Best Mailchimp Alternatives
  • Best ActiveCampaign Alternatives
  • Top SEMRush Alternatives
  • Top ahrefs Alternatives
  • Hootsuite Review
  • MailerLite Review
  • ActiveCampaign Review
  • Constant Contact Review
  • Sprout Social Review
  • SEMRush Review
  • Mailchimp Review
  • Small Business Marketing
  • What Is Marketing?
  • What Is Digital Marketing?
  • Digital Marketing Strategy Guide
  • Digital Marketing Tips
  • Search Engine Marketing Guide
  • SEO Marketing Guide
  • Social Media Marketing
  • Content Marketing
  • PPC Advertising Guide
  • Tips For Generating Leads Online
  • The 4 Ps Of Marketing
  • How To Get More Followers On Instagram
  • How To Start A Podcast
  • E-Commerce SEO
  • WordPress SEO Guide

Next Up In Marketing

  • Best SEO Tools & Software
  • Best Social Media Management Tools
  • Best SEO Services
  • Best Chatbots

International SEO Best Practices In 2024

International SEO Best Practices In 2024

Monique Danao

How To Start A Business With No Ideas

Shweta

Best Search Engines To Use In 2024

Katherine Haan

What Is Incident Response? Definition & Best Practices

Juliana Kenny

What Is An IT Audit? Definition And Best Practices

How To Do Keyword Research For SEO

How To Do Keyword Research For SEO

Leeron Hoory

Jennifer Simonson draws on two decades as a journalist covering everything from local economic developement to small business marketing. Beyond writing, she tested entrepreneurial waters by launching a mobile massage service, a content marketing firm and an e-commerce venture. These experiences enriched her understanding of small business management and marketing strategies. Today, she channels this first-hand knowledge into her articles for Forbes Advisor.

  • Introduction
  • Conclusions
  • Article Information

The reports to the Vaccine Adverse Event Reporting System met the case definition of myocarditis (reported cases). Among individuals older than 40 years of age, there were no more than 8 reports of myocarditis for any individual age after receiving either vaccine. For the BNT162b2 vaccine, there were 114 246 837 first vaccination doses and 95 532 396 second vaccination doses; and for the mRNA-1273 vaccine, there were 78 158 611 and 66 163 001, respectively. The y-axis range differs between panels A and B.

The reports to the Vaccine Adverse Event Reporting System met the case definition of myocarditis (reported cases). Among recipients of either vaccine, there were only 13 reports or less of myocarditis beyond 10 days for any individual time from vaccination to symptom onset. The y-axis range differs between panels A and B.

A, For the BNT162b2 vaccine, there were 138 reported cases of myocarditis with known date for symptom onset and dose after 114 246 837 first vaccination doses and 888 reported cases after 95 532 396 second vaccination doses.

B, For the mRNA-1273 vaccine, there were 116 reported cases of myocarditis with known date for symptom onset and dose after 78 158 611 first vaccination doses and 311 reported cases after 66 163 001 second vaccination doses.

eMethods. Medical Dictionary for Regulatory Activities Preferred Terms, Definitions of Myocarditis and Pericarditis, Myocarditis medical review form

eFigure. Flow diagram of cases of myocarditis and pericarditis reported to Vaccine Adverse Event Reporting System (VAERS) after receiving mRNA-based COVID-19 vaccine, United States, December 14, 2020-August 31, 2021.

eTable 1. Characteristics of all myocarditis cases reported to Vaccine Adverse Event Reporting System (VAERS) after mRNA-based COVID-19 vaccination, United States, December 14, 2020–August 31, 2021.

eTable 2. Characteristics of all pericarditis cases reported to Vaccine Adverse Event Reporting System (VAERS) after mRNA-based COVID-19 vaccination, United States, December 14, 2020–August 31, 2021.

eTable 3. Characteristics of myocarditis cases reported to Vaccine Adverse Event Reporting System after mRNA-based COVID-19 vaccination by case definition status.

  • Myocarditis and Pericarditis After Vaccination for COVID-19 JAMA Research Letter September 28, 2021 This study investigates the incidence of myocarditis and pericarditis emergency department or inpatient hospital encounters before COVID-19 vaccine availability (January 2019–January 2021) and during a COVID-19 vaccination period (February-May 2021) in a large US health care system. George A. Diaz, MD; Guilford T. Parsons, MD, MS; Sara K. Gering, BS, BSN; Audrey R. Meier, MPH; Ian V. Hutchinson, PhD, DSc; Ari Robicsek, MD
  • Myocarditis Following a Third BNT162b2 Vaccination Dose in Military Recruits in Israel JAMA Research Letter April 26, 2022 This study assessed whether a third vaccine dose was associated with the risk of myocarditis among military personnel in Israel. Limor Friedensohn, MD; Dan Levin, MD; Maggie Fadlon-Derai, MHA; Liron Gershovitz, MD; Noam Fink, MD; Elon Glassberg, MD; Barak Gordon, MD
  • Myocarditis Cases After mRNA-Based COVID-19 Vaccination in the US—Reply JAMA Comment & Response May 24, 2022 Matthew E. Oster, MD, MPH; David K. Shay, MD, MPH; Tom T. Shimabukuro, MD, MPH, MBA
  • Myocarditis Cases After mRNA-Based COVID-19 Vaccination in the US JAMA Comment & Response May 24, 2022 Sheila R. Weiss, PhD
  • JAMA Network Articles of the Year 2022 JAMA Medical News & Perspectives December 27, 2022 This Medical News article is our annual roundup of the top-viewed articles from all JAMA Network journals. Melissa Suran, PhD, MSJ
  • Diagnosis and Treatment of Acute Myocarditis—A Review JAMA Review April 4, 2023 This Review summarizes current evidence regarding the diagnosis and treatment of acute myocarditis. Enrico Ammirati, MD, PhD; Javid J. Moslehi, MD
  • Patient Information: Acute Myocarditis JAMA JAMA Patient Page August 8, 2023 This JAMA Patient Page describes acute myocarditis and its symptoms, causes, diagnosis, and treatment. Kristin Walter, MD, MS
  • Myocarditis Following Immunization With mRNA COVID-19 Vaccines in Members of the US Military JAMA Cardiology Brief Report October 1, 2021 This case series describes myocarditis presenting after COVID-19 vaccination within the Military Health System. Jay Montgomery, MD; Margaret Ryan, MD, MPH; Renata Engler, MD; Donna Hoffman, MSN; Bruce McClenathan, MD; Limone Collins, MD; David Loran, DNP; David Hrncir, MD; Kelsie Herring, MD; Michael Platzer, MD; Nehkonti Adams, MD; Aliye Sanou, MD; Leslie T. Cooper Jr, MD
  • Patients With Acute Myocarditis Following mRNA COVID-19 Vaccination JAMA Cardiology Brief Report October 1, 2021 This study describes 4 patients who presented with acute myocarditis after mRNA COVID-19 vaccination. Han W. Kim, MD; Elizabeth R. Jenista, PhD; David C. Wendell, PhD; Clerio F. Azevedo, MD; Michael J. Campbell, MD; Stephen N. Darty, BS; Michele A. Parker, MS; Raymond J. Kim, MD
  • Association of Myocarditis With BNT162b2 Vaccination in Children JAMA Cardiology Brief Report December 1, 2021 This case series reviews comprehensive cardiac imaging in children with myocarditis after COVID-19 vaccine. Audrey Dionne, MD; Francesca Sperotto, MD; Stephanie Chamberlain; Annette L. Baker, MSN, CPNP; Andrew J. Powell, MD; Ashwin Prakash, MD; Daniel A. Castellanos, MD; Susan F. Saleeb, MD; Sarah D. de Ferranti, MD, MPH; Jane W. Newburger, MD, MPH; Kevin G. Friedman, MD

