• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

descriptive correlational research definition

Home Market Research

Descriptive Correlational: Descriptive vs Correlational Research

descriptive_correlational

Descriptive research and Correlational research are two important types of research studies that help researchers make ambitious and measured decisions in their respective fields. Both descriptive research and correlational research are used in descriptive correlational research. 

Descriptive research is defined as a research method that involves observing behavior to describe attributes objectively and systematically. A descriptive research project seeks to comprehend phenomena or groups in depth.

Correlational research , on the other hand, is a method that describes and predicts how variables are naturally related in the real world without the researcher attempting to alter them or assign causation between them.

The main objective of descriptive research is to create a snapshot of the current state of affairs, whereas correlational research helps in comparing two or more entities or variables.

What is descriptive correlational research?

Descriptive correlational research is a type of research design that tries to explain the relationship between two or more variables without making any claims about cause and effect. It includes collecting and analyzing data on at least two variables to see if there is a link between them. 

In descriptive correlational research, researchers collect data to explain the variables of interest and figure out how they relate. The main goal is to give a full account of the variables and how they are related without changing them or assuming that one thing causes another.

In descriptive correlational research, researchers do not change any variables or try to find cause-and-effect connections. Instead, they just watch and measure the variables of interest and then look at the patterns and relationships that emerge from the data.

Experimental research involves the independent variable to see how it affects the dependent variable, while descriptive correlational research just describes the relationship between variables. 

In descriptive correlational research, correlational research designs measure the magnitude and direction of the relationship between two or more variables, revealing their associations. At the outset creating initial equivalence between the groups or variables being compared is essential in descriptive correlational research

The independent variable occurs prior to the measurement of the measured dependent variable in descriptive correlational research. Its goal is to explain the traits or actions of a certain population or group and look at the connections between independent and dependent variables.

How are descriptive research and correlational research carried out?

Descriptive research is carried out using three methods, namely:  

  • Case studies – Case studies involve in-depth research and study of individuals or groups. Case studies lead to a hypothesis and widen a further scope of studying a phenomenon. However, case studies should not be used to determine cause and effect as they don’t have the capacity to make accurate predictions.
  • Surveys – A survey is a set of questions that is administered to a population, also known as respondents. Surveys are a popular market research tool that helps collect meaningful insights from the respondents. To gather good quality data, a survey should have good survey questions, which should be a balanced mix of open-ended and close-ended questions .
  • Naturalistic Observation – Naturalistic observations are carried out in the natural environment without disturbing the person/ object in observation. It is much like taking notes about people in a supermarket without letting them know. This leads to a greater validity of collected data because people are unaware they are being observed here. This tends to bring out their natural characteristics.

Correlational research also uses naturalistic observation to collect data. However, in addition, it uses archival data to gather information. Archival data is collected from previously conducted research of a similar nature. Archival data is collected through primary research.

In contrast to naturalistic observation, information collected through archived is straightforward. For example, counting the number of people named Jacinda in the United States using their social security number.  

Descriptive Research vs Correlational Research

descriptive_research_vs_correlational_research

Descriptive research is used to uncover new facts and the meaning of research.Correlational research is carried out to measure two variables.
Descriptive research is analytical, where in-depth studies help collect information during research.Correlational nature is mathematical in nature. A positive correlation appears coefficient to statistically measure the relationship between two variables.
Descriptive nature provides a knowledge base for carrying out other This type of research is used to explore the extent to which two variables in a study are related.
Research was done to obtain information on the hospitality industry’s most widely used employee motivation tools.Research has been done to know if cancer and marriage are related.

Features of Descriptive Correlational Research

The key features of descriptive correlational research include the following:

features_of_descriptive_correlational_research

01. Description

The main goal, just like with descriptive research, is to describe the variables of interest thoroughly. Researchers aim to explain a certain group or event’s traits, behaviors, or attitudes. 

02. Relationships

Like correlational research, descriptive correlational research looks at how two or more factors are related. It looks at how variables are connected to each other, such as how they change over time or how they are linked.

03. Quantitative analysis

Most methods for analyzing quantitative analysis data are used in descriptive correlational research. Researchers use statistical methods to study and measure the size and direction of relationships between variables.

04. No manipulation

As with correlational research, the researcher does not change or control the variables. The data is taken in its natural environment without any changes or interference.

05. Cross-sectional or longitudinal

Cross-sectional or longitudinal designs can be used for descriptive correlational research. It collects data at one point in time, while longitudinal research collects data over a long period of time to look at changes and relationships over time. 

Examples of descriptive correlational research

For example, descriptive correlational research could look at the link between a person’s age and how much money they make. The researcher would take a sample of people’s ages and incomes and then look at the data to see if there is a link between the two factors.

  • Example 1 : A research project is done to find out if there is a link between how long college students sleep and how well they do in school. They keep track of how many hours kids sleep each night and what their GPAs are. By studying the data, the researcher can describe how the students sleep and find out if there is a link between how long they sleep and how well they do in school.
  • Example 2 : A researcher wants to know how people’s exercise habits affect their physical health if they are between the ages of 40 and 60. They take notes on things like how often and how hard you work out, your body mass index (BMI), blood pressure, and cholesterol numbers. By analyzing the data, the researcher can describe the participants’ exercise habits and physical health and look for any links between these factors.
  • Example 3 : Let’s say a researcher wants to find out if college students who work out feel less stressed. Using a poll, the researcher finds out how many hours students spend exercising each week and how stressed they feel. By looking at the data, the researcher may find that there is a moderate negative correlation between exercise and stress levels. This means that as exercise grows, stress levels tend to go down. 

Descriptive correlational research is a good way to learn about the characteristics of a population or group and the relationships between its different parts. It lets researchers describe variables in detail and look into their relationships without suggesting that one variable caused another. 

Descriptive correlational research gives useful insights and can be used as a starting point for more research or to come up with hypotheses. It’s important to be aware of the problems with this type of study, such as the fact that it can’t show cause and effect and relies on cross-sectional data. 

Still, descriptive correlational research helps us understand things and makes making decisions in many areas easier.

QuestionPro is a very useful tool for descriptive correlational research. Its many features and easy-to-use interface help researchers collect and study data quickly, giving them a better understanding of the characteristics and relationships between variables in a certain population or group. 

The different kinds of questions, analytical research tools, and reporting features on the software improve the research process and help researchers come up with useful results. QuestionPro makes it easier to do descriptive correlational research, which makes it a useful tool for learning important things and making decisions in many fields.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

descriptive correlational research definition

360 Degree Feedback Spider Chart is Back!

Aug 14, 2024

Jotform vs Wufoo

Jotform vs Wufoo: Comparison of Features and Prices

Aug 13, 2024

descriptive correlational research definition

Product or Service: Which is More Important? — Tuesday CX Thoughts

descriptive correlational research definition

Life@QuestionPro: Thomas Maiwald-Immer’s Experience

Aug 9, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 3. Psychological Science

3.2 Psychologists Use Descriptive, Correlational, and Experimental Research Designs to Understand Behaviour

Learning objectives.

  • Differentiate the goals of descriptive, correlational, and experimental research designs and explain the advantages and disadvantages of each.
  • Explain the goals of descriptive research and the statistical techniques used to interpret it.
  • Summarize the uses of correlational research and describe why correlational research cannot be used to infer causality.
  • Review the procedures of experimental research and explain how it can be used to draw causal inferences.

Psychologists agree that if their ideas and theories about human behaviour are to be taken seriously, they must be backed up by data. However, the research of different psychologists is designed with different goals in mind, and the different goals require different approaches. These varying approaches, summarized in Table 3.2, are known as research designs . A research design  is the specific method a researcher uses to collect, analyze, and interpret data . Psychologists use three major types of research designs in their research, and each provides an essential avenue for scientific investigation. Descriptive research  is research designed to provide a snapshot of the current state of affairs . Correlational research  is research designed to discover relationships among variables and to allow the prediction of future events from present knowledge . Experimental research  is research in which initial equivalence among research participants in more than one group is created, followed by a manipulation of a given experience for these groups and a measurement of the influence of the manipulation . Each of the three research designs varies according to its strengths and limitations, and it is important to understand how each differs.

Table 3.2 Characteristics of the Three Research Designs
Research design Goal Advantages Disadvantages
Descriptive To create a snapshot of the current state of affairs Provides a relatively complete picture of what is occurring at a given time. Allows the development of questions for further study. Does not assess relationships among variables. May be unethical if participants do not know they are being observed.
Correlational To assess the relationships between and among two or more variables Allows testing of expected relationships between and among variables and the making of predictions. Can assess these relationships in everyday life events. Cannot be used to draw inferences about the causal relationships between and among the variables.
Experimental To assess the causal impact of one or more experimental manipulations on a dependent variable Allows drawing of conclusions about the causal relationships among variables. Cannot experimentally manipulate many important variables. May be expensive and time consuming.
Source: Stangor, 2011.

Descriptive Research: Assessing the Current State of Affairs

Descriptive research is designed to create a snapshot of the current thoughts, feelings, or behaviour of individuals. This section reviews three types of descriptive research : case studies , surveys , and naturalistic observation (Figure 3.4).

Sometimes the data in a descriptive research project are based on only a small set of individuals, often only one person or a single small group. These research designs are known as case studies — descriptive records of one or more individual’s experiences and behaviour . Sometimes case studies involve ordinary individuals, as when developmental psychologist Jean Piaget used his observation of his own children to develop his stage theory of cognitive development. More frequently, case studies are conducted on individuals who have unusual or abnormal experiences or characteristics or who find themselves in particularly difficult or stressful situations. The assumption is that by carefully studying individuals who are socially marginal, who are experiencing unusual situations, or who are going through a difficult phase in their lives, we can learn something about human nature.

Sigmund Freud was a master of using the psychological difficulties of individuals to draw conclusions about basic psychological processes. Freud wrote case studies of some of his most interesting patients and used these careful examinations to develop his important theories of personality. One classic example is Freud’s description of “Little Hans,” a child whose fear of horses the psychoanalyst interpreted in terms of repressed sexual impulses and the Oedipus complex (Freud, 1909/1964).

Another well-known case study is Phineas Gage, a man whose thoughts and emotions were extensively studied by cognitive psychologists after a railroad spike was blasted through his skull in an accident. Although there are questions about the interpretation of this case study (Kotowicz, 2007), it did provide early evidence that the brain’s frontal lobe is involved in emotion and morality (Damasio et al., 2005). An interesting example of a case study in clinical psychology is described by Rokeach (1964), who investigated in detail the beliefs of and interactions among three patients with schizophrenia, all of whom were convinced they were Jesus Christ.

In other cases the data from descriptive research projects come in the form of a survey — a measure administered through either an interview or a written questionnaire to get a picture of the beliefs or behaviours of a sample of people of interest . The people chosen to participate in the research (known as the sample) are selected to be representative of all the people that the researcher wishes to know about (the population). In election polls, for instance, a sample is taken from the population of all “likely voters” in the upcoming elections.

The results of surveys may sometimes be rather mundane, such as “Nine out of 10 doctors prefer Tymenocin” or “The median income in the city of Hamilton is $46,712.” Yet other times (particularly in discussions of social behaviour), the results can be shocking: “More than 40,000 people are killed by gunfire in the United States every year” or “More than 60% of women between the ages of 50 and 60 suffer from depression.” Descriptive research is frequently used by psychologists to get an estimate of the prevalence (or incidence ) of psychological disorders.

A final type of descriptive research — known as naturalistic observation — is research based on the observation of everyday events . For instance, a developmental psychologist who watches children on a playground and describes what they say to each other while they play is conducting descriptive research, as is a biopsychologist who observes animals in their natural habitats. One example of observational research involves a systematic procedure known as the strange situation , used to get a picture of how adults and young children interact. The data that are collected in the strange situation are systematically coded in a coding sheet such as that shown in Table 3.3.

Table 3.3 Sample Coding Form Used to Assess Child’s and Mother’s Behaviour in the Strange Situation
Coder name:
This table represents a sample coding sheet from an episode of the “strange situation,” in which an infant (usually about one year old) is observed playing in a room with two adults — the child’s mother and a stranger. Each of the four coding categories is scored by the coder from 1 (the baby makes no effort to engage in the behaviour) to 7 (the baby makes a significant effort to engage in the behaviour). More information about the meaning of the coding can be found in Ainsworth, Blehar, Waters, and Wall (1978).
Coding categories explained
Proximity The baby moves toward, grasps, or climbs on the adult.
Maintaining contact The baby resists being put down by the adult by crying or trying to climb back up.
Resistance The baby pushes, hits, or squirms to be put down from the adult’s arms.
Avoidance The baby turns away or moves away from the adult.
Episode Coding categories
Proximity Contact Resistance Avoidance
Mother and baby play alone 1 1 1 1
Mother puts baby down 4 1 1 1
Stranger enters room 1 2 3 1
Mother leaves room; stranger plays with baby 1 3 1 1
Mother re-enters, greets and may comfort baby, then leaves again 4 2 1 2
Stranger tries to play with baby 1 3 1 1
Mother re-enters and picks up baby 6 6 1 2
Source: Stang0r, 2011.

The results of descriptive research projects are analyzed using descriptive statistics — numbers that summarize the distribution of scores on a measured variable . Most variables have distributions similar to that shown in Figure 3.5 where most of the scores are located near the centre of the distribution, and the distribution is symmetrical and bell-shaped. A data distribution that is shaped like a bell is known as a normal distribution .

A distribution can be described in terms of its central tendency — that is, the point in the distribution around which the data are centred — and its dispersion, or spread . The arithmetic average, or arithmetic mean , symbolized by the letter M , is the most commonly used measure of central tendency . It is computed by calculating the sum of all the scores of the variable and dividing this sum by the number of participants in the distribution (denoted by the letter N ). In the data presented in Figure 3.5 the mean height of the students is 67.12 inches (170.5 cm). The sample mean is usually indicated by the letter M .

In some cases, however, the data distribution is not symmetrical. This occurs when there are one or more extreme scores (known as outliers ) at one end of the distribution. Consider, for instance, the variable of family income (see Figure 3.6), which includes an outlier (a value of $3,800,000). In this case the mean is not a good measure of central tendency. Although it appears from Figure 3.6 that the central tendency of the family income variable should be around $70,000, the mean family income is actually $223,960. The single very extreme income has a disproportionate impact on the mean, resulting in a value that does not well represent the central tendency.

The median is used as an alternative measure of central tendency when distributions are not symmetrical. The median  is the score in the center of the distribution, meaning that 50% of the scores are greater than the median and 50% of the scores are less than the median . In our case, the median household income ($73,000) is a much better indication of central tendency than is the mean household income ($223,960).

A final measure of central tendency, known as the mode , represents the value that occurs most frequently in the distribution . You can see from Figure 3.6 that the mode for the family income variable is $93,000 (it occurs four times).

In addition to summarizing the central tendency of a distribution, descriptive statistics convey information about how the scores of the variable are spread around the central tendency. Dispersion refers to the extent to which the scores are all tightly clustered around the central tendency , as seen in Figure 3.7.

Or they may be more spread out away from it, as seen in Figure 3.8.

One simple measure of dispersion is to find the largest (the maximum ) and the smallest (the minimum ) observed values of the variable and to compute the range of the variable as the maximum observed score minus the minimum observed score. You can check that the range of the height variable in Figure 3.5 is 72 – 62 = 10. The standard deviation , symbolized as s , is the most commonly used measure of dispersion . Distributions with a larger standard deviation have more spread. The standard deviation of the height variable is s = 2.74, and the standard deviation of the family income variable is s = $745,337.

An advantage of descriptive research is that it attempts to capture the complexity of everyday behaviour. Case studies provide detailed information about a single person or a small group of people, surveys capture the thoughts or reported behaviours of a large population of people, and naturalistic observation objectively records the behaviour of people or animals as it occurs naturally. Thus descriptive research is used to provide a relatively complete understanding of what is currently happening.

Despite these advantages, descriptive research has a distinct disadvantage in that, although it allows us to get an idea of what is currently happening, it is usually limited to static pictures. Although descriptions of particular experiences may be interesting, they are not always transferable to other individuals in other situations, nor do they tell us exactly why specific behaviours or events occurred. For instance, descriptions of individuals who have suffered a stressful event, such as a war or an earthquake, can be used to understand the individuals’ reactions to the event but cannot tell us anything about the long-term effects of the stress. And because there is no comparison group that did not experience the stressful situation, we cannot know what these individuals would be like if they hadn’t had the stressful experience.

Correlational Research: Seeking Relationships among Variables

In contrast to descriptive research, which is designed primarily to provide static pictures, correlational research involves the measurement of two or more relevant variables and an assessment of the relationship between or among those variables. For instance, the variables of height and weight are systematically related (correlated) because taller people generally weigh more than shorter people. In the same way, study time and memory errors are also related, because the more time a person is given to study a list of words, the fewer errors he or she will make. When there are two variables in the research design, one of them is called the predictor variable and the other the outcome variable . The research design can be visualized as shown in Figure 3.9, where the curved arrow represents the expected correlation between these two variables.

One way of organizing the data from a correlational study with two variables is to graph the values of each of the measured variables using a scatter plot . As you can see in Figure 3.10 a scatter plot  is a visual image of the relationship between two variables . A point is plotted for each individual at the intersection of his or her scores for the two variables. When the association between the variables on the scatter plot can be easily approximated with a straight line , as in parts (a) and (b) of Figure 3.10 the variables are said to have a linear relationship .

When the straight line indicates that individuals who have above-average values for one variable also tend to have above-average values for the other variable , as in part (a), the relationship is said to be positive linear . Examples of positive linear relationships include those between height and weight, between education and income, and between age and mathematical abilities in children. In each case, people who score higher on one of the variables also tend to score higher on the other variable. Negative linear relationships , in contrast, as shown in part (b), occur when above-average values for one variable tend to be associated with below-average values for the other variable. Examples of negative linear relationships include those between the age of a child and the number of diapers the child uses, and between practice on and errors made on a learning task. In these cases, people who score higher on one of the variables tend to score lower on the other variable.

Relationships between variables that cannot be described with a straight line are known as nonlinear relationships . Part (c) of Figure 3.10 shows a common pattern in which the distribution of the points is essentially random. In this case there is no relationship at all between the two variables, and they are said to be independent . Parts (d) and (e) of Figure 3.10 show patterns of association in which, although there is an association, the points are not well described by a single straight line. For instance, part (d) shows the type of relationship that frequently occurs between anxiety and performance. Increases in anxiety from low to moderate levels are associated with performance increases, whereas increases in anxiety from moderate to high levels are associated with decreases in performance. Relationships that change in direction and thus are not described by a single straight line are called curvilinear relationships .

The most common statistical measure of the strength of linear relationships among variables is the Pearson correlation coefficient , which is symbolized by the letter r . The value of the correlation coefficient ranges from r = –1.00 to r = +1.00. The direction of the linear relationship is indicated by the sign of the correlation coefficient. Positive values of r (such as r = .54 or r = .67) indicate that the relationship is positive linear (i.e., the pattern of the dots on the scatter plot runs from the lower left to the upper right), whereas negative values of r (such as r = –.30 or r = –.72) indicate negative linear relationships (i.e., the dots run from the upper left to the lower right). The strength of the linear relationship is indexed by the distance of the correlation coefficient from zero (its absolute value). For instance, r = –.54 is a stronger relationship than r = .30, and r = .72 is a stronger relationship than r = –.57. Because the Pearson correlation coefficient only measures linear relationships, variables that have curvilinear relationships are not well described by r , and the observed correlation will be close to zero.

It is also possible to study relationships among more than two measures at the same time. A research design in which more than one predictor variable is used to predict a single outcome variable is analyzed through multiple regression (Aiken & West, 1991).  Multiple regression  is a statistical technique, based on correlation coefficients among variables, that allows predicting a single outcome variable from more than one predictor variable . For instance, Figure 3.11 shows a multiple regression analysis in which three predictor variables (Salary, job satisfaction, and years employed) are used to predict a single outcome (job performance). The use of multiple regression analysis shows an important advantage of correlational research designs — they can be used to make predictions about a person’s likely score on an outcome variable (e.g., job performance) based on knowledge of other variables.

An important limitation of correlational research designs is that they cannot be used to draw conclusions about the causal relationships among the measured variables. Consider, for instance, a researcher who has hypothesized that viewing violent behaviour will cause increased aggressive play in children. He has collected, from a sample of Grade 4 children, a measure of how many violent television shows each child views during the week, as well as a measure of how aggressively each child plays on the school playground. From his collected data, the researcher discovers a positive correlation between the two measured variables.

Although this positive correlation appears to support the researcher’s hypothesis, it cannot be taken to indicate that viewing violent television causes aggressive behaviour. Although the researcher is tempted to assume that viewing violent television causes aggressive play, there are other possibilities. One alternative possibility is that the causal direction is exactly opposite from what has been hypothesized. Perhaps children who have behaved aggressively at school develop residual excitement that leads them to want to watch violent television shows at home (Figure 3.13):

Although this possibility may seem less likely, there is no way to rule out the possibility of such reverse causation on the basis of this observed correlation. It is also possible that both causal directions are operating and that the two variables cause each other (Figure 3.14).

