Quantitative Data Analysis: Everything You Need to Know

11 min read

Quantitative Data Analysis: Everything You Need to Know cover

Does the thought of quantitative data analysis bring back the horrors of math classes? We get it.

But conducting quantitative data analysis doesn’t have to be hard with the right tools. Want to learn how to turn raw numbers into actionable insights on how to improve your product?

In this article, we explore what quantitative data analysis is, the difference between quantitative and qualitative data analysis, and statistical methods you can apply to your data. We also walk you through the steps you can follow to analyze quantitative information, and how Userpilot can help you streamline the product analytics process. Let’s get started.

  • Quantitative data analysis is the process of using statistical methods to define, summarize, and contextualize numerical data.
  • Quantitative analysis is different from a qualitative one. The first deals with numerical data and focuses on answering “what,” “when,” and “where.” However, a qualitative analysis relies on text, graphics, or videos and explores “why” and “how” events occur.
  • Pros of quantitative data analysis include objectivity, reliability, ease of comparison, and scalability.
  • Cons of quantitative metrics include the data’s limited context and inflexibility, and the need for large sample sizes to get statistical significance.
  • The methods for analyzing quantitative data are descriptive and inferential statistics.
  • Choosing the right analysis method depends on the type of data collected and the specific research questions or hypotheses.
  • These are the steps to conduct quantitative data analysis: 1. Defining goals and KPIs . 2. Collecting and cleaning data. 3. Visualizing the data. 4. Identifying patterns . 5. Sharing insights. 6. Acting on findings to improve decision-making.
  • With Userpilot , you can auto-capture in-app user interactions and build analytics dashboards . This tool also lets you conduct A/B and multivariate tests, and funnel and cohort analyses .
  • Gather and visualize all your product analytics in one place with Userpilot. Get a demo .

data analysis for quantitative research pdf

Try Userpilot and Take Your Product Experience to the Next Level

  • 14 Day Trial
  • No Credit Card Required

data analysis for quantitative research pdf

What is quantitative data analysis?

Quantitative data analysis is about applying statistical analysis methods to define, summarize, and contextualize numerical data. In short, it’s about turning raw numbers and data into actionable insights.

The analysis will vary depending on the research questions and the collected data (more on this below).

Quantitative vs qualitative data analysis

The main difference between these forms of analysis lies in the collected data. Quantitative data is numerical or easily quantifiable. For example, the answers to a customer satisfaction score (CSAT) survey are quantitative since you can count the number of people who answered “very satisfied”.

Qualitative feedback , on the other hand, analyzes information that requires interpretation. For instance, evaluating graphics, videos, text-based answers, or impressions.

Another difference between quantitative and qualitative analysis is the questions each seeks to answer. For instance, quantitative data analysis primarily answers what happened, when it happened, and where it happened. However, qualitative data analysis answers why and how an event occurred.

Quantitative data analysis also looks into identifying patterns , drivers, and metrics for different groups. However, qualitative analysis digs deeper into the sample dataset to understand underlying motivations and thinking processes.

Pros of quantitative data analysis

Quantitative or data-driven analysis has advantages such as:

  • Objectivity and reliability. Since quantitative analysis is based on numerical data, this reduces biases and allows for more objective conclusions. Also, by relying on statistics, this method ensures the results are consistent and can be replicated by others, making the findings more reliable.
  • Easy comparison. Quantitative data is easily comparable because you can identify trends , patterns, correlations, and differences within the same group and KPIs over time. But also, you can compare metrics in different scales by normalizing the data, e.g., bringing ratios and percentages into the same scale for comparison.
  • Scalability. Quantitative analysis can handle large volumes of data efficiently, making it suitable for studies involving large populations or datasets. This makes this data analysis method scalable. Plus, researchers can use quantitative analysis to generalize their findings to broader populations.