See More About

Select your interests.

Customize your JAMA Network experience by selecting one or more topics from the list below.

  • Academic Medicine
  • Acid Base, Electrolytes, Fluids
  • Allergy and Clinical Immunology
  • American Indian or Alaska Natives
  • Anesthesiology
  • Anticoagulation
  • Art and Images in Psychiatry
  • Artificial Intelligence
  • Assisted Reproduction
  • Bleeding and Transfusion
  • Caring for the Critically Ill Patient
  • Challenges in Clinical Electrocardiography
  • Climate and Health
  • Climate Change
  • Clinical Challenge
  • Clinical Decision Support
  • Clinical Implications of Basic Neuroscience
  • Clinical Pharmacy and Pharmacology
  • Complementary and Alternative Medicine
  • Consensus Statements
  • Coronavirus (COVID-19)
  • Critical Care Medicine
  • Cultural Competency
  • Dental Medicine
  • Dermatology
  • Diabetes and Endocrinology
  • Diagnostic Test Interpretation
  • Drug Development
  • Electronic Health Records
  • Emergency Medicine
  • End of Life, Hospice, Palliative Care
  • Environmental Health
  • Equity, Diversity, and Inclusion
  • Facial Plastic Surgery
  • Gastroenterology and Hepatology
  • Genetics and Genomics
  • Genomics and Precision Health
  • Global Health
  • Guide to Statistics and Methods
  • Hair Disorders
  • Health Care Delivery Models
  • Health Care Economics, Insurance, Payment
  • Health Care Quality
  • Health Care Reform
  • Health Care Safety
  • Health Care Workforce
  • Health Disparities
  • Health Inequities
  • Health Policy
  • Health Systems Science
  • History of Medicine
  • Hypertension
  • Images in Neurology
  • Implementation Science
  • Infectious Diseases
  • Innovations in Health Care Delivery
  • JAMA Infographic
  • Law and Medicine
  • Leading Change
  • Less is More
  • LGBTQIA Medicine
  • Lifestyle Behaviors
  • Medical Coding
  • Medical Devices and Equipment
  • Medical Education
  • Medical Education and Training
  • Medical Journals and Publishing
  • Mobile Health and Telemedicine
  • Narrative Medicine
  • Neuroscience and Psychiatry
  • Notable Notes
  • Nutrition, Obesity, Exercise
  • Obstetrics and Gynecology
  • Occupational Health
  • Ophthalmology
  • Orthopedics
  • Otolaryngology
  • Pain Medicine
  • Palliative Care
  • Pathology and Laboratory Medicine
  • Patient Care
  • Patient Information
  • Performance Improvement
  • Performance Measures
  • Perioperative Care and Consultation
  • Pharmacoeconomics
  • Pharmacoepidemiology
  • Pharmacogenetics
  • Pharmacy and Clinical Pharmacology
  • Physical Medicine and Rehabilitation
  • Physical Therapy
  • Physician Leadership
  • Population Health
  • Primary Care
  • Professional Well-being
  • Professionalism
  • Psychiatry and Behavioral Health
  • Public Health
  • Pulmonary Medicine
  • Regulatory Agencies
  • Reproductive Health
  • Research, Methods, Statistics
  • Resuscitation
  • Rheumatology
  • Risk Management
  • Scientific Discovery and the Future of Medicine
  • Shared Decision Making and Communication
  • Sleep Medicine
  • Sports Medicine
  • Stem Cell Transplantation
  • Substance Use and Addiction Medicine
  • Surgical Innovation
  • Surgical Pearls
  • Teachable Moment
  • Technology and Finance
  • The Art of JAMA
  • The Arts and Medicine
  • The Rational Clinical Examination
  • Tobacco and e-Cigarettes
  • Translational Medicine
  • Trauma and Injury
  • Treatment Adherence
  • Ultrasonography
  • Users' Guide to the Medical Literature
  • Vaccination
  • Venous Thromboembolism
  • Veterans Health
  • Women's Health
  • Workflow and Process
  • Wound Care, Infection, Healing

Others Also Liked

  • Download PDF
  • X Facebook More LinkedIn
  • CME & MOC

Oster ME , Shay DK , Su JR, et al. Myocarditis Cases Reported After mRNA-Based COVID-19 Vaccination in the US From December 2020 to August 2021. JAMA. 2022;327(4):331–340. doi:10.1001/jama.2021.24110

Manage citations:

© 2024

  • Permissions

Myocarditis Cases Reported After mRNA-Based COVID-19 Vaccination in the US From December 2020 to August 2021