Still another possible explanation for the observed correlation is that it has been produced by the presence of a common-causal variable (also known as a third variable ). A common-causal variable  is a variable that is not part of the research hypothesis but that causes both the predictor and the outcome variable and thus produces the observed correlation between them . In our example, a potential common-causal variable is the discipline style of the children’s parents. Parents who use a harsh and punitive discipline style may produce children who like to watch violent television and who also behave aggressively in comparison to children whose parents use less harsh discipline (Figure 3.15)

In this case, television viewing and aggressive play would be positively correlated (as indicated by the curved arrow between them), even though neither one caused the other but they were both caused by the discipline style of the parents (the straight arrows). When the predictor and outcome variables are both caused by a common-causal variable, the observed relationship between them is said to be spurious . A spurious relationship  is a relationship between two variables in which a common-causal variable produces and “explains away” the relationship . If effects of the common-causal variable were taken away, or controlled for, the relationship between the predictor and outcome variables would disappear. In the example, the relationship between aggression and television viewing might be spurious because by controlling for the effect of the parents’ disciplining style, the relationship between television viewing and aggressive behaviour might go away.

Common-causal variables in correlational research designs can be thought of as mystery variables because, as they have not been measured, their presence and identity are usually unknown to the researcher. Since it is not possible to measure every variable that could cause both the predictor and outcome variables, the existence of an unknown common-causal variable is always a possibility. For this reason, we are left with the basic limitation of correlational research: correlation does not demonstrate causation. It is important that when you read about correlational research projects, you keep in mind the possibility of spurious relationships, and be sure to interpret the findings appropriately. Although correlational research is sometimes reported as demonstrating causality without any mention being made of the possibility of reverse causation or common-causal variables, informed consumers of research, like you, are aware of these interpretational problems.

In sum, correlational research designs have both strengths and limitations. One strength is that they can be used when experimental research is not possible because the predictor variables cannot be manipulated. Correlational designs also have the advantage of allowing the researcher to study behaviour as it occurs in everyday life. And we can also use correlational designs to make predictions — for instance, to predict from the scores on their battery of tests the success of job trainees during a training session. But we cannot use such correlational information to determine whether the training caused better job performance. For that, researchers rely on experiments.

Experimental Research: Understanding the Causes of Behaviour

The goal of experimental research design is to provide more definitive conclusions about the causal relationships among the variables in the research hypothesis than is available from correlational designs. In an experimental research design, the variables of interest are called the independent variable (or variables ) and the dependent variable . The independent variable  in an experiment is the causing variable that is created (manipulated) by the experimenter . The dependent variable  in an experiment is a measured variable that is expected to be influenced by the experimental manipulation . The research hypothesis suggests that the manipulated independent variable or variables will cause changes in the measured dependent variables. We can diagram the research hypothesis by using an arrow that points in one direction. This demonstrates the expected direction of causality (Figure 3.16):

Research Focus: Video Games and Aggression

Consider an experiment conducted by Anderson and Dill (2000). The study was designed to test the hypothesis that viewing violent video games would increase aggressive behaviour. In this research, male and female undergraduates from Iowa State University were given a chance to play with either a violent video game (Wolfenstein 3D) or a nonviolent video game (Myst). During the experimental session, the participants played their assigned video games for 15 minutes. Then, after the play, each participant played a competitive game with an opponent in which the participant could deliver blasts of white noise through the earphones of the opponent. The operational definition of the dependent variable (aggressive behaviour) was the level and duration of noise delivered to the opponent. The design of the experiment is shown in Figure 3.17

Two advantages of the experimental research design are (a) the assurance that the independent variable (also known as the experimental manipulation ) occurs prior to the measured dependent variable, and (b) the creation of initial equivalence between the conditions of the experiment (in this case by using random assignment to conditions).

Experimental designs have two very nice features. For one, they guarantee that the independent variable occurs prior to the measurement of the dependent variable. This eliminates the possibility of reverse causation. Second, the influence of common-causal variables is controlled, and thus eliminated, by creating initial equivalence among the participants in each of the experimental conditions before the manipulation occurs.

The most common method of creating equivalence among the experimental conditions is through random assignment to conditions, a procedure in which the condition that each participant is assigned to is determined through a random process, such as drawing numbers out of an envelope or using a random number table . Anderson and Dill first randomly assigned about 100 participants to each of their two groups (Group A and Group B). Because they used random assignment to conditions, they could be confident that, before the experimental manipulation occurred, the students in Group A were, on average, equivalent to the students in Group B on every possible variable, including variables that are likely to be related to aggression, such as parental discipline style, peer relationships, hormone levels, diet — and in fact everything else.

Then, after they had created initial equivalence, Anderson and Dill created the experimental manipulation — they had the participants in Group A play the violent game and the participants in Group B play the nonviolent game. Then they compared the dependent variable (the white noise blasts) between the two groups, finding that the students who had viewed the violent video game gave significantly longer noise blasts than did the students who had played the nonviolent game.

Anderson and Dill had from the outset created initial equivalence between the groups. This initial equivalence allowed them to observe differences in the white noise levels between the two groups after the experimental manipulation, leading to the conclusion that it was the independent variable (and not some other variable) that caused these differences. The idea is that the only thing that was different between the students in the two groups was the video game they had played.

Despite the advantage of determining causation, experiments do have limitations. One is that they are often conducted in laboratory situations rather than in the everyday lives of people. Therefore, we do not know whether results that we find in a laboratory setting will necessarily hold up in everyday life. Second, and more important, is that some of the most interesting and key social variables cannot be experimentally manipulated. If we want to study the influence of the size of a mob on the destructiveness of its behaviour, or to compare the personality characteristics of people who join suicide cults with those of people who do not join such cults, these relationships must be assessed using correlational designs, because it is simply not possible to experimentally manipulate these variables.

Key Takeaways

  • Descriptive, correlational, and experimental research designs are used to collect and analyze data.
  • Descriptive designs include case studies, surveys, and naturalistic observation. The goal of these designs is to get a picture of the current thoughts, feelings, or behaviours in a given group of people. Descriptive research is summarized using descriptive statistics.
  • Correlational research designs measure two or more relevant variables and assess a relationship between or among them. The variables may be presented on a scatter plot to visually show the relationships. The Pearson Correlation Coefficient ( r ) is a measure of the strength of linear relationship between two variables.
  • Common-causal variables may cause both the predictor and outcome variable in a correlational design, producing a spurious relationship. The possibility of common-causal variables makes it impossible to draw causal conclusions from correlational research designs.
  • Experimental research involves the manipulation of an independent variable and the measurement of a dependent variable. Random assignment to conditions is normally used to create initial equivalence between the groups, allowing researchers to draw causal conclusions.

Exercises and Critical Thinking

  • There is a negative correlation between the row that a student sits in in a large class (when the rows are numbered from front to back) and his or her final grade in the class. Do you think this represents a causal relationship or a spurious relationship, and why?
  • Think of two variables (other than those mentioned in this book) that are likely to be correlated, but in which the correlation is probably spurious. What is the likely common-causal variable that is producing the relationship?
  • Imagine a researcher wants to test the hypothesis that participating in psychotherapy will cause a decrease in reported anxiety. Describe the type of research design the investigator might use to draw this conclusion. What would be the independent and dependent variables in the research?

Image Attributions

Figure 3.4: “ Reading newspaper ” by Alaskan Dude (http://commons.wikimedia.org/wiki/File:Reading_newspaper.jpg) is licensed under CC BY 2.0

Aiken, L., & West, S. (1991).  Multiple regression: Testing and interpreting interactions . Newbury Park, CA: Sage.

Ainsworth, M. S., Blehar, M. C., Waters, E., & Wall, S. (1978).  Patterns of attachment: A psychological study of the strange situation . Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, C. A., & Dill, K. E. (2000). Video games and aggressive thoughts, feelings, and behavior in the laboratory and in life.  Journal of Personality and Social Psychology, 78 (4), 772–790.

Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., Damasio, A. R., Cacioppo, J. T., & Berntson, G. G. (2005). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. In  Social neuroscience: Key readings.  (pp. 21–28). New York, NY: Psychology Press.

Freud, S. (1909/1964). Analysis of phobia in a five-year-old boy. In E. A. Southwell & M. Merbaum (Eds.),  Personality: Readings in theory and research  (pp. 3–32). Belmont, CA: Wadsworth. (Original work published 1909).

Kotowicz, Z. (2007). The strange case of Phineas Gage.  History of the Human Sciences, 20 (1), 115–131.

Rokeach, M. (1964).  The three Christs of Ypsilanti: A psychological study . New York, NY: Knopf.

Stangor, C. (2011). Research methods for the behavioural sciences (4th ed.). Mountain View, CA: Cengage.

Long Descriptions

Figure 3.6 long description: There are 25 families. 24 families have an income between $44,000 and $111,000 and one family has an income of $3,800,000. The mean income is $223,960 while the median income is $73,000. [Return to Figure 3.6]

Figure 3.10 long description: Types of scatter plots.

  • Positive linear, r=positive .82. The plots on the graph form a rough line that runs from lower left to upper right.
  • Negative linear, r=negative .70. The plots on the graph form a rough line that runs from upper left to lower right.
  • Independent, r=0.00. The plots on the graph are spread out around the centre.
  • Curvilinear, r=0.00. The plots of the graph form a rough line that goes up and then down like a hill.
  • Curvilinear, r=0.00. The plots on the graph for a rough line that goes down and then up like a ditch.

[Return to Figure 3.10]

Introduction to Psychology - 1st Canadian Edition Copyright © 2014 by Jennifer Walinga and Charles Stangor is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

descriptive correlational research definition

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Correlational Research | Guide, Design & Examples

Correlational Research | Guide, Design & Examples

Published on 5 May 2022 by Pritha Bhandari . Revised on 5 December 2022.

A correlational research design investigates relationships between variables without the researcher controlling or manipulating any of them.

A correlation reflects the strength and/or direction of the relationship between two (or more) variables. The direction of a correlation can be either positive or negative.

Positive correlation Both variables change in the same direction As height increases, weight also increases
Negative correlation The variables change in opposite directions As coffee consumption increases, tiredness decreases
Zero correlation There is no relationship between the variables Coffee consumption is not correlated with height

Table of contents

Correlational vs experimental research, when to use correlational research, how to collect correlational data, how to analyse correlational data, correlation and causation, frequently asked questions about correlational research.

Correlational and experimental research both use quantitative methods to investigate relationships between variables. But there are important differences in how data is collected and the types of conclusions you can draw.

Correlational research Experimental research
Purpose Used to test strength of association between variables Used to test cause-and-effect relationships between variables
Variables Variables are only observed with no manipulation or intervention by researchers An is manipulated and a dependent variable is observed
Control Limited is used, so other variables may play a role in the relationship are controlled so that they can’t impact your variables of interest
Validity High : you can confidently generalise your conclusions to other populations or settings High : you can confidently draw conclusions about causation

Prevent plagiarism, run a free check.

Correlational research is ideal for gathering data quickly from natural settings. That helps you generalise your findings to real-life situations in an externally valid way.

There are a few situations where correlational research is an appropriate choice.

To investigate non-causal relationships

You want to find out if there is an association between two variables, but you don’t expect to find a causal relationship between them.

Correlational research can provide insights into complex real-world relationships, helping researchers develop theories and make predictions.

To explore causal relationships between variables

You think there is a causal relationship between two variables, but it is impractical, unethical, or too costly to conduct experimental research that manipulates one of the variables.

Correlational research can provide initial indications or additional support for theories about causal relationships.

To test new measurement tools

You have developed a new instrument for measuring your variable, and you need to test its reliability or validity .

Correlational research can be used to assess whether a tool consistently or accurately captures the concept it aims to measure.

There are many different methods you can use in correlational research. In the social and behavioural sciences, the most common data collection methods for this type of research include surveys, observations, and secondary data.

It’s important to carefully choose and plan your methods to ensure the reliability and validity of your results. You should carefully select a representative sample so that your data reflects the population you’re interested in without bias .

In survey research , you can use questionnaires to measure your variables of interest. You can conduct surveys online, by post, by phone, or in person.

Surveys are a quick, flexible way to collect standardised data from many participants, but it’s important to ensure that your questions are worded in an unbiased way and capture relevant insights.

Naturalistic observation

Naturalistic observation is a type of field research where you gather data about a behaviour or phenomenon in its natural environment.

This method often involves recording, counting, describing, and categorising actions and events. Naturalistic observation can include both qualitative and quantitative elements, but to assess correlation, you collect data that can be analysed quantitatively (e.g., frequencies, durations, scales, and amounts).

Naturalistic observation lets you easily generalise your results to real-world contexts, and you can study experiences that aren’t replicable in lab settings. But data analysis can be time-consuming and unpredictable, and researcher bias may skew the interpretations.

Secondary data

Instead of collecting original data, you can also use data that has already been collected for a different purpose, such as official records, polls, or previous studies.

Using secondary data is inexpensive and fast, because data collection is complete. However, the data may be unreliable, incomplete, or not entirely relevant, and you have no control over the reliability or validity of the data collection procedures.

After collecting data, you can statistically analyse the relationship between variables using correlation or regression analyses, or both. You can also visualise the relationships between variables with a scatterplot.

Different types of correlation coefficients and regression analyses are appropriate for your data based on their levels of measurement and distributions .

Correlation analysis

Using a correlation analysis, you can summarise the relationship between variables into a correlation coefficient : a single number that describes the strength and direction of the relationship between variables. With this number, you’ll quantify the degree of the relationship between variables.

The Pearson product-moment correlation coefficient, also known as Pearson’s r , is commonly used for assessing a linear relationship between two quantitative variables.

Correlation coefficients are usually found for two variables at a time, but you can use a multiple correlation coefficient for three or more variables.

Regression analysis

With a regression analysis , you can predict how much a change in one variable will be associated with a change in the other variable. The result is a regression equation that describes the line on a graph of your variables.

You can use this equation to predict the value of one variable based on the given value(s) of the other variable(s). It’s best to perform a regression analysis after testing for a correlation between your variables.

It’s important to remember that correlation does not imply causation . Just because you find a correlation between two things doesn’t mean you can conclude one of them causes the other, for a few reasons.

Directionality problem

If two variables are correlated, it could be because one of them is a cause and the other is an effect. But the correlational research design doesn’t allow you to infer which is which. To err on the side of caution, researchers don’t conclude causality from correlational studies.

Third variable problem

A confounding variable is a third variable that influences other variables to make them seem causally related even though they are not. Instead, there are separate causal links between the confounder and each variable.

In correlational research, there’s limited or no researcher control over extraneous variables . Even if you statistically control for some potential confounders, there may still be other hidden variables that disguise the relationship between your study variables.

Although a correlational study can’t demonstrate causation on its own, it can help you develop a causal hypothesis that’s tested in controlled experiments.

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, December 05). Correlational Research | Guide, Design & Examples. Scribbr. Retrieved 12 August 2024, from https://www.scribbr.co.uk/research-methods/correlational-research-design/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, a quick guide to experimental design | 5 steps & examples, quasi-experimental design | definition, types & examples, qualitative vs quantitative research | examples & methods.

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7.2 Correlational Research

Learning objectives.

  • Define correlational research and give several examples.
  • Explain why a researcher might choose to conduct correlational research rather than experimental research or another type of nonexperimental research.

What Is Correlational Research?

Correlational research is a type of nonexperimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are essentially two reasons that researchers interested in statistical relationships between variables would choose to conduct a correlational study rather than an experiment. The first is that they do not believe that the statistical relationship is a causal one. For example, a researcher might evaluate the validity of a brief extraversion test by administering it to a large group of participants along with a longer extraversion test that has already been shown to be valid. This researcher might then check to see whether participants’ scores on the brief test are strongly correlated with their scores on the longer one. Neither test score is thought to cause the other, so there is no independent variable to manipulate. In fact, the terms independent variable and dependent variable do not apply to this kind of research.

The other reason that researchers would choose to use a correlational study rather than an experiment is that the statistical relationship of interest is thought to be causal, but the researcher cannot manipulate the independent variable because it is impossible, impractical, or unethical. For example, Allen Kanner and his colleagues thought that the number of “daily hassles” (e.g., rude salespeople, heavy traffic) that people experience affects the number of physical and psychological symptoms they have (Kanner, Coyne, Schaefer, & Lazarus, 1981). But because they could not manipulate the number of daily hassles their participants experienced, they had to settle for measuring the number of daily hassles—along with the number of symptoms—using self-report questionnaires. Although the strong positive relationship they found between these two variables is consistent with their idea that hassles cause symptoms, it is also consistent with the idea that symptoms cause hassles or that some third variable (e.g., neuroticism) causes both.

A common misconception among beginning researchers is that correlational research must involve two quantitative variables, such as scores on two extraversion tests or the number of hassles and number of symptoms people have experienced. However, the defining feature of correlational research is that the two variables are measured—neither one is manipulated—and this is true regardless of whether the variables are quantitative or categorical. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a correlational study because the researcher did not manipulate the students’ nationalities. The same is true of the study by Cacioppo and Petty comparing college faculty and factory workers in terms of their need for cognition. It is a correlational study because the researchers did not manipulate the participants’ occupations.

Figure 7.2 “Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists” shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a correlational study because it is unclear whether the independent variable was manipulated. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then it is an experiment. If the researcher simply asked participants whether they made daily to-do lists, then it is a correlational study. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a correlational study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead (the directionality problem). Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed (the third-variable problem). The crucial point is that what defines a study as experimental or correlational is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. It is how the study is conducted.

Figure 7.2 Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Data Collection in Correlational Research

Again, the defining feature of correlational research is that neither variable is manipulated. It does not matter how or where the variables are measured. A researcher could have participants come to a laboratory to complete a computerized backward digit span task and a computerized risky decision-making task and then assess the relationship between participants’ scores on the two tasks. Or a researcher could go to a shopping mall to ask people about their attitudes toward the environment and their shopping habits and then assess the relationship between these two variables. Both of these studies would be correlational because no independent variable is manipulated. However, because some approaches to data collection are strongly associated with correlational research, it makes sense to discuss them here. The two we will focus on are naturalistic observation and archival data. A third, survey research, is discussed in its own chapter.

Naturalistic Observation

Naturalistic observation is an approach to data collection that involves observing people’s behavior in the environment in which it typically occurs. Thus naturalistic observation is a type of field research (as opposed to a type of laboratory research). It could involve observing shoppers in a grocery store, children on a school playground, or psychiatric inpatients in their wards. Researchers engaged in naturalistic observation usually make their observations as unobtrusively as possible so that participants are often not aware that they are being studied. Ethically, this is considered to be acceptable if the participants remain anonymous and the behavior occurs in a public setting where people would not normally have an expectation of privacy. Grocery shoppers putting items into their shopping carts, for example, are engaged in public behavior that is easily observable by store employees and other shoppers. For this reason, most researchers would consider it ethically acceptable to observe them for a study. On the other hand, one of the arguments against the ethicality of the naturalistic observation of “bathroom behavior” discussed earlier in the book is that people have a reasonable expectation of privacy even in a public restroom and that this expectation was violated.

Researchers Robert Levine and Ara Norenzayan used naturalistic observation to study differences in the “pace of life” across countries (Levine & Norenzayan, 1999). One of their measures involved observing pedestrians in a large city to see how long it took them to walk 60 feet. They found that people in some countries walked reliably faster than people in other countries. For example, people in the United States and Japan covered 60 feet in about 12 seconds on average, while people in Brazil and Romania took close to 17 seconds.

Because naturalistic observation takes place in the complex and even chaotic “real world,” there are two closely related issues that researchers must deal with before collecting data. The first is sampling. When, where, and under what conditions will the observations be made, and who exactly will be observed? Levine and Norenzayan described their sampling process as follows:

Male and female walking speed over a distance of 60 feet was measured in at least two locations in main downtown areas in each city. Measurements were taken during main business hours on clear summer days. All locations were flat, unobstructed, had broad sidewalks, and were sufficiently uncrowded to allow pedestrians to move at potentially maximum speeds. To control for the effects of socializing, only pedestrians walking alone were used. Children, individuals with obvious physical handicaps, and window-shoppers were not timed. Thirty-five men and 35 women were timed in most cities. (p. 186)

Precise specification of the sampling process in this way makes data collection manageable for the observers, and it also provides some control over important extraneous variables. For example, by making their observations on clear summer days in all countries, Levine and Norenzayan controlled for effects of the weather on people’s walking speeds.

The second issue is measurement. What specific behaviors will be observed? In Levine and Norenzayan’s study, measurement was relatively straightforward. They simply measured out a 60-foot distance along a city sidewalk and then used a stopwatch to time participants as they walked over that distance. Often, however, the behaviors of interest are not so obvious or objective. For example, researchers Robert Kraut and Robert Johnston wanted to study bowlers’ reactions to their shots, both when they were facing the pins and then when they turned toward their companions (Kraut & Johnston, 1979). But what “reactions” should they observe? Based on previous research and their own pilot testing, Kraut and Johnston created a list of reactions that included “closed smile,” “open smile,” “laugh,” “neutral face,” “look down,” “look away,” and “face cover” (covering one’s face with one’s hands). The observers committed this list to memory and then practiced by coding the reactions of bowlers who had been videotaped. During the actual study, the observers spoke into an audio recorder, describing the reactions they observed. Among the most interesting results of this study was that bowlers rarely smiled while they still faced the pins. They were much more likely to smile after they turned toward their companions, suggesting that smiling is not purely an expression of happiness but also a form of social communication.