Cons of quantitative data analysis

These are common disadvantages of data-driven analytics :

  • Limited context. Since quantitative data looks at the numbers, it often strips away the data from the context, which can show the underlying reasons behind certain trends. This limitation can lead to a superficial understanding of complex issues, as you often miss the nuances and user motivations behind the data points.
  • Inflexibility. When conducting quantitative research, you don’t have room to improvise based on the findings. You need to have predefined hypotheses, follow scientific methods, and select data collection instruments. This makes the process less adaptable to new or unexpected findings.
  • Large sample sizes necessary. You need to use large sample sizes to achieve statistical significance and reliable results when doing quantitative analysis. Depending on the type of study you’re conducting, gathering such extensive data can be resource-intensive, time-consuming, and costly.

Quantitative data analysis methods

There are two statistical methods for reviewing quantitative data and user analytics . However, before exploring these in-depth, let’s refresh these key concepts:

  • Population. This is the entire group of individuals or entities that are relevant to the research.
  • Sample. The sample is a subset of the population that is actually selected for the research since it is often impractical or impossible to study the entire population.
  • Statistical significance. The chances that the results gathered after your analysis are realistic and not due to random chance.

Here are methods for analyzing quantitative data:

Descriptive statistics

Descriptive statistics, as the name implies, describe your data and help you understand your sample in more depth. It doesn’t make inferences about the entire population but only focuses on the details of your specific sample.

Descriptive statistics usually include measures like the mean, median, percentage, frequency, skewness, and mode.

Inferential statistics

Inferential statistics aim to make predictions and test hypotheses about the real-world population based on your sample data.

Here, you can use methods such as a T-test, ANOVA, regression analysis, and correlation analysis.

Let’s take a look at this example. Through descriptive statistics, you identify that users under the age of 25 are more likely to skip your onboarding. You’ll need to apply inferential statistics to determine if the result is statistically significant and applicable to your entire ’25 or younger’ population.

How to choose the right method for your quantitative data analysis

The type of data that you collect and the research questions that you want to answer will impact which quantitative data analysis method you choose. Here’s how to choose the right method:

Determine your data type

Before choosing the quantitative data analysis method, you need to identify which group your data belongs to:

  • Nominal —categories with no specific order, e.g., gender, age, or preferred device.
  • Ordinal —categories with a specific order, but the intervals between them aren’t equal, e.g., customer satisfaction ratings .
  • Interval —categories with an order and equal intervals, but no true zero point, e.g., temperature (where zero doesn’t mean “no temperature”).
  • Ratio —categories with a specific order, equal intervals, and a true zero point, e.g., number of sessions per user .

Applying any statistical method to all data types can lead to meaningless results. Instead, identify which statistical analysis method supports your collected data types.

Consider your research questions

The specific research questions you want to answer, and your hypothesis (if you have one) impact the analysis method you choose. This is because they define the type of data you’ll collect and the relationships you’re investigating.

For instance, if you want to understand sample specifics, descriptive statistics—such as tracking NPS —will work. However, if you want to determine if other variables affect the NPS, you’ll need to conduct an inferential analysis.

The overarching questions vary in both of the previous examples. For calculating the NPS, your internal research question might be, “Where do we stand in customer loyalty ?” However, if you’re doing inferential analysis, you may ask, “How do various factors, such as demographics, affect NPS?”

6 steps to do quantitative data analysis and extract meaningful insights

Here’s how to conduct quantitative analysis and extract customer insights :

1. Set goals for your analysis

Before diving into data collection, you need to define clear goals for your analysis as these will guide the process. This is because your objectives determine what to look for and where to find data. These goals should also come with key performance indicators (KPIs) to determine how you’ll measure success.

For example, imagine your goal is to increase user engagement. So, relevant KPIs include product engagement score , feature usage rate , user retention rate, or other relevant product engagement metrics .

2. Collect quantitative data

Once you’ve defined your goals, you need to gather the data you’ll analyze. Quantitative data can come from multiple sources, including user surveys such as NPS, CSAT, and CES, website and application analytics , transaction records, and studies or whitepapers.

Remember: This data should help you reach your goals. So, if you want to increase user engagement , you may need to gather data from a mix of sources.

For instance, product analytics tools can provide insights into how users interact with your tool, click on buttons, or change text. Surveys, on the other hand, can capture user satisfaction levels . Collecting a broad range of data makes your analysis more robust and comprehensive.