  • 1 US Centers for Disease Control and Prevention, Atlanta, Georgia
  • 2 School of Medicine, Emory University, Atlanta, Georgia
  • 3 Children’s Healthcare of Atlanta, Atlanta, Georgia
  • 4 Vanderbilt University Medical Center, Nashville, Tennessee
  • 5 Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
  • 6 Boston Medical Center, Boston, Massachusetts
  • 7 Duke University, Durham, North Carolina
  • 8 US Food and Drug Administration, Silver Spring, Maryland
  • Research Letter Myocarditis and Pericarditis After Vaccination for COVID-19 George A. Diaz, MD; Guilford T. Parsons, MD, MS; Sara K. Gering, BS, BSN; Audrey R. Meier, MPH; Ian V. Hutchinson, PhD, DSc; Ari Robicsek, MD JAMA
  • Research Letter Myocarditis Following a Third BNT162b2 Vaccination Dose in Military Recruits in Israel Limor Friedensohn, MD; Dan Levin, MD; Maggie Fadlon-Derai, MHA; Liron Gershovitz, MD; Noam Fink, MD; Elon Glassberg, MD; Barak Gordon, MD JAMA
  • Comment & Response Myocarditis Cases After mRNA-Based COVID-19 Vaccination in the US—Reply Matthew E. Oster, MD, MPH; David K. Shay, MD, MPH; Tom T. Shimabukuro, MD, MPH, MBA JAMA
  • Comment & Response Myocarditis Cases After mRNA-Based COVID-19 Vaccination in the US Sheila R. Weiss, PhD JAMA
  • Medical News & Perspectives JAMA Network Articles of the Year 2022 Melissa Suran, PhD, MSJ JAMA
  • Review Diagnosis and Treatment of Acute Myocarditis—A Review Enrico Ammirati, MD, PhD; Javid J. Moslehi, MD JAMA
  • JAMA Patient Page Patient Information: Acute Myocarditis Kristin Walter, MD, MS JAMA
  • Brief Report Myocarditis Following Immunization With mRNA COVID-19 Vaccines in Members of the US Military Jay Montgomery, MD; Margaret Ryan, MD, MPH; Renata Engler, MD; Donna Hoffman, MSN; Bruce McClenathan, MD; Limone Collins, MD; David Loran, DNP; David Hrncir, MD; Kelsie Herring, MD; Michael Platzer, MD; Nehkonti Adams, MD; Aliye Sanou, MD; Leslie T. Cooper Jr, MD JAMA Cardiology
  • Brief Report Patients With Acute Myocarditis Following mRNA COVID-19 Vaccination Han W. Kim, MD; Elizabeth R. Jenista, PhD; David C. Wendell, PhD; Clerio F. Azevedo, MD; Michael J. Campbell, MD; Stephen N. Darty, BS; Michele A. Parker, MS; Raymond J. Kim, MD JAMA Cardiology
  • Brief Report Association of Myocarditis With BNT162b2 Vaccination in Children Audrey Dionne, MD; Francesca Sperotto, MD; Stephanie Chamberlain; Annette L. Baker, MSN, CPNP; Andrew J. Powell, MD; Ashwin Prakash, MD; Daniel A. Castellanos, MD; Susan F. Saleeb, MD; Sarah D. de Ferranti, MD, MPH; Jane W. Newburger, MD, MPH; Kevin G. Friedman, MD JAMA Cardiology

Question   What is the risk of myocarditis after mRNA-based COVID-19 vaccination in the US?

Findings   In this descriptive study of 1626 cases of myocarditis in a national passive reporting system, the crude reporting rates within 7 days after vaccination exceeded the expected rates across multiple age and sex strata. The rates of myocarditis cases were highest after the second vaccination dose in adolescent males aged 12 to 15 years (70.7 per million doses of the BNT162b2 vaccine), in adolescent males aged 16 to 17 years (105.9 per million doses of the BNT162b2 vaccine), and in young men aged 18 to 24 years (52.4 and 56.3 per million doses of the BNT162b2 vaccine and the mRNA-1273 vaccine, respectively).

Meaning   Based on passive surveillance reporting in the US, the risk of myocarditis after receiving mRNA-based COVID-19 vaccines was increased across multiple age and sex strata and was highest after the second vaccination dose in adolescent males and young men.

Importance   Vaccination against COVID-19 provides clear public health benefits, but vaccination also carries potential risks. The risks and outcomes of myocarditis after COVID-19 vaccination are unclear.

Objective   To describe reports of myocarditis and the reporting rates after mRNA-based COVID-19 vaccination in the US.

Design, Setting, and Participants   Descriptive study of reports of myocarditis to the Vaccine Adverse Event Reporting System (VAERS) that occurred after mRNA-based COVID-19 vaccine administration between December 2020 and August 2021 in 192 405 448 individuals older than 12 years of age in the US; data were processed by VAERS as of September 30, 2021.

Exposures   Vaccination with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna).

Main Outcomes and Measures   Reports of myocarditis to VAERS were adjudicated and summarized for all age groups. Crude reporting rates were calculated across age and sex strata. Expected rates of myocarditis by age and sex were calculated using 2017-2019 claims data. For persons younger than 30 years of age, medical record reviews and clinician interviews were conducted to describe clinical presentation, diagnostic test results, treatment, and early outcomes.

Results   Among 192 405 448 persons receiving a total of 354 100 845 mRNA-based COVID-19 vaccines during the study period, there were 1991 reports of myocarditis to VAERS and 1626 of these reports met the case definition of myocarditis. Of those with myocarditis, the median age was 21 years (IQR, 16-31 years) and the median time to symptom onset was 2 days (IQR, 1-3 days). Males comprised 82% of the myocarditis cases for whom sex was reported. The crude reporting rates for cases of myocarditis within 7 days after COVID-19 vaccination exceeded the expected rates of myocarditis across multiple age and sex strata. The rates of myocarditis were highest after the second vaccination dose in adolescent males aged 12 to 15 years (70.7 per million doses of the BNT162b2 vaccine), in adolescent males aged 16 to 17 years (105.9 per million doses of the BNT162b2 vaccine), and in young men aged 18 to 24 years (52.4 and 56.3 per million doses of the BNT162b2 vaccine and the mRNA-1273 vaccine, respectively). There were 826 cases of myocarditis among those younger than 30 years of age who had detailed clinical information available; of these cases, 792 of 809 (98%) had elevated troponin levels, 569 of 794 (72%) had abnormal electrocardiogram results, and 223 of 312 (72%) had abnormal cardiac magnetic resonance imaging results. Approximately 96% of persons (784/813) were hospitalized and 87% (577/661) of these had resolution of presenting symptoms by hospital discharge. The most common treatment was nonsteroidal anti-inflammatory drugs (589/676; 87%).

Conclusions and Relevance   Based on passive surveillance reporting in the US, the risk of myocarditis after receiving mRNA-based COVID-19 vaccines was increased across multiple age and sex strata and was highest after the second vaccination dose in adolescent males and young men. This risk should be considered in the context of the benefits of COVID-19 vaccination.