A woman bowling

Naturalistic observation has revealed that bowlers tend to smile when they turn away from the pins and toward their companions, suggesting that smiling is not purely an expression of happiness but also a form of social communication.

sieneke toering – bowling big lebowski style – CC BY-NC-ND 2.0.

When the observations require a judgment on the part of the observers—as in Kraut and Johnston’s study—this process is often described as coding . Coding generally requires clearly defining a set of target behaviors. The observers then categorize participants individually in terms of which behavior they have engaged in and the number of times they engaged in each behavior. The observers might even record the duration of each behavior. The target behaviors must be defined in such a way that different observers code them in the same way. This is the issue of interrater reliability. Researchers are expected to demonstrate the interrater reliability of their coding procedure by having multiple raters code the same behaviors independently and then showing that the different observers are in close agreement. Kraut and Johnston, for example, video recorded a subset of their participants’ reactions and had two observers independently code them. The two observers showed that they agreed on the reactions that were exhibited 97% of the time, indicating good interrater reliability.

Archival Data

Another approach to correlational research is the use of archival data , which are data that have already been collected for some other purpose. An example is a study by Brett Pelham and his colleagues on “implicit egotism”—the tendency for people to prefer people, places, and things that are similar to themselves (Pelham, Carvallo, & Jones, 2005). In one study, they examined Social Security records to show that women with the names Virginia, Georgia, Louise, and Florence were especially likely to have moved to the states of Virginia, Georgia, Louisiana, and Florida, respectively.

As with naturalistic observation, measurement can be more or less straightforward when working with archival data. For example, counting the number of people named Virginia who live in various states based on Social Security records is relatively straightforward. But consider a study by Christopher Peterson and his colleagues on the relationship between optimism and health using data that had been collected many years before for a study on adult development (Peterson, Seligman, & Vaillant, 1988). In the 1940s, healthy male college students had completed an open-ended questionnaire about difficult wartime experiences. In the late 1980s, Peterson and his colleagues reviewed the men’s questionnaire responses to obtain a measure of explanatory style—their habitual ways of explaining bad events that happen to them. More pessimistic people tend to blame themselves and expect long-term negative consequences that affect many aspects of their lives, while more optimistic people tend to blame outside forces and expect limited negative consequences. To obtain a measure of explanatory style for each participant, the researchers used a procedure in which all negative events mentioned in the questionnaire responses, and any causal explanations for them, were identified and written on index cards. These were given to a separate group of raters who rated each explanation in terms of three separate dimensions of optimism-pessimism. These ratings were then averaged to produce an explanatory style score for each participant. The researchers then assessed the statistical relationship between the men’s explanatory style as college students and archival measures of their health at approximately 60 years of age. The primary result was that the more optimistic the men were as college students, the healthier they were as older men. Pearson’s r was +.25.

This is an example of content analysis —a family of systematic approaches to measurement using complex archival data. Just as naturalistic observation requires specifying the behaviors of interest and then noting them as they occur, content analysis requires specifying keywords, phrases, or ideas and then finding all occurrences of them in the data. These occurrences can then be counted, timed (e.g., the amount of time devoted to entertainment topics on the nightly news show), or analyzed in a variety of other ways.

Key Takeaways

  • Correlational research involves measuring two variables and assessing the relationship between them, with no manipulation of an independent variable.
  • Correlational research is not defined by where or how the data are collected. However, some approaches to data collection are strongly associated with correlational research. These include naturalistic observation (in which researchers observe people’s behavior in the context in which it normally occurs) and the use of archival data that were already collected for some other purpose.

Discussion: For each of the following, decide whether it is most likely that the study described is experimental or correlational and explain why.

  • An educational researcher compares the academic performance of students from the “rich” side of town with that of students from the “poor” side of town.
  • A cognitive psychologist compares the ability of people to recall words that they were instructed to “read” with their ability to recall words that they were instructed to “imagine.”
  • A manager studies the correlation between new employees’ college grade point averages and their first-year performance reports.
  • An automotive engineer installs different stick shifts in a new car prototype, each time asking several people to rate how comfortable the stick shift feels.
  • A food scientist studies the relationship between the temperature inside people’s refrigerators and the amount of bacteria on their food.
  • A social psychologist tells some research participants that they need to hurry over to the next building to complete a study. She tells others that they can take their time. Then she observes whether they stop to help a research assistant who is pretending to be hurt.

Kanner, A. D., Coyne, J. C., Schaefer, C., & Lazarus, R. S. (1981). Comparison of two modes of stress measurement: Daily hassles and uplifts versus major life events. Journal of Behavioral Medicine, 4 , 1–39.

Kraut, R. E., & Johnston, R. E. (1979). Social and emotional messages of smiling: An ethological approach. Journal of Personality and Social Psychology, 37 , 1539–1553.

Levine, R. V., & Norenzayan, A. (1999). The pace of life in 31 countries. Journal of Cross-Cultural Psychology, 30 , 178–205.

Pelham, B. W., Carvallo, M., & Jones, J. T. (2005). Implicit egotism. Current Directions in Psychological Science, 14 , 106–110.

Peterson, C., Seligman, M. E. P., & Vaillant, G. E. (1988). Pessimistic explanatory style is a risk factor for physical illness: A thirty-five year longitudinal study. Journal of Personality and Social Psychology, 55 , 23–27.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

  • Search Menu

Sign in through your institution

  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Numismatics
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Papyrology
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Social History
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Evolution
  • Language Reference
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Media
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Legal System - Costs and Funding
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Restitution
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business Ethics
  • Business History
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Social Issues in Business and Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic History
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Management of Land and Natural Resources (Social Science)
  • Natural Disasters (Environment)
  • Pollution and Threats to the Environment (Social Science)
  • Social Impact of Environmental Issues (Social Science)
  • Sustainability
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • Ethnic Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Theory
  • Politics and Law
  • Politics of Development
  • Public Administration
  • Public Policy
  • Qualitative Political Methodology
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Disability Studies
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

Music Education Research: An Introduction

  • < Previous chapter
  • Next chapter >

Music Education Research: An Introduction

12 Quantitative Descriptive and Correlational Research

  • Published: February 2023
  • Cite Icon Cite
  • Permissions Icon Permissions

This chapter presents research designs for descriptive and correlational quantitative research. Descriptive research designs are used to address the question “What is x?” Correlational research designs are used to address the question “How are things related?” In contrast to some experimental research designs, in these design types the primary area of interest under investigation is not manipulated by the researcher. Researchers investigating descriptive or correlational research questions commonly use surveys or observational methods to gather data. Surveys are an efficient method for gathering large amounts of information about such things as individuals’ experiences, beliefs, and attitudes. When designing a survey, researchers must consider many things, such as how long it will be and what it will cover. Observation is an important means of gathering data, as when researchers observe video recordings of teachers or students in various situations. Another approach to observational research is the experience sampling method (ESM). In ESM, participants are interrupted at random times throughout the day and asked to respond to questions concerning their experiences in real time. In other words, researchers ask participants what they are doing at the moment they are contacted.

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code
  • Add your ORCID iD

Institutional access

Sign in with a library card.

  • Sign in with username/password
  • Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

Month: Total Views:
March 2023 5
April 2023 2
June 2023 1
July 2023 5
August 2023 11
September 2023 31
October 2023 35
November 2023 29
December 2023 9
January 2024 6
February 2024 9
March 2024 20
April 2024 12
May 2024 16
June 2024 10
July 2024 19
August 2024 15
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

Logo for TRU Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

2.2 Research Designs in Psychology

Learning objectives.

  • Differentiate the goals of descriptive, correlational, and experimental research designs, and explain the advantages and disadvantages of each.

Psychologists agree that if their ideas and theories about human behaviour are to be taken seriously, they must be backed up by data. Researchers have a variety of research designs available to them in testing their predictions. A research design  is the specific method a researcher uses to collect, analyze, and interpret data. Psychologists use three major types of research designs in their research, and each provides an essential avenue for scientific investigation. Descriptive research  is designed to provide a snapshot of the current state of affairs. Correlational research  is designed to discover relationships among variables. Experimental research is designed to assess cause and effect. Each of the three research designs has specific strengths and limitations, and it is important to understand how each differs. See the table below for a summary.

Table 2.2. Characteristics of three major research designs
Research Design Goal Advantages Disadvantages
Descriptive To create a snapshot of the current state of affairs. Provides a relatively complete picture of what is occurring at a given time. Allows the development of questions for further study. Does not assess relationships among variables. Cannot be used to draw inferences about cause and effect.
Correlational To assess the relationships between and among two or more variables. Allows testing of expected relationships between and among variables and the making of predictions. Can assess these relationships in everyday life events. Cannot be used to draw inferences about cause and effect.
Experimental To assess the causal impact of one or more experimental manipulations on a dependent variable. Allows conclusions to be drawn about the causal relationships among variables. Cannot experimentally manipulate many important variables. May be expensive and time-consuming.
Data source: Stangor, 2011.

Descriptive research: Assessing the current state of affairs

Descriptive research is designed to create a snapshot of the current thoughts, feelings, or behaviour of individuals. This section reviews four types of descriptive research: case studies, surveys and tests, naturalistic observation, and laboratory observation.

Sometimes the data in a descriptive research project are collected from only a small set of individuals, often only one person or a single small group. These research designs are known as case studies , which are descriptive records of one or more individual’s experiences and behaviour. Sometimes case studies involve ordinary individuals, as when developmental psychologist Jean Piaget used his observation of his own children to develop his stage theory of cognitive development. More frequently, case studies are conducted on individuals who have unusual or abnormal experiences or characteristics, this may include those who find themselves in particularly difficult or stressful situations. The assumption is that carefully studying individuals can give us results that tell us something about human nature. Of course, one individual cannot necessarily represent a larger group of people who were in the same circumstances.

Sigmund Freud was a master of using the psychological difficulties of individuals to draw conclusions about basic psychological processes. Freud wrote case studies of some of his most interesting patients and used these careful examinations to develop his important theories of personality. One classic example is Freud’s description of “Little Hans,” a child whose fear of horses was interpreted in terms of repressed sexual impulses and the Oedipus complex (Freud, 1909/1964).

Another well-known case study is of Phineas Gage, a man whose thoughts and emotions were extensively studied by cognitive psychologists after a railroad spike was blasted through his skull in an accident. Although there are questions about the interpretation of this case study (Kotowicz, 2007), it did provide early evidence that the brain’s frontal lobe is involved in emotion and morality (Damasio et al., 2005). An interesting example of a case study in clinical psychology is described by Milton Rokeach (1964), who investigated in detail the beliefs of and interactions among three patients with schizophrenia, all of whom were convinced they were Jesus Christ.

Research using case studies has some unique challenges when it comes to interpreting the data. By definition, case studies are based on one or a very small number of individuals. While their situations may be unique, we cannot know how well they represent what would be found in other cases. Furthermore, the information obtained in a case study may be inaccurate or incomplete. While researchers do their best to objectively understand one case, making any generalizations to other people is problematic. Researchers can usually only speculate about cause and effect, and even then, they must do so with great caution. Case studies are particularly useful when researchers are starting out to study something about which there is not much research or as a source for generating hypotheses that can be tested using other research designs.

In other cases, the data from descriptive research projects come in the form of a survey , which is a measure administered through either an interview or a written questionnaire to get a picture of the beliefs or behaviours of a sample of people of interest. The people chosen to participate in the research, known as the sample , are selected to be representative of all the people that the researcher wishes to know about, known as the population . The representativeness of samples is enormously important. For example, a representative sample of Canadians must reflect Canada’s demographic make-up in terms of age, sex, gender orientation, socioeconomic status, ethnicity, and so on. Research based on unrepresentative samples is limited in generalizability , meaning it will not apply well to anyone who was not represented in the sample. Psychologists use surveys to measure a wide variety of behaviours, attitudes, opinions, and facts. Surveys could be used to measure the amount of exercise people get every week, eating or drinking habits, attitudes towards climate change, and so on. These days, many surveys are available online, and they tend to be aimed at a wide audience. Statistics Canada is a rich source of surveys of Canadians on a diverse array of topics. Their databases are searchable and downloadable, and many deal with topics of interest to psychologists, such as mental health, wellness, and so on. Their raw data may be used by psychologists who are able to take advantage of the fact that the data have already been collected. This is called archival research .

Related to surveys are psychological tests . These are measures developed by psychologists to assess one’s score on a psychological construct, such as extroversion, self-esteem, or aptitude for a particular career. The difference between surveys and tests is really down to what is being measured, with surveys more likely to be fact-gathering and tests more likely to provide a score on a psychological construct.

As you might imagine, respondents to surveys and psychological tests are not always accurate or truthful in their replies. Respondents may also skew their answers in the direction they think is more socially desirable or in line with what the researcher expects. Sometimes people do not have good insight into their own behaviour and are not accurate in judging themselves. Sometimes tests have built-in social desirability or lie scales that attempt to help researchers understand when someone’s scores might need to be discarded from the research because they are not accurate.

Tests and surveys are only useful if they are valid and reliable . Validity exists when an instrument actually measures what you think it measures (e.g., a test of intelligence that actually measures how many years of education you have lacks validity). Demonstrating the validity of a test or survey is the responsibility of any researcher who uses the instrument. Reliability is a related but different construct; it exists when a test or survey gives the same responses from time to time or in different situations. For example, if you took an intelligence test three times and every time it gave you a different score, that would not be a reliable test. Demonstrating the reliability of tests and surveys is another responsibility of researchers. There are different types of validity and reliability, and there is a branch of psychology devoted to understanding not only how to demonstrate that tests and surveys are valid and reliable, but also how to improve them.

An important criticism of psychological research is its reliance on so-called WEIRD samples (Henrich, Heine, & Norenzayan, 2010). WEIRD stands for Western, educated, industrialized, rich, and democratic. People fitting the WEIRD description have been over-represented in psychological research, while people from poorer, less-educated backgrounds, for example, have participated far less often. This criticism is important because in psychology we may be trying to understand something about people in general. For example, if we want to understand whether early enrichment programs can boost IQ scores later, we need to conduct this research using people from a variety of backgrounds and situations. Most of the world’s population is not WEIRD, so psychologists trying to conduct research that has broad generalizability need to expand their participant pool to include a more representative sample.

Another type of descriptive research is  naturalistic observation , which refers to research based on the observation of everyday events. For instance, a developmental psychologist who watches children on a playground and describes what they say to each other while they play is conducting naturalistic observation, as is a biopsychologist who observes animals in their natural habitats. Naturalistic observation is challenging because, in order for it to be accurate, the observer must be effectively invisible. Imagine walking onto a playground, armed with a clipboard and pencil to watch children a few feet away. The presence of an adult may change the way the children behave; if the children know they are being watched, they may not behave in the same ways as they would when no adult is present. Researchers conducting naturalistic observation studies have to find ways to recede into the background so that their presence does not cause the behaviour they are watching to change. They also must find ways to record their observations systematically and completely — not an easy task if you are watching children, for example. As such, it is common to have multiple observers working independently; their combined observations can provide a more accurate record of what occurred.

Sometimes, researchers conducting observational research move out of the natural world and into a laboratory. Laboratory observation allows much more control over the situation and setting in which the participants will be observed. The downside to moving into a laboratory is the potential artificiality of the setting; the participants may not behave the same way in the lab as they would in the natural world, so the behaviour that is observed may not be completely authentic. Consider the researcher who is interested in aggression in children. They might go to a school playground and record what occurs; however, this could be quite time-consuming if the frequency is low or if the children are playing some distance away and their behaviour is difficult to interpret. Instead, the researcher could construct a play setting in a laboratory and attempt to observe aggressive behaviours in this smaller and more controlled context; for instance, they could only provide one highly desirable toy instead of one for each child. What they gain in control, they lose in artificiality. In this example, the possibility for children to act differently in the lab than they would in the real world would create a challenge in interpreting results.

Correlational research: Seeking relationships among variables

In contrast to descriptive research — which is designed primarily to provide a snapshot of behaviour, attitudes, and so on — correlational research involves measuring the relationship between two variables. Variables can be behaviours, attitudes, and so on. Anything that can be measured is a potential variable. The key aspect of correlational research is that the researchers are not asking some of their participants to do one thing and others to do something else; all of the participants are providing scores on the same two variables. Correlational research is not about how an individual scores; rather, it seeks to understand the association between two things in a larger sample of people. The previous comments about the representativeness of the sample all apply in correlational research. Researchers try to find a sample that represents the population of interest.

An example of correlation research would be to measure the association between height and weight. We should expect that there is a relationship because taller people have more mass and therefore should weigh more than short people. We know from observation, however, that there are many tall, thin people just as there are many short, overweight people. In other words, we would expect that in a group of people, height and weight should be systematically related (i.e., correlated), but the degree of relatedness is not expected to be perfect. Imagine we repeated this study with samples representing different populations: elite athletes, women over 50, children under 5, and so on. We might make different predictions about the relationship between height and weight based on the characteristics of the sample. This highlights the importance of obtaining a representative sample.

Psychologists make frequent use of correlational research designs. Examples might be the association between shyness and number of Facebook friends, between age and conservatism, between time spent on social media and grades in school, and so on. Correlational research designs tend to be relatively less expensive because they are time-limited and can often be conducted without much equipment. Online survey platforms have made data collection easier than ever. Some correlational research does not even necessitate collecting data; researchers using archival data sets as described above simply download the raw data from another source. For example, suppose you were interested in whether or not height is related to the number of points scored in hockey players. You could extract data for both variables from nhl.com , the official National Hockey League website, and conduct archival research using the data that have already been collected.

Correlational research designs look for associations between variables. A statistic that measures that association is the correlation coefficient. Correlation coefficients can be either positive or negative, and they range in value from -1.0 through 0 to 1.0. The most common statistical measure is the Pearson correlation coefficient , which is symbolized by the letter r . Positive values of r (e.g., r = .54 or r = .67) indicate that the relationship is positive, whereas negative values of r (e.g., r = –.30 or r = –.72) indicate negative relationships. The closer the coefficient is to -1 or +1, and the further away from zero, the greater the size of the association between the two variables. For instance, r = –.54 is a stronger relationship than r = .30, and r = .72 is a stronger relationship than r = –.57. Correlations of 0 indicate no relationship between the two variables.

Examples of positive correlation coefficients would include those between height and weight, between education and income, and between age and mathematical abilities in children. In each case, people who score higher, or lower, on one of the variables also tend to score higher, or lower, on the other variable. Negative correlations occur when people score high on one variable and low on the other. Examples of negative linear relationships include those between the age of a child and the number of diapers the child uses and between time practising and errors made on a learning task. In these cases, people who score higher on one of the variables tend to score lower on the other variable. Note that the correlation coefficient does not tell you anything about one specific person’s score.

One way of organizing the data from a correlational study with two variables is to graph the values of each of the measured variables using a scatterplot. A scatterplot  is a visual image of the relationship between two variables (see Figure 2.3 ). A point is plotted for each individual at the intersection of his or her scores for the two variables. In this example, data extracted from the official National Hockey League (NHL) website of 30 randomly picked hockey players for the 2017/18 season. For each of these players, there is a dot representing player height and number of points (i.e., goals plus assists). The slope or angle of the dotted line through the middle of the scatter tells us something about the strength and direction of the correlation. In this case, the line slopes up slightly to the right, indicating a positive but small correlation. In these NHL players, there is not much of relationship between height and points. The Pearson correlation calculated for this sample is r = 0.14. It is possible that the correlation would be totally different in a different sample of players, such as a greater number, only those who played a full season, only rookies, only forwards, and so on.

For practise constructing and interpreting scatterplots, see the following:

  • Interactive Quiz: Positive and Negative Associations in Scatterplots (Khan Academy, 2018)

When the association between the variables on the scatterplot can be easily approximated with a straight line, the variables are said to have a linear relationship . We are only going to consider linear relationships here. Just be aware that some pairs of variables have non-linear relationships, such as the relationship between physiological arousal and performance. Both high and low arousal are associated with sub-optimal performance, shown by a U-shaped scatterplot curve.

The most important limitation of correlational research designs is that they cannot be used to draw conclusions about the causal relationships among the measured variables; in other words, we cannot know what causes what in correlational research. Consider, for instance, a researcher who has hypothesized that viewing violent behaviour will cause increased aggressive play in children. The researcher has collected, from a sample of Grade 4 children, a measure of how many violent television shows each child views during the week as well as a measure of how aggressively each child plays on the school playground. From the data collected, the researcher discovers a positive correlation between the two measured variables.

Although this positive correlation appears to support the researcher’s hypothesis, it cannot be taken to indicate that viewing violent television causes aggressive behaviour. Although the researcher is tempted to assume that viewing violent television causes aggressive play, there are other possibilities. One alternative possibility is that the causal direction is exactly opposite of what has been hypothesized; perhaps children who have behaved aggressively at school are more likely to prefer violent television shows at home.