Raw event auto-tracking in Userpilot

3. Clean and visualize your data

Raw data is often messy and contains duplicates, outliers, or missing values that can skew your analysis. Before making any calculations, clean the data by removing these anomalies or outliers to ensure accurate results.

Once cleaned, turn it into visual data by using different types of charts , graphs, or heatmaps . Visualizations and data analytics charts make it easier to spot trends, patterns, and anomalies. If you’re using Userpilot, you can choose your preferred visualizations and organize your dashboard to your liking.

4. Identify patterns and trends

When looking at your dashboards, identify recurring themes, unusual spikes, or consistent declines that might indicate data analytics trends or potential issues.

Picture this: You notice a consistent increase in feature usage whenever you run seasonal marketing campaigns . So, you segment the data based on different promotional strategies. There, you discover that users exposed to email marketing campaigns have a 30% higher engagement rate than those reached through social media ads.

In this example, the pattern suggests that email promotions are more effective in driving feature usage.

If you’re a Userpilot user, you can conduct a trend analysis by tracking how your users perform certain events.

Trend analysis report in Userpilot

5. Share valuable insights with key stakeholders

Once you’ve discovered meaningful insights, you have to communicate them to your organization’s key stakeholders. Do this by turning your data into a shareable analysis report , one-pager, presentation, or email with clear and actionable next steps.

Your goal at this stage is for others to view and understand the data easily so they can use the insights to make data-led decisions.

Following the previous example, let’s say you’ve found that email campaigns significantly boost feature usage. Your email to other stakeholders should strongly recommend increasing the frequency of these campaigns and adding the supporting data points.

Take a look at how easy it is to share custom dashboards you built in Userpilot with others via email:

6. Act on the insights

Data analysis is only valuable if it leads to actionable steps that improve your product or service. So, make sure to act upon insights by assigning tasks to the right persons.

For example, after analyzing user onboarding data, you may find that users who completed the onboarding checklist were 3x more likely to become paying customers ( like Sked Social did! ).

Now that you have actual data on the checklist’s impact on conversions, you can work on improving it, such as simplifying its steps, adding interactive features, and launching an A/B test to experiment with different versions.

How can Userpilot help with analyzing quantitative data

As you’ve seen throughout this article, using a product analytics tool can simplify your data analysis and help you get insights faster. Here are different ways in which Userpilot can help:

Automatically capture quantitative data

Thanks to Userpilot’s new auto-capture feature, you can automatically track every time your users click, write a text, or fill out a form in your app—no engineers or manual tagging required!

Our customer analytics platform lets you use this data to build segments, trigger personalized in-app events and experiences, or launch surveys.

If you don’t want to auto-capture raw data, you can turn this functionality off in your settings, as seen below:

Auto-capture raw data settings in Userpilot

Monitor key metrics with customizable dashboards for real-time insights

Userpilot comes with template analytics dashboards , such as new user activation dashboards or customer engagement dashboards . However, you can create custom dashboards and reports to keep track of metrics that are relevant to your business in real time.

For instance, you could build a customer retention analytics dashboard and include all metrics that you find relevant, such as customer stickiness , NPS, or last accessed date.

Analyze experiment data with A/B and multivariate tests

Userpilot lets you conduct A/B and multivariate tests , either by following a controlled or a head-to-head approach. You can track the results on a dashboard.

For example, let’s say you want to test a variation of your onboarding flow to determine which leads to higher user activation .

You can go to Userpilot’s Flows tab and click on Experiments. There, you’ll be able to select the type of test you want to run, for instance, a controlled A/B test , build a new flow, test it, and get the results.

Creating new experiments for A/B and multivariate testing in Userpilot

Use quantitative funnel analysis to increase conversion rates

With Userpilot, you can track your customers’ journey as they complete actions and move through the funnel. Funnel analytics give you insights into your conversion rates and conversion times between two events, helping you identify areas for improvement.

Imagine you want to analyze your free-to-paid conversions and the differences between devices. Just by looking at the graphic, you can draw some insights:

  • There’s a significant drop-off between steps one and two, and two and three, indicating potential user friction .
  • Users on desktops convert at higher rates than those on mobile or unspecified devices.
  • Your average freemium conversion time is almost three days.

funnel analysis view in Userpilot

Leverage cohort analysis to optimize retention

Another Userpilot functionality that can help you analyze quantitative data is cohort analysis . This powerful tool lets you group users based on shared characteristics or experiences, allowing you to analyze their behavior over time and identify trends, patterns, and the long-term impact of changes on user behavior.