Myocarditis is an inflammatory condition of the heart muscle that has a bimodal peak incidence during infancy and adolescence or young adulthood. 1 - 4 The clinical presentation and course of myocarditis is variable, with some patients not requiring treatment and others experiencing severe heart failure that requires subsequent heart transplantation or leads to death. 5 Onset of myocarditis typically follows an inciting process, often a viral illness; however, no antecedent cause is identified in many cases. 6 It has been hypothesized that vaccination can serve as a trigger for myocarditis; however, only the smallpox vaccine has previously been causally associated with myocarditis based on reports among US military personnel, with cases typically occurring 7 to 12 days after vaccination. 7

With the implementation of a large-scale, national COVID-19 vaccination program starting in December 2020, the US Centers for Disease Control and Prevention (CDC) and the US Food and Drug Administration began monitoring for a number of adverse events of special interest, including myocarditis and pericarditis, in the Vaccine Adverse Event Reporting System (VAERS), a long-standing national spontaneous reporting (passive surveillance) system. 8 As the reports of myocarditis after COVID-19 vaccination were reported to VAERS, the Clinical Immunization Safety Assessment Project, 9 a collaboration between the CDC and medical research centers, which includes physicians treating infectious diseases and other specialists (eg, cardiologists), consulted on several of the cases. In addition, reports from several countries raised concerns that mRNA-based COVID-19 vaccines may be associated with acute myocarditis. 10 - 15

Given this concern, the aims were to describe reports and confirmed cases of myocarditis initially reported to VAERS after mRNA-based COVID-19 vaccination and to provide estimates of the risk of myocarditis after mRNA-based COVID-19 vaccination based on age, sex, and vaccine type.

VAERS is a US spontaneous reporting (passive surveillance) system that functions as an early warning system for potential vaccine adverse events. 8 Co-administered by the CDC and the US Food and Drug Administration, VAERS accepts reports of all adverse events after vaccination from patients, parents, clinicians, vaccine manufacturers, and others regardless of whether the events could plausibly be associated with receipt of the vaccine. Reports to VAERS include information about the vaccinated person, the vaccine or vaccines administered, and the adverse events experienced by the vaccinated person. The reports to VAERS are then reviewed by third-party professional coders who have been trained in the assignment of Medical Dictionary for Regulatory Activities preferred terms. 16 The coders then assign appropriate terms based on the information available in the reports.

This activity was reviewed by the CDC and was conducted to be consistent with applicable federal law and CDC policy. The activities herein were confirmed to be nonresearch under the Common Rule in accordance with institutional procedures and therefore were not subject to institutional review board requirements. Informed consent was not obtained for this secondary use of existing information; see 45 CFR part 46.102(l)(2), 21 CFR part 56, 42 USC §241(d), 5 USC §552a, and 44 USC §3501 et seq.

The exposure of concern was vaccination with one of the mRNA-based COVID-19 vaccines: the BNT162b2 vaccine (Pfizer-BioNTech) or the mRNA-1273 vaccine (Moderna). During the analytic period, persons aged 12 years or older were eligible for the BNT162b2 vaccine and persons aged 18 years or older were eligible for the mRNA-1273 vaccine. The number of COVID-19 vaccine doses administered during the analytic period was obtained through the CDC’s COVID-19 Data Tracker. 17

The primary outcome was the occurrence of myocarditis and the secondary outcome was pericarditis. Reports to VAERS with these outcomes were initially characterized using the Medical Dictionary for Regulatory Activities preferred terms of myocarditis or pericarditis (specific terms are listed in the eMethods in the Supplement ). After initial review of reports of myocarditis to VAERS and review of the patient’s medical records (when available), the reports were further reviewed by CDC physicians and public health professionals to verify that they met the CDC’s case definition for probable or confirmed myocarditis (descriptions previously published and included in the eMethods in the Supplement ). 18 The CDC’s case definition of probable myocarditis requires the presence of new concerning symptoms, abnormal cardiac test results, and no other identifiable cause of the symptoms and findings. Confirmed cases of myocarditis further require histopathological confirmation of myocarditis or cardiac magnetic resonance imaging (MRI) findings consistent with myocarditis.

Deaths were included only if the individual had met the case definition for confirmed myocarditis and there was no other identifiable cause of death. Individual cases not involving death were included only if the person had met the case definition for probable myocarditis or confirmed myocarditis.

We characterized reports of myocarditis or pericarditis after COVID-19 vaccination that met the CDC’s case definition and were received by VAERS between December 14, 2020 (when COVID-19 vaccines were first publicly available in the US), and August 31, 2021, by age, sex, race, ethnicity, and vaccine type; data were processed by VAERS as of September 30, 2021. Race and ethnicity were optional fixed categories available by self-identification at the time of vaccination or by the individual filing a VAERS report. Race and ethnicity were included to provide the most complete baseline description possible for individual reports; however, further analyses were not stratified by race and ethnicity due to the high percentage of missing data. Reports of pericarditis with evidence of potential myocardial involvement were included in the review of reports of myocarditis. The eFigure in the Supplement outlines the categorization of the reports of myocarditis and pericarditis reviewed.

Further analyses were conducted only for myocarditis because of the preponderance of those reports to VAERS, in Clinical Immunization Safety Assessment Project consultations, and in published articles. 10 - 12 , 19 - 21 Crude reporting rates for myocarditis during a 7-day risk interval were calculated using the number of reports of myocarditis to VAERS per million doses of COVID-19 vaccine administered during the analytic period and stratified by age, sex, vaccination dose (first, second, or unknown), and vaccine type. Expected rates of myocarditis by age and sex were calculated using 2017-2019 data from the IBM MarketScan Commercial Research Database. This database contains individual-level, deidentified, inpatient and outpatient medical and prescription drug claims, and enrollment information submitted to IBM Watson Health by large employers and health plans. The data were accessed using version 4.0 of the IBM MarketScan Treatment Pathways analytic platform. Age- and sex-specific rates were calculated by determining the number of individuals with myocarditis ( International Statistical Classification of Diseases and Related Health Problems, Tenth Revision [ICD-10] codes B33.20, B33.22, B33.24, I40.0, I40.1, I40.8, I40.9, or I51.4) 22 identified during an inpatient encounter in 2017-2019 relative to the number of individuals of similar age and sex who were continually enrolled during the year in which the myocarditis-related hospitalization occurred; individuals with any diagnosis of myocarditis prior to that year were excluded. Given the limitations of the IBM MarketScan Commercial Research Database to capture enrollees aged 65 years or older, an expected rate for myocarditis was not calculated for this population. A 95% CI was calculated using Poisson distribution in SAS version 9.4 (SAS Institute Inc) for each expected rate of myocarditis and for each observed rate in a strata with at least 1 case.

In cases of probable or confirmed myocarditis among those younger than 30 years of age, their clinical course was then summarized to the extent possible based on medical review and clinician interviews. This clinical course included presenting symptoms, diagnostic test results, treatment, and early outcomes (abstraction form appears in the eMethods in the Supplement ). 23

When applicable, missing data were delineated in the results or the numbers with complete data were listed. No assumptions or imputations were made regarding missing data. Any percentages that were calculated included only those cases of myocarditis with adequate data to calculate the percentages.