Still another possible explanation for the observed correlation is that it has been produced by a so-called third variable , one that is not part of the research hypothesis but that causes both of the observed variables and, thus, the correlation between them. In our example, a potential third variable is the discipline style of the children’s parents. Parents who use a harsh and punitive discipline style may allow children to watch violent television and to behave aggressively in comparison to children whose parents use less different types of discipline.

To review, whenever we have a correlation that is not zero, there are three potential pathways of cause and effect that must be acknowledged. The easiest way to practise understanding this challenge is to automatically designate the two variables X and Y. It does not matter which is which. Then, think through any ways in which X might cause Y. Then, flip the direction of cause and effect, and consider how Y might cause X. Finally, and possibly the most challenging, try to think of other variables — let’s call these C — that were not part of the original correlation, which cause both X and Y. Understanding these potential explanations for correlational research is an important aspect of scientific literacy. In the above example, we have shown how X (i.e., viewing violent TV) could cause Y (i.e., aggressive behaviour), how Y could cause X, and how C (i.e., parenting) could cause both X and Y.

Test your understanding with each example below. Find three different interpretations of cause and effect using the procedure outlined above. In each case, identify variables X, Y, and C:

  • A positive correlation between dark chocolate consumption and health
  • A negative correlation between sleep and smartphone use
  • A positive correlation between children’s aggressiveness and time spent playing video games
  • A negative association between time spent exercising and consumption of junk food

In sum, correlational research designs have both strengths and limitations. One strength is that they can be used when experimental research is not possible or when fewer resources are available. Correlational designs also have the advantage of allowing the researcher to study behaviour as it occurs in everyday life. We can also use correlational designs to make predictions, such as predicting the success of job trainees based on their test scores during training. They are also excellent sources of suggested avenues for further research, but we cannot use such correlational information to understand cause and effect. For that, researchers rely on experiments.

Experimental research: Understanding the causes of behaviour

The goal of experimental research design is to provide definitive conclusions about the causal relationships among the variables in the research hypothesis. In an experimental research design, there are independent variables and dependent variables. The independent variable  is the one manipulated by the researchers so that there is more than one condition. The dependent variable is the outcome or score on the measure of interest that is dependent on the actions of the independent variable. Let’s consider a classic drug study to illustrate the relationship between independent and dependent variables. To begin, a sample of people with a medical condition are randomly assigned to one of two conditions. In one condition, they are given a drug over a period of time. In the other condition, a placebo is given for the same period of time. To be clear, a placebo is a type of medication that looks like the real thing but is actually chemically inert, sometimes referred to as a”sugar pill.” After the testing period, the groups are compared to see if the drug condition shows better improvement in health than the placebo condition.

While the basic design of experiments is quite simple, the success of experimental research rests on meeting a number of criteria. Some important criteria are:

  • Participants must be randomly assigned to the conditions so that there are no differences between the groups. In the drug study example, you could not assign the males to the drug condition and the females to the placebo condition. The groups must be demographically equivalent.
  • There must be a control condition. Having a condition that does not receive treatment allows experimenters to compare the results of the drug to the results of placebo.
  • The only thing that can change between the conditions is the independent variable. For example, the participants in the drug study should receive the medication at the same place, from the same person, at the same time, and so on, for both conditions. Experiments often employ double-blind procedures in which neither the experimenter nor the participants know which condition any participant is in during the experiment. In a single-blind procedure, the participants do not know which condition they are in.
  • The sample size has to be large and diverse enough to represent the population of interest. For example, a pharmaceutical company should not use only men in their drug study if the drug will eventually be prescribed to women as well.
  • Experimenter effects should be minimized. This means that if there is a difference in scores on the dependent variable, they should not be attributable to something the experimenter did or did not do. For example, if an experiment involved comparing a yoga condition with an exercise condition, experimenters would need to make sure that they treated the participants exactly the same in each condition. They would need to control the amount of time they spent with the participants, how much they interacted verbally, smiled at the participants, and so on. Experimenters often employ research assistants who are blind to the participants’ condition to interact with the participants.

As you can probably see, much of experimental design is about control. The experimenters have a high degree of control over who does what. All of this tight control is to try to ensure that if there is a difference between the different levels of the independent variable, it is detectable. In other words, if there is even a small difference between a drug and placebo, it is detected. Furthermore, this level of control is aimed at ensuring that the only difference between conditions is the one the experimenters are testing while making correct and accurate determinations about cause and effect.

Research Focus

Video games and aggression

Consider an experiment conducted by Craig Anderson and Karen Dill (2000). The study was designed to test the hypothesis that viewing violent video games would increase aggressive behaviour. In this research, male and female undergraduates from Iowa State University were given a chance to play with either a violent video game (e.g., Wolfenstein 3D) or a nonviolent video game (e.g., Myst). During the experimental session, the participants played their assigned video games for 15 minutes. Then, after the play, each participant played a competitive game with an opponent in which the participant could deliver blasts of white noise through the earphones of the opponent. The operational definition of the dependent variable (i.e., aggressive behaviour) was the level and duration of noise delivered to the opponent. The design of the experiment is shown below (see Figure 2.4 ).

There are two strong advantages of the experimental research design. First, there is assurance that the independent variable, also known as the experimental manipulation , occurs prior to the measured dependent variable; second, there is creation of initial equivalence between the conditions of the experiment, which is made possible by using random assignment to conditions.

Experimental designs have two very nice features. For one, they guarantee that the independent variable occurs prior to the measurement of the dependent variable. This eliminates the possibility of reverse causation. Second, the influence of common-causal variables is controlled, and thus eliminated, by creating initial equivalence among the participants in each of the experimental conditions before the manipulation occurs.

The most common method of creating equivalence among the experimental conditions is through random assignment to conditions, a procedure in which the condition that each participant is assigned to is determined through a random process, such as drawing numbers out of an envelope or using a random number table. Anderson and Dill first randomly assigned about 100 participants to each of their two groups: Group A and Group B. Since they used random assignment to conditions, they could be confident that, before the experimental manipulation occurred, the students in Group A were, on average, equivalent to the students in Group B on every possible variable, including variables that are likely to be related to aggression, such as parental discipline style, peer relationships, hormone levels, diet — and in fact everything else.

Then, after they had created initial equivalence, Anderson and Dill created the experimental manipulation; they had the participants in Group A play the violent game and the participants in Group B play the nonviolent game. Then, they compared the dependent variable (i.e., the white noise blasts) between the two groups, finding that the students who had viewed the violent video game gave significantly longer noise blasts than did the students who had played the nonviolent game.

Anderson and Dill had from the outset created initial equivalence between the groups. This initial equivalence allowed them to observe differences in the white noise levels between the two groups after the experimental manipulation, leading to the conclusion that it was the independent variable, and not some other variable, that caused these differences. The idea is that the only thing that was different between the students in the two groups was the video game they had played.

Sometimes, experimental research has a confound. A confound is a variable that has slipped unwanted into the research and potentially caused the results because it has created a systematic difference between the levels of the independent variable. In other words, the confound caused the results, not the independent variable. For example, suppose you were a researcher who wanted to know if eating sugar just before an exam was beneficial. You obtain a large sample of students, divide them randomly into two groups, give everyone the same material to study, and then give half of the sample a chocolate bar containing high levels of sugar and the other half a glass of water before they write their test. Lo and behold, you find the chocolate bar group does better. However, the chocolate bar also contains caffeine, fat and other ingredients. These other substances besides sugar are potential confounds; for example, perhaps caffeine rather than sugar caused the group to perform better. Confounds introduce a systematic difference between levels of the independent variable such that it is impossible to distinguish between effects due to the independent variable and effects due to the confound.

Despite the advantage of determining causation, experiments do have limitations. One is that they are often conducted in laboratory situations rather than in the everyday lives of people. Therefore, we do not know whether results that we find in a laboratory setting will necessarily hold up in everyday life. Do people act the same in a laboratory as they do in real life? Often researchers are forced to balance the need for experimental control with the use of laboratory conditions that can only approximate real life.

Additionally, it is very important to understand that many of the variables that psychologists are interested in are not things that can be manipulated experimentally. For example, psychologists interested in sex differences cannot randomly assign participants to be men or women. If a researcher wants to know if early attachments to parents are important for the development of empathy, or in the formation of adult romantic relationships, the participants cannot be randomly assigned to childhood attachments. Thus, a large number of human characteristics cannot be manipulated or assigned. This means that research may look experimental because it has different conditions (e.g., men or women, rich or poor, highly intelligent or not so intelligent, etc.); however, it is quasi-experimental . The challenge in interpreting quasi-experimental research is that the inability to randomly assign the participants to condition results in uncertainty about cause and effect. For example, if you find that men and women differ in some ability, it could be biology that is the cause, but it is equally likely it could be the societal experience of being male or female that is responsible.

Of particular note, while experiments are the gold standard for understanding cause and effect, a large proportion of psychology research is not experimental for a variety of practical and ethical reasons.

Key Takeaways

  • Descriptive, correlational, and experimental research designs are used to collect and analyze data.
  • Descriptive designs include case studies, surveys, psychological tests, naturalistic observation, and laboratory observation. The goal of these designs is to get a picture of the participants’ current thoughts, feelings, or behaviours.
  • Correlational research designs measure the relationship between two or more variables. The variables may be presented on a scatterplot to visually show the relationships. The Pearson correlation coefficient is a measure of the strength of linear relationship between two variables. Correlations have three potential pathways for interpreting cause and effect.
  • Experimental research involves the manipulation of an independent variable and the measurement of a dependent variable. Done correctly, experiments allow researchers to make conclusions about cause and effect. There are a number of criteria that must be met in experimental design. Not everything can be studied experimentally, and laboratory experiments may not replicate real-life conditions well.

Exercises and Critical Thinking

  • There is a negative correlation between how close students sit to the front of the classroom and their final grade in the class. Explain some possible reasons for this.
  • Imagine you are tasked with creating a survey of online habits of Canadian teenagers. What questions would you ask and why? How valid and reliable would your test be?
  • Imagine a researcher wants to test the hypothesis that participating in psychotherapy will cause a decrease in reported anxiety. Describe the type of research design the investigator might use to draw this conclusion. What would be the independent and dependent variables in the research?

Image Attributions

Figure 2.2. This Might Be Me in a Few Years by Frank Kovalchek is used under a CC BY 2.0 license.

Figure 2.3. Used under a CC BY-NC-SA 4.0 license.

Figure 2.4. Used under a CC BY-NC-SA 4.0 license.

Anderson, C. A., & Dill, K. E. (2000). Video games and aggressive thoughts, feelings, and behavior in the laboratory and in life.  Journal of Personality and Social Psychology, 78 (4), 772–790.

Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., Damasio, A. R., Cacioppo, J. T., & Berntson, G. G. (2005). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. In  Social neuroscience: Key readings (pp. 21–28). New York, NY: Psychology Press.

Freud, S. (1909/1964). Analysis of phobia in a five-year-old boy. In E. A. Southwell & M. Merbaum (Eds.),  Personality: Readings in theory and research (pp. 3–32). Belmont, CA: Wadsworth. (Original work published 1909)

Henrich, J., Heine, S. J., & Norenzaya, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33 , 61–83.

Kotowicz, Z. (2007). The strange case of Phineas Gage.  History of the Human Sciences, 20 (1), 115–131.

Rokeach, M. (1964).  The three Christs of Ypsilanti: A psychological study . New York, NY: Knopf.

Stangor, C. (2011). Research methods for the behavioral sciences (4th ed.) . Mountain View, CA: Cengage.

Psychology - 1st Canadian Edition Copyright © 2020 by Sally Walters is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Logo for Kwantlen Polytechnic University

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Non-Experimental Research

29 Correlational Research

Learning objectives.

  • Define correlational research and give several examples.
  • Explain why a researcher might choose to conduct correlational research rather than experimental research or another type of non-experimental research.
  • Interpret the strength and direction of different correlation coefficients.
  • Explain why correlation does not imply causation.

What Is Correlational Research?

Correlational research is a type of non-experimental research in which the researcher measures two variables (binary or continuous) and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are many reasons that researchers interested in statistical relationships between variables would choose to conduct a correlational study rather than an experiment. The first is that they do not believe that the statistical relationship is a causal one or are not interested in causal relationships. Recall two goals of science are to describe and to predict and the correlational research strategy allows researchers to achieve both of these goals. Specifically, this strategy can be used to describe the strength and direction of the relationship between two variables and if there is a relationship between the variables then the researchers can use scores on one variable to predict scores on the other (using a statistical technique called regression, which is discussed further in the section on Complex Correlation in this chapter).

Another reason that researchers would choose to use a correlational study rather than an experiment is that the statistical relationship of interest is thought to be causal, but the researcher  cannot manipulate the independent variable because it is impossible, impractical, or unethical. For example, while a researcher might be interested in the relationship between the frequency people use cannabis and their memory abilities they cannot ethically manipulate the frequency that people use cannabis. As such, they must rely on the correlational research strategy; they must simply measure the frequency that people use cannabis and measure their memory abilities using a standardized test of memory and then determine whether the frequency people use cannabis is statistically related to memory test performance. 

Correlation is also used to establish the reliability and validity of measurements. For example, a researcher might evaluate the validity of a brief extraversion test by administering it to a large group of participants along with a longer extraversion test that has already been shown to be valid. This researcher might then check to see whether participants’ scores on the brief test are strongly correlated with their scores on the longer one. Neither test score is thought to cause the other, so there is no independent variable to manipulate. In fact, the terms  independent variable  and dependent variabl e  do not apply to this kind of research.

Another strength of correlational research is that it is often higher in external validity than experimental research. Recall there is typically a trade-off between internal validity and external validity. As greater controls are added to experiments, internal validity is increased but often at the expense of external validity as artificial conditions are introduced that do not exist in reality. In contrast, correlational studies typically have low internal validity because nothing is manipulated or controlled but they often have high external validity. Since nothing is manipulated or controlled by the experimenter the results are more likely to reflect relationships that exist in the real world.

Finally, extending upon this trade-off between internal and external validity, correlational research can help to provide converging evidence for a theory. If a theory is supported by a true experiment that is high in internal validity as well as by a correlational study that is high in external validity then the researchers can have more confidence in the validity of their theory. As a concrete example, correlational studies establishing that there is a relationship between watching violent television and aggressive behavior have been complemented by experimental studies confirming that the relationship is a causal one (Bushman & Huesmann, 2001) [1] .

Does Correlational Research Always Involve Quantitative Variables?

A common misconception among beginning researchers is that correlational research must involve two quantitative variables, such as scores on two extraversion tests or the number of daily hassles and number of symptoms people have experienced. However, the defining feature of correlational research is that the two variables are measured—neither one is manipulated—and this is true regardless of whether the variables are quantitative or categorical. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a correlational study because the researcher did not manipulate the students’ nationalities. The same is true of the study by Cacioppo and Petty comparing college faculty and factory workers in terms of their need for cognition. It is a correlational study because the researchers did not manipulate the participants’ occupations.

Figure 6.2 shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a correlational study because it is unclear whether the independent variable was manipulated. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then it is an experiment. If the researcher simply asked participants whether they made daily to-do lists, then it is a correlational study. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a correlational study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead (the directionality problem). Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed (the third-variable problem). The crucial point is that what defines a study as experimental or correlational is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. What defines a study is how the study is conducted.

descriptive correlational research definition

Data Collection in Correlational Research

Again, the defining feature of correlational research is that neither variable is manipulated. It does not matter how or where the variables are measured. A researcher could have participants come to a laboratory to complete a computerized backward digit span task and a computerized risky decision-making task and then assess the relationship between participants’ scores on the two tasks. Or a researcher could go to a shopping mall to ask people about their attitudes toward the environment and their shopping habits and then assess the relationship between these two variables. Both of these studies would be correlational because no independent variable is manipulated. 

Correlations Between Quantitative Variables

Correlations between quantitative variables are often presented using scatterplots . Figure 6.3 shows some hypothetical data on the relationship between the amount of stress people are under and the number of physical symptoms they have. Each point in the scatterplot represents one person’s score on both variables. For example, the circled point in Figure 6.3 represents a person whose stress score was 10 and who had three physical symptoms. Taking all the points into account, one can see that people under more stress tend to have more physical symptoms. This is a good example of a positive relationship , in which higher scores on one variable tend to be associated with higher scores on the other. In other words, they move in the same direction, either both up or both down. A negative relationship is one in which higher scores on one variable tend to be associated with lower scores on the other. In other words, they move in opposite directions. There is a negative relationship between stress and immune system functioning, for example, because higher stress is associated with lower immune system functioning.

Figure 6.3 Scatterplot Showing a Hypothetical Positive Relationship Between Stress and Number of Physical Symptoms

The strength of a correlation between quantitative variables is typically measured using a statistic called  Pearson’s Correlation Coefficient (or Pearson's  r ) . As Figure 6.4 shows, Pearson’s r ranges from −1.00 (the strongest possible negative relationship) to +1.00 (the strongest possible positive relationship). A value of 0 means there is no relationship between the two variables. When Pearson’s  r  is 0, the points on a scatterplot form a shapeless “cloud.” As its value moves toward −1.00 or +1.00, the points come closer and closer to falling on a single straight line. Correlation coefficients near ±.10 are considered small, values near ± .30 are considered medium, and values near ±.50 are considered large. Notice that the sign of Pearson’s  r  is unrelated to its strength. Pearson’s  r  values of +.30 and −.30, for example, are equally strong; it is just that one represents a moderate positive relationship and the other a moderate negative relationship. With the exception of reliability coefficients, most correlations that we find in Psychology are small or moderate in size. The website http://rpsychologist.com/d3/correlation/ , created by Kristoffer Magnusson, provides an excellent interactive visualization of correlations that permits you to adjust the strength and direction of a correlation while witnessing the corresponding changes to the scatterplot.

Figure 6.4 Range of Pearson’s r, From −1.00 (Strongest Possible Negative Relationship), Through 0 (No Relationship), to +1.00 (Strongest Possible Positive Relationship)

There are two common situations in which the value of Pearson’s  r  can be misleading. Pearson’s  r  is a good measure only for linear relationships, in which the points are best approximated by a straight line. It is not a good measure for nonlinear relationships, in which the points are better approximated by a curved line. Figure 6.5, for example, shows a hypothetical relationship between the amount of sleep people get per night and their level of depression. In this example, the line that best approximates the points is a curve—a kind of upside-down “U”—because people who get about eight hours of sleep tend to be the least depressed. Those who get too little sleep and those who get too much sleep tend to be more depressed. Even though Figure 6.5 shows a fairly strong relationship between depression and sleep, Pearson’s  r  would be close to zero because the points in the scatterplot are not well fit by a single straight line. This means that it is important to make a scatterplot and confirm that a relationship is approximately linear before using Pearson’s  r . Nonlinear relationships are fairly common in psychology, but measuring their strength is beyond the scope of this book.

Figure 6.5 Hypothetical Nonlinear Relationship Between Sleep and Depression

The other common situations in which the value of Pearson’s  r  can be misleading is when one or both of the variables have a limited range in the sample relative to the population. This problem is referred to as  restriction of range . Assume, for example, that there is a strong negative correlation between people’s age and their enjoyment of hip hop music as shown by the scatterplot in Figure 6.6. Pearson’s  r  here is −.77. However, if we were to collect data only from 18- to 24-year-olds—represented by the shaded area of Figure 6.6—then the relationship would seem to be quite weak. In fact, Pearson’s  r  for this restricted range of ages is 0. It is a good idea, therefore, to design studies to avoid restriction of range. For example, if age is one of your primary variables, then you can plan to collect data from people of a wide range of ages. Because restriction of range is not always anticipated or easily avoidable, however, it is good practice to examine your data for possible restriction of range and to interpret Pearson’s  r  in light of it. (There are also statistical methods to correct Pearson’s  r  for restriction of range, but they are beyond the scope of this book).

Figure 6.6 Hypothetical Data Showing How a Strong Overall Correlation Can Appear to Be Weak When One Variable Has a Restricted Range

Correlation Does Not Imply Causation

You have probably heard repeatedly that “Correlation does not imply causation.” An amusing example of this comes from a 2012 study that showed a positive correlation (Pearson’s r = 0.79) between the per capita chocolate consumption of a nation and the number of Nobel prizes awarded to citizens of that nation [2] . It seems clear, however, that this does not mean that eating chocolate causes people to win Nobel prizes, and it would not make sense to try to increase the number of Nobel prizes won by recommending that parents feed their children more chocolate.