For example, let’s say you recently released a feature and want to measure its impact on user retention. Via a cohort analysis, you can group users who started using your product after the update and compare their retention rates to previous cohorts.

You can do this in Userpilot by creating segments and then tracking user segments ‘ retention rates over time.

Retention analysis example in Userpilot

Check how many users adopted a feature with a retention table

In Userpilot, you can use retention tables to stay on top of feature adoption . This means you can track how many users continue to use a feature over time and which features are most valuable to your users. The video below shows how to choose the features or events you want to analyze in Userpilot.

As you’ve seen, to conduct quantitative analysis, you first need to identify your business and research goals. Then, collect, clean, and visualize the data to spot trends and patterns. Lastly, analyze the data, share it with stakeholders, and act upon insights to build better products and drive customer satisfaction.

To stay on top of your KPIs, you need a product analytics tool. With Userpilot, you can automate data capture, analyze product analytics, and view results in shareable dashboards. Want to try it for yourself? Get a demo .

Leave a comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Book a demo with on of our product specialists

Get The Insights!

The fastest way to learn about Product Growth,Management & Trends.

The coolest way to learn about Product Growth, Management & Trends. Delivered fresh to your inbox, weekly.

data analysis for quantitative research pdf

The fastest way to learn about Product Growth, Management & Trends.

You might also be interested in ...

Aazar Ali Shad

Amplitude Tracking: How Does It Work and Are There Better Alternatives?

Saffa Faisal

Clari Autocapture: An In-Depth Look + A Better Alternative

Quantitative Methods

  • Living reference work entry
  • First Online: 11 June 2021
  • Cite this living reference work entry

data analysis for quantitative research pdf

  • Juwel Rana 2 , 3 , 4 ,
  • Patricia Luna Gutierrez 5 &
  • John C. Oldroyd 6  

636 Accesses

2 Citations

Quantitative analysis ; Quantitative research methods ; Study design

Quantitative method is the collection and analysis of numerical data to answer scientific research questions. Quantitative method is used to summarize, average, find patterns, make predictions, and test causal associations as well as generalizing results to wider populations. It allows us to quantify effect sizes, determine the strength of associations, rank priorities, and weigh the strength of evidence of effectiveness.

Introduction

This entry aims to introduce the most common ways to use numbers and statistics to describe variables, establish relationships among variables, and build numerical understanding of a topic. In general, the quantitative research process uses a deductive approach (Neuman 2014 ; Leavy 2017 ), extrapolating from a particular case to the general situation (Babones 2016 ).

In practical ways, quantitative methods are an approach to studying a research topic. In research, the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Babones S (2016) Interpretive quantitative methods for the social sciences. Sociology. https://doi.org/10.1177/0038038515583637

Balnaves M, Caputi P (2001) Introduction to quantitative research methods: an investigative approach. Sage, London

Book   Google Scholar  

Brenner PS (2020) Understanding survey methodology: sociological theory and applications. Springer, Boston

Google Scholar  

Creswell JW (2014) Research design: qualitative, quantitative, and mixed methods approaches. Sage, London

Leavy P (2017) Research design. The Gilford Press, New York

Mertens W, Pugliese A, Recker J (2018) Quantitative data analysis, research methods: information, systems, and contexts: second edition. https://doi.org/10.1016/B978-0-08-102220-7.00018-2

Neuman LW (2014) Social research methods: qualitative and quantitative approaches. Pearson Education Limited, Edinburgh

Treiman DJ (2009) Quantitative data analysis: doing social research to test ideas. Jossey-Bass, San Francisco

Download references

Author information

Authors and affiliations.

Department of Public Health, School of Health and Life Sciences, North South University, Dhaka, Bangladesh

Department of Biostatistics and Epidemiology, School of Health and Health Sciences, University of Massachusetts Amherst, MA, USA

Department of Research and Innovation, South Asia Institute for Social Transformation (SAIST), Dhaka, Bangladesh

Independent Researcher, Masatepe, Nicaragua

Patricia Luna Gutierrez

School of Behavioral and Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia

John C. Oldroyd

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Juwel Rana .