Between December 14, 2020, and August 31, 2021, 192 405 448 individuals older than 12 years of age received a total of 354 100 845 mRNA-based COVID-19 vaccines. VAERS received 1991 reports of myocarditis (391 of which also included pericarditis) after receipt of at least 1 dose of mRNA-based COVID-19 vaccine (eTable 1 in the Supplement ) and 684 reports of pericarditis without the presence of myocarditis (eTable 2 in the Supplement ).

Of the 1991 reports of myocarditis, 1626 met the CDC’s case definition for probable or confirmed myocarditis ( Table 1 ). There were 208 reports that did not meet the CDC’s case definition for myocarditis and 157 reports that required more information to perform adjudication (eTable 3 in the Supplement ). Of the 1626 reports that met the CDC’s case definition for myocarditis, 1195 (73%) were younger than 30 years of age, 543 (33%) were younger than 18 years of age, and the median age was 21 years (IQR, 16-31 years) ( Figure 1 ). Of the reports of myocarditis with dose information, 82% (1265/1538) occurred after the second vaccination dose. Of those with a reported dose and time to symptom onset, the median time from vaccination to symptom onset was 3 days (IQR, 1-8 days) after the first vaccination dose and 74% (187/254) of myocarditis events occurred within 7 days. After the second vaccination dose, the median time to symptom onset was 2 days (IQR, 1-3 days) and 90% (1081/1199) of myocarditis events occurred within 7 days ( Figure 2 ).

Males comprised 82% (1334/1625) of the cases of myocarditis for whom sex was reported. The largest proportions of cases of myocarditis were among White persons (non-Hispanic or ethnicity not reported; 69% [914/1330]) and Hispanic persons (of all races; 17% [228/1330]). Among persons younger than 30 years of age, there were no confirmed cases of myocarditis in those who died after mRNA-based COVID-19 vaccination without another identifiable cause and there was 1 probable case of myocarditis but there was insufficient information available for a thorough investigation. At the time of data review, there were 2 reports of death in persons younger than 30 years of age with potential myocarditis that remain under investigation and are not included in the case counts.

Symptom onset of myocarditis was within 7 days after vaccination for 947 reports of individuals who received the BNT162b2 vaccine and for 382 reports of individuals who received the mRNA-1273 vaccine. The rates of myocarditis varied by vaccine type, sex, age, and first or second vaccination dose ( Table 2 ). The reporting rates of myocarditis were highest after the second vaccination dose in adolescent males aged 12 to 15 years (70.73 [95% CI, 61.68-81.11] per million doses of the BNT162b2 vaccine), in adolescent males aged 16 to 17 years (105.86 [95% CI, 91.65-122.27] per million doses of the BNT162b2 vaccine), and in young men aged 18 to 24 years (52.43 [95% CI, 45.56-60.33] per million doses of the BNT162b2 vaccine and 56.31 [95% CI, 47.08-67.34] per million doses of the mRNA-1273 vaccine). The lower estimate of the 95% CI for reporting rates of myocarditis in adolescent males and young men exceeded the upper bound of the expected rates after the first vaccination dose with the BNT162b2 vaccine in those aged 12 to 24 years, after the second vaccination dose with the BNT162b2 vaccine in those aged 12 to 49 years, after the first vaccination dose with the mRNA-1273 vaccine in those aged 18 to 39 years, and after the second vaccination dose with the mRNA-1273 vaccine in those aged 18 to 49 years.

The reporting rates of myocarditis in females were lower than those in males across all age strata younger than 50 years of age. The reporting rates of myocarditis were highest after the second vaccination dose in adolescent females aged 12 to 15 years (6.35 [95% CI, 4.05-9.96] per million doses of the BNT162b2 vaccine), in adolescent females aged 16 to 17 years (10.98 [95% CI, 7.16-16.84] per million doses of the BNT162b2 vaccine), in young women aged 18 to 24 years (6.87 [95% CI, 4.27-11.05] per million doses of the mRNA-1273 vaccine), and in women aged 25 to 29 years (8.22 [95% CI, 5.03-13.41] per million doses of the mRNA-1273 vaccine). The lower estimate of the 95% CI for reporting rates of myocarditis in females exceeded the upper bound of the expected rates after the second vaccination dose with the BNT162b2 vaccine in those aged 12 to 29 years and after the second vaccination dose with the mRNA-1273 vaccine in those aged 18 to 29 years.

Among the 1372 reports of myocarditis in persons younger than 30 years of age, 1305 were able to be adjudicated, with 92% (1195/1305) meeting the CDC’s case definition. Of these, chart abstractions or medical interviews were completed for 69% (826/1195) ( Table 3 ). The symptoms commonly reported in the verified cases of myocarditis in persons younger than 30 years of age included chest pain, pressure, or discomfort (727/817; 89%) and dyspnea or shortness of breath (242/817; 30%). Troponin levels were elevated in 98% (792/809) of the cases of myocarditis. The electrocardiogram result was abnormal in 72% (569/794) of cases of myocarditis. Of the patients who had received a cardiac MRI, 72% (223/312) had abnormal findings consistent with myocarditis. The echocardiogram results were available for 721 cases of myocarditis; of these, 84 (12%) demonstrated a notable decreased left ventricular ejection fraction (<50%). Among the 676 cases for whom treatment data were available, 589 (87%) received nonsteroidal anti-inflammatory drugs. Intravenous immunoglobulin and glucocorticoids were each used in 12% of the cases of myocarditis (78/676 and 81/676, respectively). Intensive therapies such as vasoactive medications (12 cases of myocarditis) and intubation or mechanical ventilation (2 cases) were rare. There were no verified cases of myocarditis requiring a heart transplant, extracorporeal membrane oxygenation, or a ventricular assist device. Of the 96% (784/813) of cases of myocarditis who were hospitalized, 98% (747/762) were discharged from the hospital at time of review. In 87% (577/661) of discharged cases of myocarditis, there was resolution of the presenting symptoms by hospital discharge.