There are two reasons that correlation does not imply causation. The first is called the  directionality problem . Two variables,  X  and  Y , can be statistically related because X  causes  Y  or because  Y  causes  X . Consider, for example, a study showing that whether or not people exercise is statistically related to how happy they are—such that people who exercise are happier on average than people who do not. This statistical relationship is consistent with the idea that exercising causes happiness, but it is also consistent with the idea that happiness causes exercise. Perhaps being happy gives people more energy or leads them to seek opportunities to socialize with others by going to the gym. The second reason that correlation does not imply causation is called the  third-variable problem . Two variables,  X  and  Y , can be statistically related not because  X  causes  Y , or because  Y  causes  X , but because some third variable,  Z , causes both  X  and  Y . For example, the fact that nations that have won more Nobel prizes tend to have higher chocolate consumption probably reflects geography in that European countries tend to have higher rates of per capita chocolate consumption and invest more in education and technology (once again, per capita) than many other countries in the world. Similarly, the statistical relationship between exercise and happiness could mean that some third variable, such as physical health, causes both of the others. Being physically healthy could cause people to exercise and cause them to be happier. Correlations that are a result of a third-variable are often referred to as  spurious correlations .

Some excellent and amusing examples of spurious correlations can be found at http://www.tylervigen.com  (Figure 6.7  provides one such example).

descriptive correlational research definition

“Lots of Candy Could Lead to Violence”

Although researchers in psychology know that correlation does not imply causation, many journalists do not. One website about correlation and causation, http://jonathan.mueller.faculty.noctrl.edu/100/correlation_or_causation.htm , links to dozens of media reports about real biomedical and psychological research. Many of the headlines suggest that a causal relationship has been demonstrated when a careful reading of the articles shows that it has not because of the directionality and third-variable problems.

One such article is about a study showing that children who ate candy every day were more likely than other children to be arrested for a violent offense later in life. But could candy really “lead to” violence, as the headline suggests? What alternative explanations can you think of for this statistical relationship? How could the headline be rewritten so that it is not misleading?

As you have learned by reading this book, there are various ways that researchers address the directionality and third-variable problems. The most effective is to conduct an experiment. For example, instead of simply measuring how much people exercise, a researcher could bring people into a laboratory and randomly assign half of them to run on a treadmill for 15 minutes and the rest to sit on a couch for 15 minutes. Although this seems like a minor change to the research design, it is extremely important. Now if the exercisers end up in more positive moods than those who did not exercise, it cannot be because their moods affected how much they exercised (because it was the researcher who used random assignment to determine how much they exercised). Likewise, it cannot be because some third variable (e.g., physical health) affected both how much they exercised and what mood they were in. Thus experiments eliminate the directionality and third-variable problems and allow researchers to draw firm conclusions about causal relationships.

Media Attributions

  • Nicholas Cage and Pool Drownings  © Tyler Viegen is licensed under a  CC BY (Attribution)  license
  • Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage. ↵
  • Messerli, F. H. (2012). Chocolate consumption, cognitive function, and Nobel laureates. New England Journal of Medicine, 367 , 1562-1564. ↵

A graph that presents correlations between two quantitative variables, one on the x-axis and one on the y-axis. Scores are plotted at the intersection of the values on each axis.

A relationship in which higher scores on one variable tend to be associated with higher scores on the other.

A relationship in which higher scores on one variable tend to be associated with lower scores on the other.

A statistic that measures the strength of a correlation between quantitative variables.

When one or both variables have a limited range in the sample relative to the population, making the value of the correlation coefficient misleading.

The problem where two variables, X  and  Y , are statistically related either because X  causes  Y, or because  Y  causes  X , and thus the causal direction of the effect cannot be known.

Two variables, X and Y, can be statistically related not because X causes Y, or because Y causes X, but because some third variable, Z, causes both X and Y.

Correlations that are a result not of the two variables being measured, but rather because of a third, unmeasured, variable that affects both of the measured variables.

Research Methods in Psychology Copyright © 2019 by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Home

Search form

You are here.

descriptive correlational research definition

Psychologists Use Descriptive, Correlational, and Experimental Research Designs to Understand Behavior

descriptive correlational research definition

Learning Objectives

  • Differentiate the goals of descriptive, correlational, and experimental research designs and explain the advantages and disadvantages of each.
  • Explain the goals of descriptive research and the statistical techniques used to interpret it.
  • Summarize the uses of correlational research and describe why correlational research cannot be used to infer causality.
  • Review the procedures of experimental research and explain how it can be used to draw causal inferences.

Psychologists agree that if their ideas and theories about human behavior are to be taken seriously, they must be backed up by data. However, the research of different psychologists is designed with different goals in mind, and the different goals require different approaches. These varying approaches, summarized in Table 2.2 , are known as research designs. A research design is the specific method a researcher uses to collect, analyze, and interpret data. Psychologists use three major types of research designs in their research, and each provides an essential avenue for scientific investigation. Descriptive research is research designed to provide a snapshot of the current state of affairs. Correlational research is research designed to discover relationships among variables and to allow the prediction of future events from present knowledge. Experimental research is research in which initial equivalence among research participants in more than one group is created, followed by a manipulation of a given experience for these groups and a measurement of the influence of the manipulation. Each of the three research designs varies according to its strengths and limitations, and it is important to understand how each differs.

Table 2.2 Characteristics of the Three Research Designs

Research design

Goal

Advantages

Disadvantages

Descriptive

To create a snapshot of the current state of affairs

Provides a relatively complete picture of what is occurring at a given time. Allows the development of questions for further study.

Does not assess relationships among variables. May be unethical if participants do not know they are being observed.

Correlational

To assess the relationships between and among two or more variables

Allows testing of expected relationships between and among variables and the making of predictions. Can assess these relationships in everyday life events.

Cannot be used to draw inferences about the causal relationships between and among the variables.

Experimental

To assess the causal impact of one or more experimental manipulations on a dependent variable

Allows drawing of conclusions about the causal relationships among variables.

Cannot experimentally manipulate many important variables. May be expensive and time consuming.

There are three major research designs used by psychologists, and each has its own advantages and disadvantages.

  • Descriptive Research: Assessing the Current State of Affairs
  • Correlational Research: Seeking Relationships Among Variables
  • Experimental Research: Understanding the Causes of Behavior
  • 13617 reads
  • Approach and Pedagogy
  • The Problem of Intuition Research Focus: Unconscious Preferences for the Letters of Our Own Name
  • Why Psychologists Rely on Empirical Methods
  • Levels of Explanation in Psychology
  • The Challenges of Studying Psychology KET TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Early Psychologists
  • Structuralism: Introspection and the Awareness of Subjective Experience
  • Functionalism and Evolutionary Psychology
  • Psychodynamic Psychology
  • Behaviorism and the Question of Free Will Research Focus: Do We Have Free Will?
  • The Cognitive Approach and Cognitive Neuroscience The War of the Ghosts
  • Social-Cultural Psychology
  • The Many Disciplines of Psychology Psychology in Everyday Life: How to Effectively Learn and Remember KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Chapter Summary
  • The Scientific Method
  • Laws and Theories as Organizing Principles
  • The Research Hypothesis
  • Conducting Ethical Research Characteristics of an Ethical Research Project Using Human Participants
  • Ensuring That Research Is Ethical
  • Research With Animals APA Guidelines on Humane Care and Use of Animals in Research KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Experimental Research: Understanding the Causes of Behavior Research Focus: Video Games and Aggression KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • You Can Be an Informed Consumer of Psychological Research Learning Objectives Threats to the Validity of Research Psychology in Everyday Life: Critically Evaluating the Validity of Websites KEY TAKEAWAYS EXERCISISES AND CRITICAL THINKING
  • Neurons Communicate Using Electricity and Chemicals Video Clip: The Electrochemical Action of the Neuron
  • Neurotransmitters: The Body’s Chemical Messengers KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • The Old Brain: Wired for Survival
  • The Cerebral Cortex Creates Consciousness and Thinking
  • Functions of the Cortex
  • The Brain Is Flexible: Neuroplasticity Research Focus: Identifying the Unique Functions of the Left and Right Hemispheres Using Split-Brain Patients Psychology in Everyday Life: Why Are Some People Left-Handed? KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Lesions Provide a Picture of What Is Missing
  • Recording Electrical Activity in the Brain
  • Peeking Inside the Brain: Neuroimaging Research Focus: Cyberostracism KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Electrical Control of Behavior: The Nervous System
  • The Body’s Chemicals Help Control Behavior: The Endocrine System KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Sensory Thresholds: What Can We Experience? Link
  • Measuring Sensation Research Focus: Influence without Awareness KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • The Sensing Eye and the Perceiving Visual Cortex
  • Perceiving Color
  • Perceiving Form
  • Perceiving Depth
  • Perceiving Motion Beta Effect and Phi Phenomenon KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Hearing Loss KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Experiencing Pain KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • How the Perceptual System Interprets the Environment Video Clip: The McGurk Effect Video Clip: Selective Attention
  • The Important Role of Expectations in Perception Psychology in Everyday Life: How Understanding Sensation and Perception Can Save Lives KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Sleep Stages: Moving Through the Night
  • Sleep Disorders: Problems in Sleeping
  • The Heavy Costs of Not Sleeping
  • Dreams and Dreaming KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Speeding Up the Brain With Stimulants: Caffeine, Nicotine, Cocaine, and Amphetamines
  • Slowing Down the Brain With Depressants: Alcohol, Barbiturates and Benzodiazepines, and Toxic Inhalants
  • Opioids: Opium, Morphine, Heroin, and Codeine
  • Hallucinogens: Cannabis, Mescaline, and LSD
  • Why We Use Psychoactive Drugs Research Focus: Risk Tolerance Predicts Cigarette Use KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Changing Behavior Through Suggestion: The Power of Hypnosis
  • Reducing Sensation to Alter Consciousness: Sensory Deprivation
  • Meditation Video Clip: Try Meditation Psychology in Everyday Life: The Need to Escape Everyday Consciousness KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • How the Environment Can Affect the Vulnerable Fetus KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • The Newborn Arrives With Many Behaviors Intact Research Focus: Using the Habituation Technique to Study What Infants Know
  • Cognitive Development During Childhood
  • Video Clip: Object Permanence
  • Social Development During Childhood
  • Knowing the Self: The Development of the Self-Concept
  • Video Clip: The Harlows’ Monkeys
  • Video Clip: The Strange Situation Research Focus: Using a Longitudinal Research Design to Assess the Stability of Attachment KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Physical Changes in Adolescence
  • Cognitive Development in Adolescence
  • Social Development in Adolescence
  • Developing Moral Reasoning: Kohlberg’s Theory
  • Video Clip: People Being Interviewed About Kohlberg’s Stages KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Physical and Cognitive Changes in Early and Middle Adulthood
  • Social Changes in Early and Middle Adulthood KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Cognitive Changes During Aging
  • Dementia and Alzheimer’s Disease
  • Social Changes During Aging: Retiring Effectively
  • Death, Dying, and Bereavement KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Pavlov Demonstrates Conditioning in Dogs
  • The Persistence and Extinction of Conditioning
  • The Role of Nature in Classical Conditioning KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • How Reinforcement and Punishment Influence Behavior: The Research of Thorndike and Skinner
  • Video Clip: Thorndike’s Puzzle Box
  • Creating Complex Behaviors Through Operant Conditioning KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Observational Learning: Learning by Watching
  • Video Clip: Bandura Discussing Clips From His Modeling Studies Research Focus: The Effects of Violent Video Games on Aggression KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Using Classical Conditioning in Advertising
  • Video Clip: Television Ads Psychology in Everyday Life: Operant Conditioning in the Classroom
  • Reinforcement in Social Dilemmas KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Video Clip: Kim Peek
  • Explicit Memory
  • Implicit Memory Research Focus: Priming Outside Awareness Influences Behavior
  • Stages of Memory: Sensory, Short-Term, and Long-Term Memory
  • Sensory Memory
  • Short-Term Memory KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Encoding and Storage: How Our Perceptions Become Memories Research Focus: Elaboration and Memory
  • Using the Contributions of Hermann Ebbinghaus to Improve Your Memory
  • The Structure of LTM: Categories, Prototypes, and Schemas
  • The Biology of Memory KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Source Monitoring: Did It Really Happen?
  • Schematic Processing: Distortions Based on Expectations
  • Misinformation Effects: How Information That Comes Later Can Distort Memory
  • Overconfidence
  • Heuristic Processing: Availability and Representativeness
  • Salience and Cognitive Accessibility
  • Counterfactual Thinking Psychology in Everyday Life: Cognitive Biases in the Real World KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • How We Talk (or Do Not Talk) about Intelligence How We Talk (or Do Not Talk) about Intelligence
  • General (g) Versus Specific (s) Intelligences
  • Measuring Intelligence: Standardization and the Intelligence Quotient
  • The Biology of Intelligence
  • Is Intelligence Nature or Nurture? Psychology in Everyday Life: Emotional Intelligence KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Extremes of Intelligence: Retardation and Giftedness
  • Extremely Low Intelligence
  • Extremely High Intelligence
  • Sex Differences in Intelligence
  • Racial Differences in Intelligence Research Focus: Stereotype Threat KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • The Components of Language Examples in Which Syntax Is Correct but the Interpretation Can Be Ambiguous
  • The Biology and Development of Language Research Focus: When Can We Best Learn Language? Testing the Critical Period Hypothesis
  • Learning Language
  • How Children Learn Language: Theories of Language Acquisition
  • Bilingualism and Cognitive Development
  • Can Animals Learn Language?
  • Video Clip: Language Recognition in Bonobos
  • Languageand Perception KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Captain Sullenberger Conquers His Emotions Captain Sullenberger Conquers His Emotions
  • Video Clip: The Basic Emotions
  • The Cannon-Bard and James-Lange Theories of Emotion Research Focus: Misattributing Arousal
  • Communicating Emotion KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • The Negative Effects of Stress
  • Stressors in Our Everyday Lives
  • Responses to Stress
  • Managing Stress
  • Emotion Regulation Research Focus: Emotion Regulation Takes Effort KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Finding Happiness Through Our Connections With Others
  • What Makes Us Happy? KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Eating: Healthy Choices Make Healthy Lives
  • Sex: The Most Important Human Behavior
  • The Experience of Sex
  • The Many Varieties of Sexual Behavior Psychology in Everyday Life: Regulating Emotions to Improve Our Health KEY TAKEAWAYS EXERCISE AND CRITICAL THINKING
  • Identical Twins Reunited after 35 Years Identical Twins Reunited after 35 Years
  • Personality as Traits Example of a Trait Measure
  • Situational Influences on Personality
  • The MMPI and Projective Tests Psychology in Everyday Life: Leaders and Leadership KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Psychodynamic Theories of Personality: The Role of the Unconscious
  • Id, Ego, and Superego Research Focus: How the Fear of Death Causes Aggressive Behavior
  • Strengths and Limitations of Freudian and Neo-Freudian Approaches
  • Focusing on the Self: Humanism and Self-Actualization Research Focus: Self-Discrepancies, Anxiety, and Depression KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Studying Personality Using Behavioral Genetics
  • Studying Personality Using Molecular Genetics
  • Reviewing the Literature: Is Our Genetics Our Destiny? KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • When Minor Body Imperfections Lead to Suicide When Minor Body Imperfections Lead to Suicide
  • Defining Disorder Psychology in Everyday Life: Combating the Stigma of Abnormal Behavior
  • Diagnosing Disorder: The DSM
  • Diagnosis or Overdiagnosis? ADHD, Autistic Disorder, and Asperger’s Disorder
  • Attention-Deficit/Hyperactivity Disorder (ADHD)
  • Autistic Disorder and Asperger’s Disorder KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Generalized Anxiety Disorder
  • Panic Disorder
  • Obsessive-Compulsive Disorders
  • Posttraumatic Stress Disorder (PTSD)
  • Dissociative Disorders: Losing the Self to Avoid Anxiety
  • Dissociative Amnesia and Fugue
  • Dissociative Identity Disorder
  • Explaining Anxiety and Dissociation Disorders KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Dysthymia and Major Depressive Disorder
  • Bipolar Disorder
  • Explaining Mood Disorders Research Focus: Using Molecular Genetics to Unravel the Causes of Depression KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Symptoms of Schizophrenia
  • Explaining Schizophrenia KEY TAKEAWAYS EXERCISE AND CRITICAL THINKING
  • Borderline Personality Disorder Research Focus: Affective and Cognitive Deficits in BPD
  • Antisocial Personality Disorder (APD) KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Somatoform and Factitious Disorders
  • Sexual Disorders
  • Disorders of Sexual Function
  • Gender Identity Disorder
  • Paraphilias KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Therapy on Four Legs Therapy on Four Legs
  • Psychodynamic Therapy Important Characteristics and Experiences in Psychoanalysis
  • Humanistic Therapies
  • Behavioral Aspects of CBT
  • Cognitive Aspects of CBT
  • Combination (Eclectic) Approaches to Therapy KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Drug Therapies
  • Using Stimulants to Treat ADHD
  • Antidepressant Medications
  • Antianxiety Medications
  • Antipsychotic Medications
  • Direct Brain Intervention Therapies KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Group, Couples, and Family Therapy
  • Self-Help Groups
  • Community Mental Health: Service and Prevention Some Risk Factors for Psychological Disorders Research Focus: The Implicit Association Test as a Behavioral Marker for Suicide KEY TAKEAWAYS EXERCISE AND CRITICAL THINKING
  • Effectiveness of Psychological Therapy ResearchFocus:Meta-AnalyzingClinicalOutcomes
  • Effectiveness of Biomedical Therapies
  • Effectiveness of Social-CommunityApproaches KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Binge Drinking and the Death of a Homecoming Queen Binge Drinking and the Death of a Homecoming Queen
  • Perceiving Others
  • Forming Judgments on the Basis of Appearance: Stereotyping, Prejudice, and Discrimination Implicit Association Test Research Focus: Forming Judgments of People in Seconds
  • Close Relationships
  • Causal Attribution: Forming Judgments by Observing Behavior
  • Attitudes and Behavior KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Helping Others: Altruism Helps Create Harmonious Relationships
  • Why Are We Altruistic?
  • How the Presence of Others Can Reduce Helping
  • Video Clip: The Case of Kitty Genovese
  • Human Aggression: An Adaptive y et Potentially Damaging Behavior
  • The Ability to Aggress Is Part of Human Nature
  • Negative Experiences Increase Aggression
  • Viewing Violent Media Increases Aggression
  • Video Clip Research Focus: The Culture of Honor
  • Conformity and Obedience: How Social Influence Creates Social Norms
  • Do We Always Conform? KEY TAKEAWAYS EXERCISES AND CRITICAL THINKING
  • Working in Front of Others: Social Facilitation and Social Inhibition
  • Working Together in Groups Psychology in Everyday Life: Do Juries Make Good Decisions?
  • Using Groups Effectively KEY TAKEAWAYS EXERCISE AND CRITICAL THINKING
  •  Back Matter

This action cannot be undo.

Choose a delete action Empty this page Remove this page and its subpages

Content is out of sync. You must reload the page to continue.

New page type Book Topic Interactive Learning Content

  • Config Page
  • Add Page Before
  • Add Page After
  • Delete Page

HKMU

Descriptive Correlational Design in Research

  • To find inspiration for your paper and overcome writer’s block
  • As a source of information (ensure proper referencing)
  • As a template for you assignment

Looking for descriptive correlational design definition and meaning? This research paper example explains all the details of this quantitative research method.

Introduction

Why use descriptive correlational design.

Descriptive statistics refers to information that has been analyzed in order to reveal the basic features of data collected or used in a study (Fowler, 2013). They provide researchers with summaries and other critical information regarding study samples and measures. The two main types include measures of central tendency and the measure of spread (Kothari, 2004). A common occurrence when using descriptive data is the emergence of certain patterns that make it easy for researchers to understand and make sense of data. The statistical data can either be used for further research studies or as an independent entity that can be used to make conclusions (Fowler, 2013). Certain research situations involve the use of only descriptive statistics because of the large sample sizes and complexity of data. A study that involves the computation of mean, median, and mode would require descriptive statistics (Yin, 2009).

For instance, they would be sued in a study that aims to find the media score in a class of 100 students with different test results. On the other hand, surveys, case studies, and naturalistic observations can only be successfully conducted using descriptive statistics. An example of research that involved descriptive statistics only is a research study conducted by Andreyeva, Michaud, and Soest (2007) to investigate obesity and health in Europeans aged 50 years and older. The study aimed to study the prevalence of obesity and related health complications among Europeans aged 50 years and above (Andreyeva, Michaud & Soest, 2007). The study involved the collection of data from participants without altering any environmental factors. It was published in the Journal of Public Health in 2007.

Descriptive correlational design is used in research studies that aim to provide static pictures of situations as well as establish the relationship between different variables (McBurney & White, 2009). In correlational research, two variables, such as the height and weight of individuals, are studied to establish their relationship. One of the research topics that can be studied using a descriptive correctional design is the height and weight of college students between the ages of 18 and 25. This study can be tied to their nutrition or frequency of taking meals in a day. The design is appropriate for the aforementioned topic because in conducting the study, the researcher will be required to collect data based on the behavior or attitudes of the participants.

For instance, the number of times the participants eat a certain meal or take a certain beverage. On the other hand, the researcher will be required to establish the relationship between the frequency of taking certain meals or beverages and gains in weight. The researcher could also establish the relationship between the weight and height of the participants. The study design would also enable the researcher to determine changes in the participants’ behaviors or attitudes over time in order to determine how these changes affect the outcomes or possible trends that could emerge in the future (Monsen & Horn, 2007).