Editor information

Editors and affiliations.

Florida Atlantic University, Boca Raton, FL, USA

Ali Farazmand

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Cite this entry.

Rana, J., Gutierrez, P.L., Oldroyd, J.C. (2021). Quantitative Methods. In: Farazmand, A. (eds) Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer, Cham. https://doi.org/10.1007/978-3-319-31816-5_460-1

Download citation

DOI : https://doi.org/10.1007/978-3-319-31816-5_460-1

Received : 31 January 2021

Accepted : 14 February 2021

Published : 11 June 2021

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-31816-5

Online ISBN : 978-3-319-31816-5

eBook Packages : Springer Reference Economics and Finance Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. Quantitative Data

    data analysis for quantitative research pdf

  2. Quantitative Data Analysis Outline

    data analysis for quantitative research pdf

  3. Standard statistical tools in research and data analysis

    data analysis for quantitative research pdf

  4. Quantitative Analysis

    data analysis for quantitative research pdf

  5. Data Analysis For Quantitative Research

    data analysis for quantitative research pdf

  6. Quantitative Research Hypothesis Examples Pdf / Quantitative Research

    data analysis for quantitative research pdf

COMMENTS

  1. (PDF) A Really Simple Guide to Quantitative Data Analysis

    It is important to know w hat kind of data you are planning to collect or analyse as this w ill. affect your analysis method. A 12 step approach to quantitative data analysis. Step 1: Start with ...

  2. (PDF) Quantitative Data Analysis

    Quantitative data analysis is a systematic process of both collecting and evaluating measurable. and verifiable data. It contains a statistical mechanism of assessing or analyzing quantitative ...

  3. (PDF) Quantitative Analysis: the guide for beginners

    quantitative (numbers) and qualitative (words or images) data. The combination of. quantitative and qualitative research methods is called mixed methods. For example, first, numerical data are ...

  4. PDF Quantitative Data Analysis

    In shows the applica-tion of techniques on a small student project about the use of gyms and fitness activities. The main goal of the chapter is to give an overview of the statistical techniques that are most useful in the student research projects. Data analysis stage is the final stage of the research process.

  5. PDF Data Analysis in Quantitative Research

    Quantitative data analysis serves as part of an essential process of evidence-making in health and social sciences. It is adopted for any types of research question and design whether it is descriptive, explanatory, or causal. However, compared with qualitative counterpart, quantitative data analysis has less exi-. fl.

  6. Introduction to Quantitative Data Analysis in the Behavioral and Social

    This book strives to be an introduction to quantitative data analysis for students who have little or no previous training either in statistics or in data analysis. It does not attempt to cover all types of data analysis situations, but works to impart the proper mindset in performing a data analysis.

  7. PDF Introduction to Quantitative Data

    The first step in conducting quantitative analysis is to acquire data that lend them-selves to this analytic approach, which can be broadly defined as analysis that involves numerical data. This first chapter introduces key issues in quantitative data collection, including survey design and sampling strategy, as well as key ter-minology that we ...

  8. PDF A Really Simple Guide to Quantitative Data Analysis

    based decisions rather than exact mathematical proof.The quantitative research processThis guide focuses on descriptive statistics and statistical testing as these are the c. mmon forms of quantitative data analysis required at the university and research level. It is assumed that dat. ollowing stages:Define your aim and research questionsCarry ...

  9. Sage Research Methods

    Covering the general process of data analysis to finding, collecting, organizing, and presenting data, this book offers a complete introduction to the fundamentals of data analysis. Using real-world case studies as illustrations, it helps readers understand theories behind and develop techniques for conducting quantitative, qualitative, and ...

  10. Data Analysis in Quantitative Research

    Abstract. Quantitative data analysis serves as part of an essential process of evidence-making in health and social sciences. It is adopted for any types of research question and design whether it is descriptive, explanatory, or causal. However, compared with qualitative counterpart, quantitative data analysis has less flexibility.