In this review of reports to VAERS between December 2020 and August 2021, myocarditis was identified as a rare but serious adverse event that can occur after mRNA-based COVID-19 vaccination, particularly in adolescent males and young men. However, this increased risk must be weighed against the benefits of COVID-19 vaccination. 18

Compared with cases of non–vaccine-associated myocarditis, the reports of myocarditis to VAERS after mRNA-based COVID-19 vaccination were similar in demographic characteristics but different in their acute clinical course. First, the greater frequency noted among vaccine recipients aged 12 to 29 years vs those aged 30 years or older was similar to the age distribution seen in typical cases of myocarditis. 2 , 4 This pattern may explain why cases of myocarditis were not discovered until months after initial Emergency Use Authorization of the vaccines in the US (ie, until the vaccines were widely available to younger persons). Second, the sex distribution in cases of myocarditis after COVID-19 vaccination was similar to that seen in typical cases of myocarditis; there is a strong male predominance for both conditions. 2 , 4

However, the onset of myocarditis symptoms after exposure to a potential immunological trigger was shorter for COVID-19 vaccine–associated cases of myocarditis than is typical for myocarditis cases diagnosed after a viral illness. 24 - 26 Cases of myocarditis reported after COVID-19 vaccination were typically diagnosed within days of vaccination, whereas cases of typical viral myocarditis can often have indolent courses with symptoms sometimes present for weeks to months after a trigger if the cause is ever identified. 1 The major presenting symptoms appeared to resolve faster in cases of myocarditis after COVID-19 vaccination than in typical viral cases of myocarditis. Even though almost all individuals with cases of myocarditis were hospitalized and clinically monitored, they typically experienced symptomatic recovery after receiving only pain management. In contrast, typical viral cases of myocarditis can have a more variable clinical course. For example, up to 6% of typical viral myocarditis cases in adolescents require a heart transplant or result in mortality. 27

In the current study, the initial evaluation and treatment of COVID-19 vaccine–associated myocarditis cases was similar to that of typical myocarditis cases. 28 - 31 Initial evaluation usually included measurement of troponin level, electrocardiography, and echocardiography. 1 Cardiac MRI was often used for diagnostic purposes and also for possible prognostic purposes. 32 , 33 Supportive care was a mainstay of treatment, with specific cardiac or intensive care therapies as indicated by the patient’s clinical status.

Long-term outcome data are not yet available for COVID-19 vaccine–associated myocarditis cases. The CDC has started active follow-up surveillance in adolescents and young adults to assess the health and functional status and cardiac outcomes at 3 to 6 months in probable and confirmed cases of myocarditis reported to VAERS after COVID-19 vaccination. 34 For patients with myocarditis, the American Heart Association and the American College of Cardiology guidelines advise that patients should be instructed to refrain from competitive sports for 3 to 6 months, and that documentation of a normal electrocardiogram result, ambulatory rhythm monitoring, and an exercise test should be obtained prior to resumption of sports. 35 The use of cardiac MRI is unclear, but it may be useful in evaluating the progression or resolution of myocarditis in those with abnormalities on the baseline cardiac MRI. 36 Further doses of mRNA-based COVID-19 vaccines should be deferred, but may be considered in select circumstances. 37

This study has several limitations. First, although clinicians are required to report serious adverse events after COVID-19 vaccination, including all events leading to hospitalization, VAERS is a passive reporting system. As such, the reports of myocarditis to VAERS may be incomplete, and the quality of the information reported is variable. Missing data for sex, vaccination dose number, and race and ethnicity were not uncommon in the reports received; history of prior SARS-CoV-2 infection also was not known. Furthermore, as a passive system, VAERS data are subject to reporting biases in that both underreporting and overreporting are possible. 38 Given the high verification rate of reports of myocarditis to VAERS after mRNA-based COVID-19 vaccination, underreporting is more likely. Therefore, the actual rates of myocarditis per million doses of vaccine are likely higher than estimated.

Second, efforts by CDC investigators to obtain medical records or interview physicians were not always successful despite the special allowance for sharing information with the CDC under the Health Insurance Portability and Accountability Act of 1996. 39 This challenge limited the ability to perform case adjudication and complete investigations for some reports of myocarditis, although efforts are still ongoing when feasible.

Third, the data from vaccination administration were limited to what is reported to the CDC and thus may be incomplete, particularly with regard to demographics.

Fourth, calculation of expected rates from the IBM MarketScan Commercial Research Database relied on administrative data via the use of ICD-10 codes and there was no opportunity for clinical review. Furthermore, these data had limited information regarding the Medicare population; thus expected rates for those older than 65 years of age were not calculated. However, it is expected that the rates in those older than 65 years of age would not be higher than the rates in those aged 50 to 64 years. 4

Based on passive surveillance reporting in the US, the risk of myocarditis after receiving mRNA-based COVID-19 vaccines was increased across multiple age and sex strata and was highest after the second vaccination dose in adolescent males and young men. This risk should be considered in the context of the benefits of COVID-19 vaccination.

Corresponding Author: Matthew E. Oster, MD, MPH, US Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30333 ( [email protected] ).

Correction: This article was corrected March 21, 2022, to change “pericarditis” to “myocarditis” in the first row, first column of eTable 1 in the Supplement.

Accepted for Publication: December 16, 2021.

Author Contributions: Drs Oster and Su had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Oster, Shay, Su, Creech, Edwards, Dendy, Schlaudecker, Woo, Shimabukuro.

Acquisition, analysis, or interpretation of data: Oster, Shay, Su, Gee, Creech, Broder, Edwards, Soslow, Schlaudecker, Lang, Barnett, Ruberg, Smith, Campbell, Lopes, Sperling, Baumblatt, Thompson, Marquez, Strid, Woo, Pugsley, Reagan-Steiner, DeStefano, Shimabukuro.

Drafting of the manuscript: Oster, Shay, Su, Gee, Creech, Marquez, Strid, Woo, Shimabukuro.

Critical revision of the manuscript for important intellectual content: Oster, Shay, Su, Creech, Broder, Edwards, Soslow, Dendy, Schlaudecker, Lang, Barnett, Ruberg, Smith, Campbell, Lopes, Sperling, Baumblatt, Thompson, Pugsley, Reagan-Steiner, DeStefano, Shimabukuro.

Statistical analysis: Oster, Su, Marquez, Strid, Woo, Shimabukuro.

Obtained funding: Edwards, DeStefano.

Administrative, technical, or material support: Oster, Gee, Creech, Broder, Edwards, Soslow, Schlaudecker, Smith, Baumblatt, Thompson, Reagan-Steiner, DeStefano.

Supervision: Su, Edwards, Soslow, Dendy, Schlaudecker, Campbell, Sperling, DeStefano, Shimabukuro.

Conflict of Interest Disclosures: Dr Creech reported receiving grants from the National Institutes of Health for the Moderna and Janssen clinical trials and receiving personal fees from Astellas and Horizon. Dr Edwards reported receiving grants from the National Institutes of Health; receiving personal fees from BioNet, IBM, X-4 Pharma, Seqirus, Roche, Pfizer, Merck, Moderna, and Sanofi; and receiving compensation for being the associate editor of Clinical Infectious Diseases . Dr Soslow reported receiving personal fees from Esperare. Dr Schlaudecker reported receiving grants from Pfizer and receiving personal fees from Sanofi Pasteur. Drs Barnett, Ruberg, and Smith reported receiving grants from Pfizer. Dr Lopes reported receiving personal fees from Bayer, Boehringer Ingleheim, Bristol Myers Squibb, Daiichi Sankyo, GlaxoSmithKline, Medtronic, Merck, Pfizer, Portola, and Sanofi and receiving grants from Bristol Myers Squibb, GlaxoSmithKline, Medtronic, Pfizer, and Sanofi. No other disclosures were reported.