Do SAT scores determine the GPA achieved by college students? This research question has both predictor and criterion variables. In this research question, SAT scores represent the predictor variable, and college GPA represents the criterion variable. College GPA is the criterion variable because it is the component being predicted using students’ SAT scores. On the other hand, SAT scores are the predictor variable because they determine the GPA attained in college. The research question seeks to determine whether students’ SAT scores predict the GPA scores they attain in college.

This research paper focused on descriptive correlation design definition and goals. This quantitative research method aims to describe two or more variables and their relationships. Descriptive correlation design can provide a picture of the current state of affairs. For instance, in psychology, it can be a picture of a given group of individuals, their thoughts, behaviors, or feelings.

Andreyeva, T., Michaud, P. C., & Soest, A. (2007). Obesity and Health in Europeans Aged 50 Years and Older. Public Health 121 (1), 497-509.

Fowler, F. J. (2013). Survey Research Methods . New York, NY: SAGE Publications.

Kothari, C. R. (2004). Research Methodology: Methods and Techniques . New York, NY: New Age International.

McBurney, D. & White, T. (2009). Research Methods . New York, NY: Cengage Learning.

Monsen, E. R & Horn, L. V. (2007). Research: Successful Approaches . New York: American Dietetic Association.

Yin, R. K. (2009). Case Study Research: Design and Methods . New York, NY: SAGE Publications.

  • Probit Models' Researches in Statistics
  • Multiple Regression Model S&P 500: Statistical Analysis
  • Why SAT Should Not Exist?
  • IQ and GPA of the Ninth Grade Students Correlation
  • Experimental and Correlational Psychological Studies
  • Data Analysis in Economics, Sociology, Environment
  • Clinical Statistical Experiments' Fundamental Variables
  • Statistics: "The Median Isn’t the Message" by Stephen Gould
  • Descriptive and Inferential Statistics' Relationship
  • Statistics: Anxiety and Sharing Feelings Correlation
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2020, July 6). Descriptive Correlational Design in Research. https://ivypanda.com/essays/descriptive-statistics-and-correlational-design/

"Descriptive Correlational Design in Research." IvyPanda , 6 July 2020, ivypanda.com/essays/descriptive-statistics-and-correlational-design/.

IvyPanda . (2020) 'Descriptive Correlational Design in Research'. 6 July.

IvyPanda . 2020. "Descriptive Correlational Design in Research." July 6, 2020. https://ivypanda.com/essays/descriptive-statistics-and-correlational-design/.

1. IvyPanda . "Descriptive Correlational Design in Research." July 6, 2020. https://ivypanda.com/essays/descriptive-statistics-and-correlational-design/.

Bibliography

IvyPanda . "Descriptive Correlational Design in Research." July 6, 2020. https://ivypanda.com/essays/descriptive-statistics-and-correlational-design/.

  • Privacy Policy

Research Method

Home » Correlational Research – Methods, Types and Examples

Correlational Research – Methods, Types and Examples

Table of Contents

Correlational Research Design

Correlational Research

Correlational Research is a type of research that examines the statistical relationship between two or more variables without manipulating them. It is a non-experimental research design that seeks to establish the degree of association or correlation between two or more variables.

Types of Correlational Research

There are three types of correlational research:

Positive Correlation

A positive correlation occurs when two variables increase or decrease together. This means that as one variable increases, the other variable also tends to increase. Similarly, as one variable decreases, the other variable also tends to decrease. For example, there is a positive correlation between the amount of time spent studying and academic performance. The more time a student spends studying, the higher their academic performance is likely to be. Similarly, there is a positive correlation between a person’s age and their income level. As a person gets older, they tend to earn more money.

Negative Correlation

A negative correlation occurs when one variable increases while the other decreases. This means that as one variable increases, the other variable tends to decrease. Similarly, as one variable decreases, the other variable tends to increase. For example, there is a negative correlation between the number of hours spent watching TV and physical activity level. The more time a person spends watching TV, the less physically active they are likely to be. Similarly, there is a negative correlation between the amount of stress a person experiences and their overall happiness. As stress levels increase, happiness levels tend to decrease.

Zero Correlation

A zero correlation occurs when there is no relationship between two variables. This means that the variables are unrelated and do not affect each other. For example, there is zero correlation between a person’s shoe size and their IQ score. The size of a person’s feet has no relationship to their level of intelligence. Similarly, there is zero correlation between a person’s height and their favorite color. The two variables are unrelated to each other.

Correlational Research Methods

Correlational research can be conducted using different methods, including:

Surveys are a common method used in correlational research. Researchers collect data by asking participants to complete questionnaires or surveys that measure different variables of interest. Surveys are useful for exploring the relationships between variables such as personality traits, attitudes, and behaviors.

Observational Studies

Observational studies involve observing and recording the behavior of participants in natural settings. Researchers can use observational studies to examine the relationships between variables such as social interactions, group dynamics, and communication patterns.

Archival Data

Archival data involves using existing data sources such as historical records, census data, or medical records to explore the relationships between variables. Archival data is useful for investigating the relationships between variables that cannot be manipulated or controlled.

Experimental Design

While correlational research does not involve manipulating variables, researchers can use experimental design to establish cause-and-effect relationships between variables. Experimental design involves manipulating one variable while holding other variables constant to determine the effect on the dependent variable.

Meta-Analysis

Meta-analysis involves combining and analyzing the results of multiple studies to explore the relationships between variables across different contexts and populations. Meta-analysis is useful for identifying patterns and inconsistencies in the literature and can provide insights into the strength and direction of relationships between variables.

Data Analysis Methods

Correlational research data analysis methods depend on the type of data collected and the research questions being investigated. Here are some common data analysis methods used in correlational research:

Correlation Coefficient

A correlation coefficient is a statistical measure that quantifies the strength and direction of the relationship between two variables. The correlation coefficient ranges from -1 to +1, with -1 indicating a perfect negative correlation, +1 indicating a perfect positive correlation, and 0 indicating no correlation. Researchers use correlation coefficients to determine the degree to which two variables are related.

Scatterplots

A scatterplot is a graphical representation of the relationship between two variables. Each data point on the plot represents a single observation. The x-axis represents one variable, and the y-axis represents the other variable. The pattern of data points on the plot can provide insights into the strength and direction of the relationship between the two variables.

Regression Analysis

Regression analysis is a statistical method used to model the relationship between two or more variables. Researchers use regression analysis to predict the value of one variable based on the value of another variable. Regression analysis can help identify the strength and direction of the relationship between variables, as well as the degree to which one variable can be used to predict the other.

Factor Analysis

Factor analysis is a statistical method used to identify patterns among variables. Researchers use factor analysis to group variables into factors that are related to each other. Factor analysis can help identify underlying factors that influence the relationship between two variables.

Path Analysis

Path analysis is a statistical method used to model the relationship between multiple variables. Researchers use path analysis to test causal models and identify direct and indirect effects between variables.

Applications of Correlational Research

Correlational research has many practical applications in various fields, including:

  • Psychology : Correlational research is commonly used in psychology to explore the relationships between variables such as personality traits, behaviors, and mental health outcomes. For example, researchers may use correlational research to examine the relationship between anxiety and depression, or the relationship between self-esteem and academic achievement.
  • Education : Correlational research is useful in educational research to explore the relationships between variables such as teaching methods, student motivation, and academic performance. For example, researchers may use correlational research to examine the relationship between student engagement and academic success, or the relationship between teacher feedback and student learning outcomes.
  • Business : Correlational research can be used in business to explore the relationships between variables such as consumer behavior, marketing strategies, and sales outcomes. For example, marketers may use correlational research to examine the relationship between advertising spending and sales revenue, or the relationship between customer satisfaction and brand loyalty.
  • Medicine : Correlational research is useful in medical research to explore the relationships between variables such as risk factors, disease outcomes, and treatment effectiveness. For example, researchers may use correlational research to examine the relationship between smoking and lung cancer, or the relationship between exercise and heart health.
  • Social Science : Correlational research is commonly used in social science research to explore the relationships between variables such as socioeconomic status, cultural factors, and social behavior. For example, researchers may use correlational research to examine the relationship between income and voting behavior, or the relationship between cultural values and attitudes towards immigration.

Examples of Correlational Research

  • Psychology : Researchers might be interested in exploring the relationship between two variables, such as parental attachment and anxiety levels in young adults. The study could involve measuring levels of attachment and anxiety using established scales or questionnaires, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in identifying potential risk factors for anxiety in young adults, and in developing interventions that could help improve attachment and reduce anxiety.
  • Education : In a correlational study in education, researchers might investigate the relationship between two variables, such as teacher engagement and student motivation in a classroom setting. The study could involve measuring levels of teacher engagement and student motivation using established scales or questionnaires, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in identifying strategies that teachers could use to improve student motivation and engagement in the classroom.
  • Business : Researchers might explore the relationship between two variables, such as employee satisfaction and productivity levels in a company. The study could involve measuring levels of employee satisfaction and productivity using established scales or questionnaires, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in identifying factors that could help increase productivity and improve job satisfaction among employees.
  • Medicine : Researchers might examine the relationship between two variables, such as smoking and the risk of developing lung cancer. The study could involve collecting data on smoking habits and lung cancer diagnoses, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in identifying risk factors for lung cancer and in developing interventions that could help reduce smoking rates.
  • Sociology : Researchers might investigate the relationship between two variables, such as income levels and political attitudes. The study could involve measuring income levels and political attitudes using established scales or questionnaires, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in understanding how socioeconomic factors can influence political beliefs and attitudes.

How to Conduct Correlational Research

Here are the general steps to conduct correlational research:

  • Identify the Research Question : Start by identifying the research question that you want to explore. It should involve two or more variables that you want to investigate for a correlation.
  • Choose the research method: Decide on the research method that will be most appropriate for your research question. The most common methods for correlational research are surveys, archival research, and naturalistic observation.
  • Choose the Sample: Select the participants or data sources that you will use in your study. Your sample should be representative of the population you want to generalize the results to.
  • Measure the variables: Choose the measures that will be used to assess the variables of interest. Ensure that the measures are reliable and valid.
  • Collect the Data: Collect the data from your sample using the chosen research method. Be sure to maintain ethical standards and obtain informed consent from your participants.
  • Analyze the data: Use statistical software to analyze the data and compute the correlation coefficient. This will help you determine the strength and direction of the correlation between the variables.
  • Interpret the results: Interpret the results and draw conclusions based on the findings. Consider any limitations or alternative explanations for the results.
  • Report the findings: Report the findings of your study in a research report or manuscript. Be sure to include the research question, methods, results, and conclusions.

Purpose of Correlational Research

The purpose of correlational research is to examine the relationship between two or more variables. Correlational research allows researchers to identify whether there is a relationship between variables, and if so, the strength and direction of that relationship. This information can be useful for predicting and explaining behavior, and for identifying potential risk factors or areas for intervention.

Correlational research can be used in a variety of fields, including psychology, education, medicine, business, and sociology. For example, in psychology, correlational research can be used to explore the relationship between personality traits and behavior, or between early life experiences and later mental health outcomes. In education, correlational research can be used to examine the relationship between teaching practices and student achievement. In medicine, correlational research can be used to investigate the relationship between lifestyle factors and disease outcomes.

Overall, the purpose of correlational research is to provide insight into the relationship between variables, which can be used to inform further research, interventions, or policy decisions.

When to use Correlational Research

Here are some situations when correlational research can be particularly useful:

  • When experimental research is not possible or ethical: In some situations, it may not be possible or ethical to manipulate variables in an experimental design. In these cases, correlational research can be used to explore the relationship between variables without manipulating them.
  • When exploring new areas of research: Correlational research can be useful when exploring new areas of research or when researchers are unsure of the direction of the relationship between variables. Correlational research can help identify potential areas for further investigation.
  • When testing theories: Correlational research can be useful for testing theories about the relationship between variables. Researchers can use correlational research to examine the relationship between variables predicted by a theory, and to determine whether the theory is supported by the data.
  • When making predictions: Correlational research can be used to make predictions about future behavior or outcomes. For example, if there is a strong positive correlation between education level and income, one could predict that individuals with higher levels of education will have higher incomes.
  • When identifying risk factors: Correlational research can be useful for identifying potential risk factors for negative outcomes. For example, a study might find a positive correlation between drug use and depression, indicating that drug use could be a risk factor for depression.

Characteristics of Correlational Research

Here are some common characteristics of correlational research:

  • Examines the relationship between two or more variables: Correlational research is designed to examine the relationship between two or more variables. It seeks to determine if there is a relationship between the variables, and if so, the strength and direction of that relationship.
  • Non-experimental design: Correlational research is typically non-experimental in design, meaning that the researcher does not manipulate any variables. Instead, the researcher observes and measures the variables as they naturally occur.
  • Cannot establish causation : Correlational research cannot establish causation, meaning that it cannot determine whether one variable causes changes in another variable. Instead, it only provides information about the relationship between the variables.
  • Uses statistical analysis: Correlational research relies on statistical analysis to determine the strength and direction of the relationship between variables. This may include calculating correlation coefficients, regression analysis, or other statistical tests.
  • Observes real-world phenomena : Correlational research is often used to observe real-world phenomena, such as the relationship between education and income or the relationship between stress and physical health.
  • Can be conducted in a variety of fields : Correlational research can be conducted in a variety of fields, including psychology, sociology, education, and medicine.
  • Can be conducted using different methods: Correlational research can be conducted using a variety of methods, including surveys, observational studies, and archival studies.

Advantages of Correlational Research

There are several advantages of using correlational research in a study:

  • Allows for the exploration of relationships: Correlational research allows researchers to explore the relationships between variables in a natural setting without manipulating any variables. This can help identify possible relationships between variables that may not have been previously considered.
  • Useful for predicting behavior: Correlational research can be useful for predicting future behavior. If a strong correlation is found between two variables, researchers can use this information to predict how changes in one variable may affect the other.
  • Can be conducted in real-world settings: Correlational research can be conducted in real-world settings, which allows for the collection of data that is representative of real-world phenomena.
  • Can be less expensive and time-consuming than experimental research: Correlational research is often less expensive and time-consuming than experimental research, as it does not involve manipulating variables or creating controlled conditions.
  • Useful in identifying risk factors: Correlational research can be used to identify potential risk factors for negative outcomes. By identifying variables that are correlated with negative outcomes, researchers can develop interventions or policies to reduce the risk of negative outcomes.
  • Useful in exploring new areas of research: Correlational research can be useful in exploring new areas of research, particularly when researchers are unsure of the direction of the relationship between variables. By conducting correlational research, researchers can identify potential areas for further investigation.

Limitation of Correlational Research

Correlational research also has several limitations that should be taken into account:

  • Cannot establish causation: Correlational research cannot establish causation, meaning that it cannot determine whether one variable causes changes in another variable. This is because it is not possible to control all possible confounding variables that could affect the relationship between the variables being studied.
  • Directionality problem: The directionality problem refers to the difficulty of determining which variable is influencing the other. For example, a correlation may exist between happiness and social support, but it is not clear whether social support causes happiness, or whether happy people are more likely to have social support.
  • Third variable problem: The third variable problem refers to the possibility that a third variable, not included in the study, is responsible for the observed relationship between the two variables being studied.
  • Limited generalizability: Correlational research is often limited in terms of its generalizability to other populations or settings. This is because the sample studied may not be representative of the larger population, or because the variables studied may behave differently in different contexts.
  • Relies on self-reported data: Correlational research often relies on self-reported data, which can be subject to social desirability bias or other forms of response bias.
  • Limited in explaining complex behaviors: Correlational research is limited in explaining complex behaviors that are influenced by multiple factors, such as personality traits, situational factors, and social context.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Mixed Research methods

Mixed Methods Research – Types & Analysis

Focus Groups in Qualitative Research

Focus Groups – Steps, Examples and Guide

Explanatory Research

Explanatory Research – Types, Methods, Guide

Basic Research

Basic Research – Types, Methods and Examples

Phenomenology

Phenomenology – Methods, Examples and Guide

Applied Research

Applied Research – Types, Methods and Examples

6.2 Correlational Research

Learning objectives.

  • Define correlational research and give several examples.
  • Explain why a researcher might choose to conduct correlational research rather than experimental research or another type of non-experimental research.
  • Interpret the strength and direction of different correlation coefficients.
  • Explain why correlation does not imply causation.

What Is Correlational Research?

Correlational research is a type of non-experimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are many reasons that researchers interested in statistical relationships between variables would choose to conduct a correlational study rather than an experiment. The first is that they do not believe that the statistical relationship is a causal one or are not interested in causal relationships. Recall two goals of science are to describe and to predict and the correlational research strategy allows researchers to achieve both of these goals. Specifically, this strategy can be used to describe the strength and direction of the relationship between two variables and if there is a relationship between the variables then the researchers can use scores on one variable to predict scores on the other (using a statistical technique called regression).

Another reason that researchers would choose to use a correlational study rather than an experiment is that the statistical relationship of interest is thought to be causal, but the researcher  cannot  manipulate the independent variable because it is impossible, impractical, or unethical. For example, while I might be interested in the relationship between the frequency people use cannabis and their memory abilities I cannot ethically manipulate the frequency that people use cannabis. As such, I must rely on the correlational research strategy; I must simply measure the frequency that people use cannabis and measure their memory abilities using a standardized test of memory and then determine whether the frequency people use cannabis use is statistically related to memory test performance. 

Correlation is also used to establish the reliability and validity of measurements. For example, a researcher might evaluate the validity of a brief extraversion test by administering it to a large group of participants along with a longer extraversion test that has already been shown to be valid. This researcher might then check to see whether participants’ scores on the brief test are strongly correlated with their scores on the longer one. Neither test score is thought to cause the other, so there is no independent variable to manipulate. In fact, the terms  independent variable  and dependent variabl e  do not apply to this kind of research.

Another strength of correlational research is that it is often higher in external validity than experimental research. Recall there is typically a trade-off between internal validity and external validity. As greater controls are added to experiments, internal validity is increased but often at the expense of external validity. In contrast, correlational studies typically have low internal validity because nothing is manipulated or control but they often have high external validity. Since nothing is manipulated or controlled by the experimenter the results are more likely to reflect relationships that exist in the real world.

Finally, extending upon this trade-off between internal and external validity, correlational research can help to provide converging evidence for a theory. If a theory is supported by a true experiment that is high in internal validity as well as by a correlational study that is high in external validity then the researchers can have more confidence in the validity of their theory. As a concrete example, correlational studies establishing that there is a relationship between watching violent television and aggressive behavior have been complemented by experimental studies confirming that the relationship is a causal one (Bushman & Huesmann, 2001) [1] .  These converging results provide strong evidence that there is a real relationship (indeed a causal relationship) between watching violent television and aggressive behavior.

Data Collection in Correlational Research

Again, the defining feature of correlational research is that neither variable is manipulated. It does not matter how or where the variables are measured. A researcher could have participants come to a laboratory to complete a computerized backward digit span task and a computerized risky decision-making task and then assess the relationship between participants’ scores on the two tasks. Or a researcher could go to a shopping mall to ask people about their attitudes toward the environment and their shopping habits and then assess the relationship between these two variables. Both of these studies would be correlational because no independent variable is manipulated. 

Correlations Between Quantitative Variables

Correlations between quantitative variables are often presented using scatterplots . Figure 6.3 shows some hypothetical data on the relationship between the amount of stress people are under and the number of physical symptoms they have. Each point in the scatterplot represents one person’s score on both variables. For example, the circled point in Figure 6.3 represents a person whose stress score was 10 and who had three physical symptoms. Taking all the points into account, one can see that people under more stress tend to have more physical symptoms. This is a good example of a positive relationship , in which higher scores on one variable tend to be associated with higher scores on the other. A  negative relationship  is one in which higher scores on one variable tend to be associated with lower scores on the other. There is a negative relationship between stress and immune system functioning, for example, because higher stress is associated with lower immune system functioning.

Figure 2.2 Scatterplot Showing a Hypothetical Positive Relationship Between Stress and Number of Physical Symptoms

Figure 6.3 Scatterplot Showing a Hypothetical Positive Relationship Between Stress and Number of Physical Symptoms. The circled point represents a person whose stress score was 10 and who had three physical symptoms. Pearson’s r for these data is +.51.

The strength of a correlation between quantitative variables is typically measured using a statistic called  Pearson’s Correlation Coefficient (or Pearson’s  r ) . As Figure 6.4 shows, Pearson’s r ranges from −1.00 (the strongest possible negative relationship) to +1.00 (the strongest possible positive relationship). A value of 0 means there is no relationship between the two variables. When Pearson’s  r  is 0, the points on a scatterplot form a shapeless “cloud.” As its value moves toward −1.00 or +1.00, the points come closer and closer to falling on a single straight line. Correlation coefficients near ±.10 are considered small, values near ± .30 are considered medium, and values near ±.50 are considered large. Notice that the sign of Pearson’s  r  is unrelated to its strength. Pearson’s  r  values of +.30 and −.30, for example, are equally strong; it is just that one represents a moderate positive relationship and the other a moderate negative relationship. With the exception of reliability coefficients, most correlations that we find in Psychology are small or moderate in size. The website http://rpsychologist.com/d3/correlation/ , created by Kristoffer Magnusson, provides an excellent interactive visualization of correlations that permits you to adjust the strength and direction of a correlation while witnessing the corresponding changes to the scatterplot.