  11. PDF 2 An Introduction to Data Analysis

    in components of data analysis.1. Describ. ng data and formulating hypothesesWe describe data to better understand the p. oblem and to ask better questions. At its base, describing data focuses primarily on identifying the typical case (central tendency) and under-standing how typical.

  12. PDF Introduction to quantitative research

    Quantitative research is 'Explaining phenomena by collecting numerical data that are analysed using mathematically based methods (in particu-lar statistics)'. Let's go through this definition step by step. The first element is explaining phenomena. This is a key element of all research, be it quantitative or quali-tative.

  13. (PDF) An Overview of Quantitative Research Methods

    In quantitative data analysis, the researcher uses mathematical techniques known as statistics to analyze the data. These analyses These analyses entail segmenting the data fo r answering the ...

  14. PDF TOOLS AND BEST PRACTICES IN QUANTITATIVE RESEARCH

    quantitative and geospatial data unstructured text as data. Imagine that you have data for all the deaths of all Medicare beneficiaries in the US 2000-2012 (~half a million person-years) and want to model the effect of air pollution levels on death, controlling for other factors that also affect death (such as smoking, BMI).

  15. PDF Developing a Quantitative Data Analysis Plan

    A Data Analysis Plan (DAP) is about putting thoughts into a plan of action. Research questions are often framed broadly and need to be clarified and funnelled down into testable hypotheses and action steps. The DAP provides an opportunity for input from collaborators and provides a platform for training. Having a clear plan of action is also ...

  16. Introduction to Quantitative Data Analysis in the Behavioral and Social

    Guides readers through the quantitative data analysis process including contextualizing data within a research situation, connecting data to the appropriate statistical tests, and drawing valid conclusions Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences presents a clear and accessible introduction to the basics of quantitative data analysis and focuses on how ...

  17. Quantitative Data Analysis

    Offers a guide through the essential steps required in quantitative data analysis; Helps in choosing the right method before starting the data collection process; Presents statistics without the math! Offers numerous examples from various diciplines in accounting and information systems; No need to invest in expensive and complex software packages

  18. PDF Quantitative Research Methods

    Characteristics of Quantitative Research. Quantitative research. relies on the collection and analysis of numerical data to . describe, explain, predict, or control variables and phenomena of interest (Gay, Mills, & Airasian, 2009). One of the underlying tenets of quantitative research is a philosophical

  19. PDF WORKBOOK I: ANALYZING QUANTITATIVE DATA

    Workbook I -6- Analyzing Quantitative Data Organizing Your Data For Analysis Before beginning your analysis, you should organize the information for your study. The best way to organize information is based on general topic. You may want to consider looking through your questionnaire and organizing the questions by topic.

  20. PDF Introduction to quantitative research

    Quantitative research is 'Explaining phenomena by collecting numeri-cal data that are analysed using mathematically based methods (in particular statistics).'. Let's go through this definition step by step. The first element is explain-ing phenomena. This is a key element of all research, be it quantitative or qualitative.

  21. Data Analysis Techniques for Quantitative Study

    Abstract. This chapter describes the types of data analysis techniques in quantitative research and sampling strategies suitable for quantitative studies, particularly probability sampling, to produce credible and trustworthy explanations of a phenomenon. Initially, it briefly describes the measurement levels of variables.

  22. PDF Introduction to Data Analysis Handbook

    ata are presented.Learning ObjectivesThis Handbook is used in training sessions offered by the Migrant and Seasonal Head Start Technical Assistance Center (TAC-12). it can also be. ed as a self-paced or group resource. Utilizing. use a wide variety of data for planning and decision-making purposes;

  23. Quantitative Data Analysis: Everything You Need to Know

    What is quantitative data analysis? Quantitative data analysis is about applying statistical analysis methods to define, summarize, and contextualize numerical data. In short, it's about turning raw numbers and data into actionable insights. The analysis will vary depending on the research questions and the collected data (more on this below). ...

  24. Quantitative Methods

    Definition. Quantitative method is the collection and analysis of numerical data to answer scientific research questions. Quantitative method is used to summarize, average, find patterns, make predictions, and test causal associations as well as generalizing results to wider populations.