Funding/Support: This work was supported by contracts 200-2012-53709 (Boston Medical Center), 200-2012-53661 (Cincinnati Children’s Hospital Medical Center), 200-2012-53663 (Duke University), and 200-2012-50430 (Vanderbilt University Medical Center) with the US Centers for Disease Control and Prevention (CDC) Clinical Immunization Safety Assessment Project.

Role of the Funder/Sponsor: The CDC provided funding via the Clinical Immunization Safety Assessment Project to Drs Creech, Edwards, Soslow, Dendy, Schlaudecker, Lang, Barnett, Ruberg, Smith, Campbell, and Lopes. The authors affiliated with the CDC along with the other coauthors conducted the investigations; performed collection, management, analysis, and interpretation of the data; were involved in the preparation, review, and approval of the manuscript; and made the decision to submit the manuscript for publication.

Disclaimer: The findings and conclusions in this article are those of the authors and do not necessarily represent the official position of the CDC or the US Food and Drug Administration. Mention of a product or company name is for identification purposes only and does not constitute endorsement by the CDC or the US Food and Drug Administration.

Additional Contributions: We thank the following CDC staff who contributed to this article without compensation outside their normal salaries (in alphabetical order and contribution specified in parenthesis at end of each list of names): Nickolas Agathis, MD, MPH, Stephen R. Benoit, MD, MPH, Beau B. Bruce, MD, PhD, Abigail L. Carlson, MD, MPH, Meredith G. Dixon, MD, Jonathan Duffy, MD, MPH, Charles Duke, MD, MPH, Charles Edge, MSN, MS, Robyn Neblett Fanfair, MD, MPH, Nathan W. Furukawa, MD, MPH, Gavin Grant, MD, MPH, Grace Marx, MD, MPH, Maureen J. Miller, MD, MPH, Pedro Moro, MD, MPH, Meredith Oakley, DVM, MPH, Kia Padgett, MPH, BSN, RN, Janice Perez-Padilla, MPH, BSN, RN, Robert Perry, MD, MPH, Nimia Reyes, MD, MPH, Ernest E. Smith, MD, MPH&TM, David Sniadack, MD, MPH, Pamela Tucker, MD, Edward C. Weiss, MD, MPH, Erin Whitehouse, PhD, MPH, RN, Pascale M. Wortley, MD, MPH, and Rachael Zacks, MD (for clinical investigations and interviews); Amelia Jazwa, MSPH, Tara Johnson, MPH, MS, and Jamila Shields, MPH (for project coordination); Charles Licata, PhD, and Bicheng Zhang, MS (for data acquisition and organization); Charles E. Rose, PhD (for statistical consultation); and Scott D. Grosse, PhD (for calculation of expected rates of myocarditis). We also thank the clinical staff who cared for these patients and reported the adverse events to the Vaccine Adverse Event Reporting System.

  • Register for email alerts with links to free full-text articles
  • Access PDFs of free articles
  • Manage your interests
  • Save searches and receive search alerts

The creator economy could approach half-a-trillion dollars by 2027

articles research definition

The so-called “creator economy” has mushroomed and is expected to grow even more in the coming years, according to Goldman Sachs Research. 

Individual people with their own brands and online audiences have emerged as one of the biggest developments of the digital age. The ecosystem is expanding for a number of reasons, including the increase in digital media consumption and the advent of technology that has lowered barriers to content creation, Eric Sheridan, senior equity research analyst covering the U.S. Internet sector, writes in the team’s report. New platforms such as TikTok have emerged, while legacy platforms like Facebook and YouTube have also introduced new formats for sharing short-form video, live streaming channels and other forms of user-generated content.

As the ecosystem grows, the total addressable market of the creator economy could roughly double in size over the next five years to $480 billion by 2027 from $250 billion today, Sheridan writes. That growth is roughly in line with the team’s estimates for growth in global digital advertising spend over that period. The analysts expect spending on influencer marketing and platform payouts fueled by the monetization of short-form video platforms via advertising to be the primary growth drivers of the creator economy.

Goldman Sachs Research expects the 50 million global creators to grow at a 10-20% compound annual growth rate during the next five years. Creators earn income primarily through direct branding deals to pitch products as an influencer; via a share of advertising revenues with the host platform; and through subscriptions, donations and other forms of direct payment from followers. Brand deals are the main source of revenue at about 70%, according to survey data.

Only about 4% of global creators are deemed professionals, meaning they pull in more than $100,000 a year. Goldman Sachs Research expects their share of the creator universe to stay steady even as the overall ecosystem expands.

Which companies will benefit the most from the ongoing growth of the creator economy? The platforms that are best positioned to attract both influential creators and a larger share of the total spending are those that will offer multiple forms of monetization, according to Goldman Sachs Research. But the analysts also cite six key enablers for creating a “flywheel effect” in which small gains build on each other over time and create further growth momentum:

1. Scale:  a large, global user base with diversified interests   

2. Capital:  access to large pools of capital to fund monetization, either through a diversified revenue base and/or as part of a larger parent company

3. Strong AI-powered recommendation engines:  for surfacing relevant content and matching creators with interested users

4. Effective monetization tools:  a variety of product offerings/payout structures for creators to diversify their income streams

5. Robust data and analytics:  for providing transparency on engagement, retention, conversion and other metrics

6. E-commerce options:  the ability to shop is integrated into the core user experience

At least at this point, the report points to the large incumbent platforms as being in the driver’s seat. Goldman Sachs Research sees more creators moving to these platforms as competition heats up for their content and audiences, particularly as macroeconomic uncertainty impacts brand spending and as rising interest rates pressure funding for emerging platforms. “As a result, we expect some element of a ‘flight to quality’ whereby creators will prioritize platforms with stability, scale and monetization potential,” Sheridan writes.

This article is being provided for educational purposes only. The information contained in this article does not constitute a recommendation from any Goldman Sachs entity to the recipient, and Goldman Sachs is not providing any financial, economic, legal, investment, accounting, or tax advice through this article or to its recipient. Neither Goldman Sachs nor any of its affiliates makes any representation or warranty, express or implied, as to the accuracy or completeness of the statements or any information contained in this article and any liability therefore (including in respect of direct, indirect, or consequential loss or damage) is expressly disclaimed.