Figure 2.3 Range of Pearson’s r, From −1.00 (Strongest Possible Negative Relationship), Through 0 (No Relationship), to +1.00 (Strongest Possible Positive Relationship)

Figure 6.4 Range of Pearson’s r, From −1.00 (Strongest Possible Negative Relationship), Through 0 (No Relationship), to +1.00 (Strongest Possible Positive Relationship)

There are two common situations in which the value of Pearson’s  r  can be misleading. Pearson’s  r  is a good measure only for linear relationships, in which the points are best approximated by a straight line. It is not a good measure for nonlinear relationships, in which the points are better approximated by a curved line. Figure 6.5, for example, shows a hypothetical relationship between the amount of sleep people get per night and their level of depression. In this example, the line that best approximates the points is a curve—a kind of upside-down “U”—because people who get about eight hours of sleep tend to be the least depressed. Those who get too little sleep and those who get too much sleep tend to be more depressed. Even though Figure 6.5 shows a fairly strong relationship between depression and sleep, Pearson’s  r  would be close to zero because the points in the scatterplot are not well fit by a single straight line. This means that it is important to make a scatterplot and confirm that a relationship is approximately linear before using Pearson’s  r . Nonlinear relationships are fairly common in psychology, but measuring their strength is beyond the scope of this book.

Figure 2.4 Hypothetical Nonlinear Relationship Between Sleep and Depression

Figure 6.5 Hypothetical Nonlinear Relationship Between Sleep and Depression

The other common situations in which the value of Pearson’s  r  can be misleading is when one or both of the variables have a limited range in the sample relative to the population. This problem is referred to as  restriction of range . Assume, for example, that there is a strong negative correlation between people’s age and their enjoyment of hip hop music as shown by the scatterplot in Figure 6.6. Pearson’s  r  here is −.77. However, if we were to collect data only from 18- to 24-year-olds—represented by the shaded area of Figure 6.6—then the relationship would seem to be quite weak. In fact, Pearson’s  r  for this restricted range of ages is 0. It is a good idea, therefore, to design studies to avoid restriction of range. For example, if age is one of your primary variables, then you can plan to collect data from people of a wide range of ages. Because restriction of range is not always anticipated or easily avoidable, however, it is good practice to examine your data for possible restriction of range and to interpret Pearson’s  r  in light of it. (There are also statistical methods to correct Pearson’s  r  for restriction of range, but they are beyond the scope of this book).

Figure 12.10 Hypothetical Data Showing How a Strong Overall Correlation Can Appear to Be Weak When One Variable Has a Restricted Range

Figure 6.6 Hypothetical Data Showing How a Strong Overall Correlation Can Appear to Be Weak When One Variable Has a Restricted Range.The overall correlation here is −.77, but the correlation for the 18- to 24-year-olds (in the blue box) is 0.

Correlation Does Not Imply Causation

You have probably heard repeatedly that “Correlation does not imply causation.” An amusing example of this comes from a 2012 study that showed a positive correlation (Pearson’s r = 0.79) between the per capita chocolate consumption of a nation and the number of Nobel prizes awarded to citizens of that nation [2] . It seems clear, however, that this does not mean that eating chocolate causes people to win Nobel prizes, and it would not make sense to try to increase the number of Nobel prizes won by recommending that parents feed their children more chocolate.

There are two reasons that correlation does not imply causation. The first is called the  directionality problem . Two variables,  X  and  Y , can be statistically related because X  causes  Y  or because  Y  causes  X . Consider, for example, a study showing that whether or not people exercise is statistically related to how happy they are—such that people who exercise are happier on average than people who do not. This statistical relationship is consistent with the idea that exercising causes happiness, but it is also consistent with the idea that happiness causes exercise. Perhaps being happy gives people more energy or leads them to seek opportunities to socialize with others by going to the gym. The second reason that correlation does not imply causation is called the  third-variable problem . Two variables,  X  and  Y , can be statistically related not because  X  causes  Y , or because  Y  causes  X , but because some third variable,  Z , causes both  X  and  Y . For example, the fact that nations that have won more Nobel prizes tend to have higher chocolate consumption probably reflects geography in that European countries tend to have higher rates of per capita chocolate consumption and invest more in education and technology (once again, per capita) than many other countries in the world. Similarly, the statistical relationship between exercise and happiness could mean that some third variable, such as physical health, causes both of the others. Being physically healthy could cause people to exercise and cause them to be happier. Correlations that are a result of a third-variable are often referred to as  spurious correlations.

Some excellent and funny examples of spurious correlations can be found at http://www.tylervigen.com  (Figure 6.7  provides one such example).

Figure 2.5 Example of a Spurious Correlation Source: http://tylervigen.com/spurious-correlations (CC-BY 4.0)

“Lots of Candy Could Lead to Violence”

Although researchers in psychology know that correlation does not imply causation, many journalists do not. One website about correlation and causation, http://jonathan.mueller.faculty.noctrl.edu/100/correlation_or_causation.htm , links to dozens of media reports about real biomedical and psychological research. Many of the headlines suggest that a causal relationship has been demonstrated when a careful reading of the articles shows that it has not because of the directionality and third-variable problems.

One such article is about a study showing that children who ate candy every day were more likely than other children to be arrested for a violent offense later in life. But could candy really “lead to” violence, as the headline suggests? What alternative explanations can you think of for this statistical relationship? How could the headline be rewritten so that it is not misleading?

As you have learned by reading this book, there are various ways that researchers address the directionality and third-variable problems. The most effective is to conduct an experiment. For example, instead of simply measuring how much people exercise, a researcher could bring people into a laboratory and randomly assign half of them to run on a treadmill for 15 minutes and the rest to sit on a couch for 15 minutes. Although this seems like a minor change to the research design, it is extremely important. Now if the exercisers end up in more positive moods than those who did not exercise, it cannot be because their moods affected how much they exercised (because it was the researcher who determined how much they exercised). Likewise, it cannot be because some third variable (e.g., physical health) affected both how much they exercised and what mood they were in (because, again, it was the researcher who determined how much they exercised). Thus experiments eliminate the directionality and third-variable problems and allow researchers to draw firm conclusions about causal relationships.

Key Takeaways

  • Correlational research involves measuring two variables and assessing the relationship between them, with no manipulation of an independent variable.
  • Correlation does not imply causation. A statistical relationship between two variables,  X  and  Y , does not necessarily mean that  X  causes  Y . It is also possible that  Y  causes  X , or that a third variable,  Z , causes both  X  and  Y .
  • While correlational research cannot be used to establish causal relationships between variables, correlational research does allow researchers to achieve many other important objectives (establishing reliability and validity, providing converging evidence, describing relationships and making predictions)
  • Correlation coefficients can range from -1 to +1. The sign indicates the direction of the relationship between the variables and the numerical value indicates the strength of the relationship.
  • A cognitive psychologist compares the ability of people to recall words that they were instructed to “read” with their ability to recall words that they were instructed to “imagine.”
  • A manager studies the correlation between new employees’ college grade point averages and their first-year performance reports.
  • An automotive engineer installs different stick shifts in a new car prototype, each time asking several people to rate how comfortable the stick shift feels.
  • A food scientist studies the relationship between the temperature inside people’s refrigerators and the amount of bacteria on their food.
  • A social psychologist tells some research participants that they need to hurry over to the next building to complete a study. She tells others that they can take their time. Then she observes whether they stop to help a research assistant who is pretending to be hurt.

2. Practice: For each of the following statistical relationships, decide whether the directionality problem is present and think of at least one plausible third variable.

  • People who eat more lobster tend to live longer.
  • People who exercise more tend to weigh less.
  • College students who drink more alcohol tend to have poorer grades.
  • Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage. ↵
  • Messerli, F. H. (2012). Chocolate consumption, cognitive function, and Nobel laureates. New England Journal of Medicine, 367 , 1562-1564. ↵

Creative Commons License

Share This Book

  • Increase Font Size

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Types of Research Designs Compared | Guide & Examples

Types of Research Designs Compared | Guide & Examples

Published on June 20, 2019 by Shona McCombes . Revised on June 22, 2023.

When you start planning a research project, developing research questions and creating a  research design , you will have to make various decisions about the type of research you want to do.

There are many ways to categorize different types of research. The words you use to describe your research depend on your discipline and field. In general, though, the form your research design takes will be shaped by:

  • The type of knowledge you aim to produce
  • The type of data you will collect and analyze
  • The sampling methods , timescale and location of the research

This article takes a look at some common distinctions made between different types of research and outlines the key differences between them.

Table of contents

Types of research aims, types of research data, types of sampling, timescale, and location, other interesting articles.

The first thing to consider is what kind of knowledge your research aims to contribute.

Type of research What’s the difference? What to consider
Basic vs. applied Basic research aims to , while applied research aims to . Do you want to expand scientific understanding or solve a practical problem?
vs. Exploratory research aims to , while explanatory research aims to . How much is already known about your research problem? Are you conducting initial research on a newly-identified issue, or seeking precise conclusions about an established issue?
aims to , while aims to . Is there already some theory on your research problem that you can use to develop , or do you want to propose new theories based on your findings?

Prevent plagiarism. Run a free check.

The next thing to consider is what type of data you will collect. Each kind of data is associated with a range of specific research methods and procedures.

Type of research What’s the difference? What to consider
Primary research vs secondary research Primary data is (e.g., through or ), while secondary data (e.g., in government or scientific publications). How much data is already available on your topic? Do you want to collect original data or analyze existing data (e.g., through a )?
, while . Is your research more concerned with measuring something or interpreting something? You can also create a research design that has elements of both.
vs Descriptive research gathers data , while experimental research . Do you want to identify characteristics, patterns and or test causal relationships between ?

Finally, you have to consider three closely related questions: how will you select the subjects or participants of the research? When and how often will you collect data from your subjects? And where will the research take place?

Keep in mind that the methods that you choose bring with them different risk factors and types of research bias . Biases aren’t completely avoidable, but can heavily impact the validity and reliability of your findings if left unchecked.

Type of research What’s the difference? What to consider
allows you to , while allows you to draw conclusions . Do you want to produce  knowledge that applies to many contexts or detailed knowledge about a specific context (e.g. in a )?
vs Cross-sectional studies , while longitudinal studies . Is your research question focused on understanding the current situation or tracking changes over time?
Field research vs laboratory research Field research takes place in , while laboratory research takes place in . Do you want to find out how something occurs in the real world or draw firm conclusions about cause and effect? Laboratory experiments have higher but lower .
Fixed design vs flexible design In a fixed research design the subjects, timescale and location are begins, while in a flexible design these aspects may . Do you want to test hypotheses and establish generalizable facts, or explore concepts and develop understanding? For measuring, testing and making generalizations, a fixed research design has higher .

Choosing between all these different research types is part of the process of creating your research design , which determines exactly how your research will be conducted. But the type of research is only the first step: next, you have to make more concrete decisions about your research methods and the details of the study.

Read more about creating a research design

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, June 22). Types of Research Designs Compared | Guide & Examples. Scribbr. Retrieved August 14, 2024, from https://www.scribbr.com/methodology/types-of-research/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is a research design | types, guide & examples, qualitative vs. quantitative research | differences, examples & methods, what is a research methodology | steps & tips, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Logo for OPENPRESS.USASK.CA

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 3. Psychological Science & Research

3.5 Psychologists Use Descriptive, Correlational, and Experimental Research Designs to Understand Behaviour

Charles Stangor and Jennifer Walinga

Learning Objectives

  • Differentiate the goals of descriptive, correlational, and experimental research designs and explain the advantages and disadvantages of each.
  • Explain the goals of descriptive research and the statistical techniques used to interpret it.
  • Summarize the uses of correlational research and describe why correlational research cannot be used to infer causality.
  • Review the procedures of experimental research and explain how it can be used to draw causal inferences.

Psychologists agree that if their ideas and theories about human behaviour are to be taken seriously, they must be backed up by data. However, the research of different psychologists is designed with different goals in mind, and the different goals require different approaches. These varying approaches, summarized in Table 3.3, are known as research designs . A research design  is the specific method a researcher uses to collect, analyze, and interpret data . Psychologists use three major types of research designs in their research, and each provides an essential avenue for scientific investigation. Descriptive research  is research designed to provide a snapshot of the current state of affairs . Correlational research  is research designed to discover relationships among variables and to allow the prediction of future events from present knowledge . Experimental research  is research in which initial equivalence among research participants in more than one group is created, followed by a manipulation of a given experience for these groups and a measurement of the influence of the manipulation . Each of the three research designs varies according to its strengths and limitations, and it is important to understand how each differs.

Research design Goal Advantages Disadvantages
Descriptive To create a snapshot of the current state of affairs Provides a relatively complete picture of what is occurring at a given time. Allows the development of questions for further study. Does not assess relationships among variables. May be unethical if participants do not know they are being observed.
Correlational To assess the relationships between and among two or more variables Allows testing of expected relationships between and among variables and the making of predictions. Can assess these relationships in everyday life events. Cannot be used to draw inferences about the causal relationships between and among the variables.
Experimental To assess the causal impact of one or more experimental manipulations on a dependent variable Allows drawing of conclusions about the causal relationships among variables. Cannot experimentally manipulate many important variables. May be expensive and time consuming.
Source: Stangor, 2011.

Descriptive Research: Assessing the Current State of Affairs

Descriptive research is designed to create a snapshot of the current thoughts, feelings, or behaviour of individuals. This section reviews three types of descriptive research : case studies , surveys , and naturalistic observation (Figure 3.3).

Sometimes the data in a descriptive research project are based on only a small set of individuals, often only one person or a single small group. These research designs are known as case studies — descriptive records of one or more individual’s experiences and behaviour . Sometimes case studies involve ordinary individuals, as when developmental psychologist Jean Piaget used his observation of his own children to develop his stage theory of cognitive development. More frequently, case studies are conducted on individuals who have unusual or abnormal experiences or characteristics or who find themselves in particularly difficult or stressful situations. The assumption is that by carefully studying individuals who are socially marginal, who are experiencing unusual situations, or who are going through a difficult phase in their lives, we can learn something about human nature.

Sigmund Freud was a master of using the psychological difficulties of individuals to draw conclusions about basic psychological processes. Freud wrote case studies of some of his most interesting patients and used these careful examinations to develop his important theories of personality. One classic example is Freud’s description of “Little Hans,” a child whose fear of horses the psychoanalyst interpreted in terms of repressed sexual impulses and the Oedipus complex (Freud, 1909/1964).

Man reading newspaper on park bench.

Another well-known case study is Phineas Gage, a man whose thoughts and emotions were extensively studied by cognitive psychologists after a railroad spike was blasted through his skull in an accident. Although there are questions about the interpretation of this case study (Kotowicz, 2007), it did provide early evidence that the brain’s frontal lobe is involved in emotion and morality (Damasio et al., 2005). An interesting example of a case study in clinical psychology is described by Rokeach (1964), who investigated in detail the beliefs of and interactions among three patients with schizophrenia, all of whom were convinced they were Jesus Christ.

In other cases the data from descriptive research projects come in the form of a survey — a measure administered through either an interview or a written questionnaire to get a picture of the beliefs or behaviours of a sample of people of interest . The people chosen to participate in the research (known as the sample) are selected to be representative of all the people that the researcher wishes to know about (the population). In election polls, for instance, a sample is taken from the population of all “likely voters” in the upcoming elections.

The results of surveys may sometimes be rather mundane, such as “Nine out of 10 doctors prefer Tymenocin” or “The median income in the city of Hamilton is $46,712.” Yet other times (particularly in discussions of social behaviour), the results can be shocking: “More than 40,000 people are killed by gunfire in the United States every year” or “More than 60% of women between the ages of 50 and 60 suffer from depression.” Descriptive research is frequently used by psychologists to get an estimate of the prevalence (or incidence ) of psychological disorders.

A final type of descriptive research — known as naturalistic observation — is research based on the observation of everyday events . For instance, a developmental psychologist who watches children on a playground and describes what they say to each other while they play is conducting descriptive research, as is a biopsychologist who observes animals in their natural habitats. One example of observational research involves a systematic procedure known as the strange situation , used to get a picture of how adults and young children interact. The data that are collected in the strange situation are systematically coded in a coding sheet such as that shown in Table 3.4.

Coder name:
This table represents a sample coding sheet from an episode of the “strange situation,” in which an infant (usually about one year old) is observed playing in a room with two adults — the child’s mother and a stranger. Each of the four coding categories is scored by the coder from 1 (the baby makes no effort to engage in the behaviour) to 7 (the baby makes a significant effort to engage in the behaviour). More information about the meaning of the coding can be found in Ainsworth, Blehar, Waters, and Wall (1978).

Episode Coding categories
Proximity Contact Resistance Avoidance
Mother and baby play alone 1 1 1 1
Mother puts baby down 4 1 1 1
Stranger enters room 1 2 3 1
Mother leaves room; stranger plays with baby 1 3 1 1
Mother re-enters, greets and may comfort baby, then leaves again 4 2 1 2
Stranger tries to play with baby 1 3 1 1
Mother re-enters and picks up baby 6 6 1 2
Source: Stangor, 2011.

The results of descriptive research projects are analyzed using descriptive statistics — numbers that summarize the distribution of scores on a measured variable . Most variables have distributions similar to that shown in Figure 3.4 where most of the scores are located near the centre of the distribution, and the distribution is symmetrical and bell-shaped. A data distribution that is shaped like a bell is known as a normal distribution .

""

A distribution can be described in terms of its central tendency — that is, the point in the distribution around which the data are centred — and its dispersion, or spread . The arithmetic average, or arithmetic mean , symbolized by the letter M , is the most commonly used measure of central tendency . It is computed by calculating the sum of all the scores of the variable and dividing this sum by the number of participants in the distribution (denoted by the letter N ). In the data presented in Figure 3.4 the mean height of the students is 67.12 inches (170.5 cm). The sample mean is usually indicated by the letter M .

In some cases, however, the data distribution is not symmetrical. This occurs when there are one or more extreme scores (known as outliers ) at one end of the distribution. Consider, for instance, the variable of family income (see Figure 3.6), which includes an outlier (a value of $3,800,000). In this case the mean is not a good measure of central tendency. Although it appears from Figure 3.5 that the central tendency of the family income variable should be around $70,000, the mean family income is actually $223,960. The single very extreme income has a disproportionate impact on the mean, resulting in a value that does not well represent the central tendency.

The median is used as an alternative measure of central tendency when distributions are not symmetrical. The median  is the score in the center of the distribution, meaning that 50% of the scores are greater than the median and 50% of the scores are less than the median . In our case, the median household income ($73,000) is a much better indication of central tendency than is the mean household income ($223,960).

Family income median versus mean. Long description available.

A final measure of central tendency, known as the mode , represents the value that occurs most frequently in the distribution . You can see from Figure 3.5 that the mode for the family income variable is $93,000 (it occurs four times).

In addition to summarizing the central tendency of a distribution, descriptive statistics convey information about how the scores of the variable are spread around the central tendency. Dispersion refers to the extent to which the scores are all tightly clustered around the central tendency , as seen in Figure 3.6.

A line graph forms a narrow bell shape around the central tendency.

Or they may be more spread out away from it, as seen in Figure 3.7.

A line graph forms a wide bell shape around the central tendency.

One simple measure of dispersion is to find the largest (the maximum ) and the smallest (the minimum ) observed values of the variable and to compute the range of the variable as the maximum observed score minus the minimum observed score. You can check that the range of the height variable in Figure 3.4 is 72 – 62 = 10. The standard deviation , symbolized as s , is the most commonly used measure of dispersion . Distributions with a larger standard deviation have more spread. The standard deviation of the height variable is s = 2.74, and the standard deviation of the family income variable is s = $745,337.

An advantage of descriptive research is that it attempts to capture the complexity of everyday behaviour. Case studies provide detailed information about a single person or a small group of people, surveys capture the thoughts or reported behaviours of a large population of people, and naturalistic observation objectively records the behaviour of people or animals as it occurs naturally. Thus descriptive research is used to provide a relatively complete understanding of what is currently happening.

Despite these advantages, descriptive research has a distinct disadvantage in that, although it allows us to get an idea of what is currently happening, it is usually limited to static pictures. Although descriptions of particular experiences may be interesting, they are not always transferable to other individuals in other situations, nor do they tell us exactly why specific behaviours or events occurred. For instance, descriptions of individuals who have suffered a stressful event, such as a war or an earthquake, can be used to understand the individuals’ reactions to the event but cannot tell us anything about the long-term effects of the stress. And because there is no comparison group that did not experience the stressful situation, we cannot know what these individuals would be like if they hadn’t had the stressful experience.

Correlational Research: Seeking Relationships among Variables

In contrast to descriptive research, which is designed primarily to provide static pictures, correlational research involves the measurement of two or more relevant variables and an assessment of the relationship between or among those variables. For instance, the variables of height and weight are systematically related (correlated) because taller people generally weigh more than shorter people. In the same way, study time and memory errors are also related, because the more time a person is given to study a list of words, the fewer errors he or she will make. When there are two variables in the research design, one of them is called the predictor variable and the other the outcome variable . The research design can be visualized as shown in Figure 3.8, where the curved arrow represents the expected correlation between these two variables.