Our weekly newsletter with insights and intelligence from across the firm

By submitting this information, you agree to receive marketing emails from Goldman Sachs and accept our  privacy policy . You can opt-out at any time.

IMAGES

  1. Articles With Text Features

    articles research definition

  2. 6 Types of research articles: Check one by one

    articles research definition

  3. Scholarly Sources: The A-Z Guide

    articles research definition

  4. Typical Research Article Structure

    articles research definition

  5. Types of Articles

    articles research definition

  6. What is a Scholarly Source? Here are 7 Examples (2024)

    articles research definition

COMMENTS

  1. Research Article

    Research articles represent the ultimate, final product of a scientific study. A published paper shows that you have completed a research project, from beginning to end, and the peer-reviewed results are indefinitely available for anyone in the world to access.

  2. (PDF) What is research? A conceptual understanding

    Research is a systematic endeavor to acquire understanding, broaden knowledge, or find answers to unanswered questions. It is a methodical and structured undertaking to investigate the natural and ...

  3. What Is Research, and Why Do People Do It?

    Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and...

  4. What is Scientific Research and How Can it be Done?

    Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new ...

  5. What is Research? Definition, Types, Methods, and Examples

    Explore what is research. From qualitative and quantitative approaches to basic steps in the research process, discover how research shapes understanding and learn essential steps to ensure accuracy in your academic journey.

  6. Research

    The primary purposes of basic research (as opposed to applied research) are documentation, discovery, interpretation, and the research and development (R&D) of methods and systems for the advancement of human knowledge. Approaches to research depend on epistemologies, which vary considerably both within and between humanities and sciences. There are several forms of research: scientific ...

  7. What is research?

    When googling further for more, you will find the following definition given by the Western Sydney University ( 2021 ): "Research is defined as the creation of new knowledge and/or the use of existing knowledge in a new and creative way so as to generate new concepts, methodologies and understandings. This could include synthesis and analysis ...

  8. What is a Scholarly Article: What is a scholarly article

    What is a scholarly source? Scholarly sources (also referred to as academic, peer-reviewed, or refereed sources) are written by experts in a particular field and serve to keep others interested in that field up to date on the most recent research, findings, and news. These resources will provide the most substantial information for your research and papers.

  9. Research Definition & Meaning

    The meaning of RESEARCH is studious inquiry or examination; especially : investigation or experimentation aimed at the discovery and interpretation of facts, revision of accepted theories or laws in the light of new facts, or practical application of such new or revised theories or laws. How to use research in a sentence.

  10. What is Qualitative in Qualitative Research

    What is qualitative research? If we look for a precise definition of qualitative research, and specifically for one that addresses its distinctive feature of being "qualitative," the literature is meager. In this article we systematically ...

  11. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. Learn more about types of research, processes, and methods with best practices.

  12. Social Work Research Guide

    Research articles reflect a systematic and thorough study of a single topic, often involving experiments or surveys. Research journals may also publish review articles and book reviews that summarize the current state of knowledge on a topic.

  13. Academic Guides: Evaluating Resources: Research Articles

    A research article is a journal article in which the authors report on the research they did. Research articles are always primary sources. Whether or not a research article is peer reviewed depends on the journal that publishes it. Published research articles follow a predictable pattern and will contain most, if not all, of the sections ...

  14. Research Guides: Finding Scholarly Articles: Home

    Scholarly or primary research articles are peer-reviewed, which means that they have gone through the process of being read by reviewers or referees before being accepted for publication. When a scholar submits an article to a scholarly journal, the manuscript is sent to experts in that field to read and decide if the research is valid and the article should be published. Typically the ...

  15. (PDF) What Is Qualitative Research?

    PDF | The defining nature and characteristics of qualitative research are surveyed in this article, which identifies key distinctions between method and... | Find, read and cite all the research ...

  16. Google Scholar

    Google Scholar provides a simple way to broadly search for scholarly literature. Search across a wide variety of disciplines and sources: articles, theses, books, abstracts and court opinions.

  17. Types of research article

    Check out our guide to the different types of research article and outputs you could consider submitting for publication.

  18. What Is the Big Deal About Populations in Research?

    Learn why populations matter in research and how to avoid common pitfalls in this insightful article from the Journal of Public Inquiry.

  19. What is Research? Definition and steps of the scientific method

    The term, research, is much stricter in science than in everyday life. It revolves around using the scientific method to generate hypotheses and provide analyzable results. All scientific research has a goal and ultimate aim, repeated and refined experimentation gradually reaching an answer. These results are a way of gradually uncovering ...

  20. Research Methods

    Research Methods | Definitions, Types, Examples Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make.

  21. PDF What is Research and What it isn t? And Who is Human Subject ...

    What Activities are Nonexempt Human Subjects Research? To determine if your project is nonexempt human subjects research, ask these questions in this order: Does the activity involve Research? Does the research involve Human Subjects? Is the human subjects research Exempt?

  22. Article type definitions

    Article types definitions. Research article: Research articles are the most common type of article in the journals publishing world. They contain pieces of original research that contribute directly to their field. Research articles apply to all disciplines and subject areas.

  23. What is Basic Research? Insights from Historical Semantics

    But what exactly is basic research? What is the difference between basic and applied research? This article seeks to answer these questions by applying historical semantics. I argue that the concept of basic research did not arise out of the tradition of pure science.

  24. What is Creative Research?

    What is "creative" or "artistic" research? How is it defined and evaluated? How is it different from other kinds of research? Who participates and in what ways - and how are its impacts understood across various fields of inquiry?

  25. Title Page Setup

    The student title page includes the paper title, author names (the byline), author affiliation, course number and name for which the paper is being submitted, instructor name, assignment due date, and page number, as shown in this example.

  26. Social Media Marketing Strategy Tips For 2024

    Social media marketing might appear straightforward, but it'll take more than just a few posts to truly make an impact. Here are some key social strategy tips.

  27. Myocarditis Cases Reported After mRNA-Based COVID-19 Vaccination in the

    The reports to the Vaccine Adverse Event Reporting System met the case definition of myocarditis (reported cases). Among recipients of either vaccine, there were only 13 reports or less of myocarditis beyond 10 days for any individual time from vaccination to symptom onset.

  28. What does science tell us about boxing's gender row?

    Research is shedding light on different chromosomal make-ups and what advantages they may bring to sport.

  29. The creator economy could approach half-a-trillion dollars by 2027

    Which companies will benefit the most from the ongoing growth of the creator economy? The platforms that are best positioned to attract both influential creators and a larger share of the total spending are those that will offer multiple forms of monetization, according to Goldman Sachs Research.