There is a expected correlation between predictor variables and outcome variables.

One way of organizing the data from a correlational study with two variables is to graph the values of each of the measured variables using a scatter plot . As you can see in Figure 3.9 a scatter plot  is a visual image of the relationship between two variables . A point is plotted for each individual at the intersection of his or her scores for the two variables. When the association between the variables on the scatter plot can be easily approximated with a straight line , as in parts (a) and (b) of Figure 3.9 the variables are said to have a linear relationship .

When the straight line indicates that individuals who have above-average values for one variable also tend to have above-average values for the other variable , as in part (a), the relationship is said to be positive linear . Examples of positive linear relationships include those between height and weight, between education and income, and between age and mathematical abilities in children. In each case, people who score higher on one of the variables also tend to score higher on the other variable. Negative linear relationships , in contrast, as shown in part (b), occur when above-average values for one variable tend to be associated with below-average values for the other variable. Examples of negative linear relationships include those between the age of a child and the number of diapers the child uses, and between practice on and errors made on a learning task. In these cases, people who score higher on one of the variables tend to score lower on the other variable.

Relationships between variables that cannot be described with a straight line are known as nonlinear relationships . Part (c) of Figure 3.9 shows a common pattern in which the distribution of the points is essentially random. In this case there is no relationship at all between the two variables , and they are said to be independent . Parts (d) and (e) of Figure 3.9 show patterns of association in which, although there is an association, the points are not well described by a single straight line. For instance, part (d) shows the type of relationship that frequently occurs between anxiety and performance. Increases in anxiety from low to moderate levels are associated with performance increases, whereas increases in anxiety from moderate to high levels are associated with decreases in performance. Relationships that change in direction and thus are not described by a single straight line are called curvilinear relationships .

Different scatter plots. Long description available.

The most common statistical measure of the strength of linear relationships among variables is the Pearson correlation coefficient , which is symbolized by the letter r . The value of the correlation coefficient ranges from r = –1.00 to r = +1.00. The direction of the linear relationship is indicated by the sign of the correlation coefficient. Positive values of r (such as r = .54 or r = .67) indicate that the relationship is positive linear (i.e., the pattern of the dots on the scatter plot runs from the lower left to the upper right), whereas negative values of r (such as r = –.30 or r = –.72) indicate negative linear relationships (i.e., the dots run from the upper left to the lower right). The strength of the linear relationship is indexed by the distance of the correlation coefficient from zero (its absolute value). For instance, r = –.54 is a stronger relationship than r = .30, and r = .72 is a stronger relationship than r = –.57. Because the Pearson correlation coefficient only measures linear relationships, variables that have curvilinear relationships are not well described by r , and the observed correlation will be close to zero.

It is also possible to study relationships among more than two measures at the same time. A research design in which more than one predictor variable is used to predict a single outcome variable is analyzed through multiple regression (Aiken & West, 1991).  Multiple regression  is a statistical technique, based on correlation coefficients among variables, that allows predicting a single outcome variable from more than one predictor variable . For instance, Figure 3.10 shows a multiple regression analysis in which three predictor variables (Salary, job satisfaction, and years employed) are used to predict a single outcome (job performance). The use of multiple regression analysis shows an important advantage of correlational research designs — they can be used to make predictions about a person’s likely score on an outcome variable (e.g., job performance) based on knowledge of other variables.

""

An important limitation of correlational research designs is that they cannot be used to draw conclusions about the causal relationships among the measured variables. Consider, for instance, a researcher who has hypothesized that viewing violent behaviour will cause increased aggressive play in children. He has collected, from a sample of Grade 4 children, a measure of how many violent television shows each child views during the week, as well as a measure of how aggressively each child plays on the school playground. From his collected data, the researcher discovers a positive correlation between the two measured variables.

Measured variables showed that viewing violent TV is positively correlated with aggressive play.

Although this positive correlation appears to support the researcher’s hypothesis, it cannot be taken to indicate that viewing violent television causes aggressive behaviour. Although the researcher is tempted to assume that viewing violent television causes aggressive play, there are other possibilities. One alternative possibility is that the causal direction is exactly opposite from what has been hypothesized. Perhaps children who have behaved aggressively at school develop residual excitement that leads them to want to watch violent television shows at home (Figure 3.12):

Perhaps, aggressive play leads to watching violent TV.

Although this possibility may seem less likely, there is no way to rule out the possibility of such reverse causation on the basis of this observed correlation. It is also possible that both causal directions are operating and that the two variables cause each other (Figure 3.13).

Perhaps, aggressive play and watching violent TV encourage each other.

Still another possible explanation for the observed correlation is that it has been produced by the presence of a common-causal variable (also known as a third variable ). A common-causal variable  is a variable that is not part of the research hypothesis but that causes both the predictor and the outcome variable and thus produces the observed correlation between them . In our example, a potential common-causal variable is the discipline style of the children’s parents. Parents who use a harsh and punitive discipline style may produce children who like to watch violent television and who also behave aggressively in comparison to children whose parents use less harsh discipline (Figure 3.14)

Perhaps, the parents' discipline style causes children to watch violent TV and play aggressively.

In this case, television viewing and aggressive play would be positively correlated (as indicated by the curved arrow between them), even though neither one caused the other but they were both caused by the discipline style of the parents (the straight arrows). When the predictor and outcome variables are both caused by a common-causal variable, the observed relationship between them is said to be spurious . A spurious relationship  is a relationship between two variables in which a common-causal variable produces and “explains away” the relationship . If effects of the common-causal variable were taken away, or controlled for, the relationship between the predictor and outcome variables would disappear. In the example, the relationship between aggression and television viewing might be spurious because by controlling for the effect of the parents’ disciplining style, the relationship between television viewing and aggressive behaviour might go away.

Common-causal variables in correlational research designs can be thought of as mystery variables because, as they have not been measured, their presence and identity are usually unknown to the researcher. Since it is not possible to measure every variable that could cause both the predictor and outcome variables, the existence of an unknown common-causal variable is always a possibility. For this reason, we are left with the basic limitation of correlational research: correlation does not demonstrate causation. It is important that when you read about correlational research projects, you keep in mind the possibility of spurious relationships, and be sure to interpret the findings appropriately. Although correlational research is sometimes reported as demonstrating causality without any mention being made of the possibility of reverse causation or common-causal variables, informed consumers of research, like you, are aware of these interpretational problems.

In sum, correlational research designs have both strengths and limitations. One strength is that they can be used when experimental research is not possible because the predictor variables cannot be manipulated. Correlational designs also have the advantage of allowing the researcher to study behaviour as it occurs in everyday life. And we can also use correlational designs to make predictions — for instance, to predict from the scores on their battery of tests the success of job trainees during a training session. But we cannot use such correlational information to determine whether the training caused better job performance. For that, researchers rely on experiments.

Experimental Research: Understanding the Causes of Behaviour

The goal of experimental research design is to provide more definitive conclusions about the causal relationships among the variables in the research hypothesis than is available from correlational designs. In an experimental research design, the variables of interest are called the independent variable (or variables ) and the dependent variable . The independent variable  in an experiment is the causing variable that is created (manipulated) by the experimenter . The dependent variable  in an experiment is a measured variable that is expected to be influenced by the experimental manipulation . The research hypothesis suggests that the manipulated independent variable or variables will cause changes in the measured dependent variables. We can diagram the research hypothesis by using an arrow that points in one direction. This demonstrates the expected direction of causality (Figure 3.15):

Viewing violence (independent variable) and its relation to aggressive behaviour (dependent variable

Research Focus: Video Games and Aggression

Consider an experiment conducted by Anderson and Dill (2000). The study was designed to test the hypothesis that viewing violent video games would increase aggressive behaviour. In this research, male and female undergraduates from Iowa State University were given a chance to play with either a violent video game (Wolfenstein 3D) or a nonviolent video game (Myst). During the experimental session, the participants played their assigned video games for 15 minutes. Then, after the play, each participant played a competitive game with an opponent in which the participant could deliver blasts of white noise through the earphones of the opponent. The operational definition of the dependent variable (aggressive behaviour) was the level and duration of noise delivered to the opponent. The design of the experiment is shown in Figure 3.16

""

Two advantages of the experimental research design are (a) the assurance that the independent variable (also known as the experimental manipulation ) occurs prior to the measured dependent variable, and (b) the creation of initial equivalence between the conditions of the experiment (in this case by using random assignment to conditions).

Experimental designs have two very nice features. For one, they guarantee that the independent variable occurs prior to the measurement of the dependent variable. This eliminates the possibility of reverse causation. Second, the influence of common-causal variables is controlled, and thus eliminated, by creating initial equivalence among the participants in each of the experimental conditions before the manipulation occurs.

The most common method of creating equivalence among the experimental conditions is through random assignment to conditions, a procedure in which the condition that each participant is assigned to is determined through a random process, such as drawing numbers out of an envelope or using a random number table . Anderson and Dill first randomly assigned about 100 participants to each of their two groups (Group A and Group B). Because they used random assignment to conditions, they could be confident that, before the experimental manipulation occurred, the students in Group A were, on average, equivalent to the students in Group B on every possible variable, including variables that are likely to be related to aggression, such as parental discipline style, peer relationships, hormone levels, diet — and in fact everything else.

Then, after they had created initial equivalence, Anderson and Dill created the experimental manipulation — they had the participants in Group A play the violent game and the participants in Group B play the nonviolent game. Then they compared the dependent variable (the white noise blasts) between the two groups, finding that the students who had viewed the violent video game gave significantly longer noise blasts than did the students who had played the nonviolent game.

Anderson and Dill had from the outset created initial equivalence between the groups. This initial equivalence allowed them to observe differences in the white noise levels between the two groups after the experimental manipulation, leading to the conclusion that it was the independent variable (and not some other variable) that caused these differences. The idea is that the only thing that was different between the students in the two groups was the video game they had played.

Despite the advantage of determining causation, experiments do have limitations. One is that they are often conducted in laboratory situations rather than in the everyday lives of people. Therefore, we do not know whether results that we find in a laboratory setting will necessarily hold up in everyday life. Second, and more important, is that some of the most interesting and key social variables cannot be experimentally manipulated. If we want to study the influence of the size of a mob on the destructiveness of its behaviour, or to compare the personality characteristics of people who join suicide cults with those of people who do not join such cults, these relationships must be assessed using correlational designs, because it is simply not possible to experimentally manipulate these variables.

Key Takeaways

  • Descriptive, correlational, and experimental research designs are used to collect and analyze data.
  • Descriptive designs include case studies, surveys, and naturalistic observation. The goal of these designs is to get a picture of the current thoughts, feelings, or behaviours in a given group of people. Descriptive research is summarized using descriptive statistics.
  • Correlational research designs measure two or more relevant variables and assess a relationship between or among them. The variables may be presented on a scatter plot to visually show the relationships. The Pearson Correlation Coefficient ( r ) is a measure of the strength of linear relationship between two variables.
  • Common-causal variables may cause both the predictor and outcome variable in a correlational design, producing a spurious relationship. The possibility of common-causal variables makes it impossible to draw causal conclusions from correlational research designs.
  • Experimental research involves the manipulation of an independent variable and the measurement of a dependent variable. Random assignment to conditions is normally used to create initial equivalence between the groups, allowing researchers to draw causal conclusions.

Exercises and Critical Thinking

  • There is a negative correlation between the row that a student sits in in a large class (when the rows are numbered from front to back) and his or her final grade in the class. Do you think this represents a causal relationship or a spurious relationship, and why?
  • Think of two variables (other than those mentioned in this book) that are likely to be correlated, but in which the correlation is probably spurious. What is the likely common-causal variable that is producing the relationship?
  • Imagine a researcher wants to test the hypothesis that participating in psychotherapy will cause a decrease in reported anxiety. Describe the type of research design the investigator might use to draw this conclusion. What would be the independent and dependent variables in the research?

Image Attributions

Figure 3.3: “ Reading newspaper ” by Alaskan Dude (http://commons.wikimedia.org/wiki/File:Reading_newspaper.jpg) is licensed under CC BY 2.0

Aiken, L., & West, S. (1991).  Multiple regression: Testing and interpreting interactions . Newbury Park, CA: Sage.

Ainsworth, M. S., Blehar, M. C., Waters, E., & Wall, S. (1978).  Patterns of attachment: A psychological study of the strange situation . Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, C. A., & Dill, K. E. (2000). Video games and aggressive thoughts, feelings, and behavior in the laboratory and in life.  Journal of Personality and Social Psychology, 78 (4), 772–790.

Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., Damasio, A. R., Cacioppo, J. T., & Berntson, G. G. (2005). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. In  Social neuroscience: Key readings.  (pp. 21–28). New York, NY: Psychology Press.

Freud, S. (1909/1964). Analysis of phobia in a five-year-old boy. In E. A. Southwell & M. Merbaum (Eds.),  Personality: Readings in theory and research  (pp. 3–32). Belmont, CA: Wadsworth. (Original work published 1909).

Kotowicz, Z. (2007). The strange case of Phineas Gage.  History of the Human Sciences, 20 (1), 115–131.

Rokeach, M. (1964).  The three Christs of Ypsilanti: A psychological study . New York, NY: Knopf.

Stangor, C. (2011). Research methods for the behavioural sciences (4th ed.). Mountain View, CA: Cengage.

Long Descriptions

Figure 3.5 long description: There are 25 families. 24 families have an income between $44,000 and $111,000 and one family has an income of $3,800,000. The mean income is $223,960 while the median income is $73,000.

Figure 3.9 long description: Types of scatter plots.

  • Positive linear, r=positive .82. The plots on the graph form a rough line that runs from lower left to upper right.
  • Negative linear, r=negative .70. The plots on the graph form a rough line that runs from upper left to lower right.
  • Independent, r=0.00. The plots on the graph are spread out around the centre.
  • Curvilinear, r=0.00. The plots of the graph form a rough line that goes up and then down like a hill.
  • Curvilinear, r=0.00. The plots on the graph for a rough line that goes down and then up like a ditch.

Introduction to Psychology Copyright © 2019 by Charles Stangor and Jennifer Walinga is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Reference.com

What's Your Question?

  • History & Geography
  • Science & Technology
  • Business & Finance
  • Pets & Animals

What Is Descriptive Correlational Method?

descriptive correlational research definition

In scientific research, a descriptive correlational method refers to a type of study in which information is collected without making any changes to the study subject. This means that the experimenter cannot directly interact with the environment in which she is studying in a way that would cause any changes related to the experiment. These types of studies are also sometimes known as observational studies.

All descriptive correlational method studies have the same basic property of avoiding any direct changes in the environment of the study. However, there are a number of different types of descriptive correlational methods that each perform research in a slightly different way. Some scientists and researchers prefer to meet with a group of people one time and ask them questions. This is called a cross-sectional study, and as long as the scientists do not change the behavior of the people they are interacting with, it is a descriptive correlational study. Some researchers prefer to keep track of people over time. This is called a longitudinal study. In these cases, behavior must remain unchanged, but the subjects are often brought back in for further questions. Descriptive studies generally use surveys or other methods of data collection that rely on existing records.

MORE FROM REFERENCE.COM

descriptive correlational research definition

Warning: The NCBI web site requires JavaScript to function. more...

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Lau F, Kuziemsky C, editors. Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. Victoria (BC): University of Victoria; 2017 Feb 27.

Cover of Handbook of eHealth Evaluation: An Evidence-based Approach

Handbook of eHealth Evaluation: An Evidence-based Approach [Internet].

Chapter 12 methods for correlational studies.

Francis Lau .

12.1. Introduction

Correlational studies aim to find out if there are differences in the characteristics of a population depending on whether or not its subjects have been exposed to an event of interest in the naturalistic setting. In eHealth, correlational studies are often used to determine whether the use of an eHealth system is associated with a particular set of user characteristics and/or quality of care patterns ( Friedman & Wyatt, 2006 ). An example is a computerized provider order entry ( cpoe ) study to differentiate the background, usage and performance between clinical users and non-users of the cpoe system after its implementation in a hospital.

Correlational studies are different from comparative studies in that the evaluator does not control the allocation of subjects into comparison groups or assignment of the intervention to specific groups. Instead, the evaluator defines a set of variables including an outcome of interest then tests for hypothesized relations among these variables. The outcome is known as the dependent variable and the variables being tested for association are the independent variables. Correlational studies are similar to comparative studies in that they take on an objectivist view where the variables can be defined, measured and analyzed for the presence of hypothesized relations. As such, correlational studies face the same challenges as comparative studies in terms of their internal and external validity. Of particular importance are the issues of design choices, selection bias, confounders, and reporting consistency.

In this chapter we describe the basic types of correlational studies seen in the eHealth literature and their methodological considerations. Also included are three case examples to show how these studies are done.

12.2. Types of Correlational Studies

Correlational studies, better known as observational studies in epidemiology, are used to examine event exposure, disease prevalence and risk factors in a population ( Elwood, 2007 ). In eHealth, the exposure typically refers to the use of an eHealth system by a population of subjects in a given setting. These subjects may be patients, providers or organizations identified through a set of variables that are thought to differ in their measured values depending on whether or not the subjects were “exposed” to the eHealth system.

There are three basic types of correlational studies that are used in eHealth evaluation: cohort, cross-sectional, and case-control studies ( Vandenbroucke et al., 2014 ). These are described below.

  • Cohort studies – A sample of subjects is observed over time where those exposed and not exposed to the eHealth system are compared for differences in one or more predefined outcomes, such as adverse event rates. Cohort studies may be prospective in nature where subjects are followed for a time period into the future or retrospective for a period into the past. The comparisons are typically made at the beginning of the study as baseline measures, then repeated over time at predefined intervals for differences and trends. Some cohort studies involve only a single group of subjects. Their focus is to describe the characteristics of subjects based on a set of variables, such as the pattern of ehr use by providers and their quality of care in an organization over a given time period.
  • Cross-sectional studies – These are considered a type of cohort study where only one comparison is made between exposed and unexposed subjects. They provide a snapshot of the outcome and the associated characteristics of the cohort at a specific point in time.
  • Case-control studies – Subjects in a sample that are exposed to the eHealth system are matched with those not exposed but otherwise similar in composition, then compared for differences in some predefined outcomes. Case-control studies are retrospective in nature where subjects already exposed to the event are selected then matched with unexposed subjects, using historical cases to ensure they have similar characteristics.

A cross-sectional survey is a type of cross-sectional study where the data source is drawn from postal questionnaires and interviews. This topic will be covered in the chapter on methods for survey studies.

12.3. Methodological Considerations

While correlational studies are considered less rigorous than rct s, they are the preferred designs when it is neither feasible nor ethical to conduct experimental trials. Key methodological issues arise in terms of: (a) design options, (b) biases and confounders, (c) controlling for confounding effects, (d) adherence to good practices, and (e) reporting consistency. These issues are discussed below.

12.3.1. Design Options

There are growing populations with multiple chronic conditions and healthcare interventions. They have made it difficult to design rct s with sufficient sample size and long-term follow-up to account for all the variability this phenomenon entails. Also rct s are intended to test the efficacy of an intervention in a restricted sample of subjects under ideal settings. They have limited generalizability to the population at large in routine settings ( Fleurence, Naci, & Jansen, 2010 ). As such, correlational studies, especially those involving the use of routinely collected ehr data from the general population, have become viable alternatives to rct s. There are advantages and disadvantages to each of the three design options presented above. They are listed below.

  • Cohort studies – These studies typically follow the cohorts over time, which allow one to examine causal relationships between exposure and one or more outcomes. They also allow one to measure change in exposure and outcomes over time. However, these studies can be costly and time-consuming to conduct if the outcomes are rare or occur in the future. With prospective cohorts they can be prone to dropout. With retrospective cohorts accurate historical records are required which may not be available or complete ( Levin, 2003a ).
  • Case-control studies – These studies are suited to examine infrequent or rare outcomes since they are selected at the outset to ensure sufficient cases. Yet the selection of exposed and matching cases can be problematic, as not all relevant characteristics are known. Moreover, the cases may not be representative of the population of interest. The focus on exposed cases that occur infrequently may overestimate their risks ( Levin, 2003b ).
  • Cross-sectional studies – These studies are easier and quicker to conduct than others as they involve a one-time effort over a short period using a sample from the population of interest. They can be used to generate hypotheses and examine multiple outcomes and characteristics at the same time with no loss to follow-up. On the other hand, these studies only give a snapshot of the situation at one time point, making it difficult for causal inference of the exposure and outcomes. The results might be different had another time period been chosen ( Levin, 2006 ).

12.3.2. Biases and Confounders

Shamliyan, Kane, and Dickinson (2010) conducted a systematic review on tools used to assess the quality of observational studies. Despite the large number of quality scales and checklists found in the literature, they concluded that the universal concerns are in the areas of selection bias, confounding, and misclassification. These concerns, also mentioned by Vandenbroucke and colleagues (2014) in their reporting guidelines for observational studies, are summarized below.

  • Selection bias – When subjects are selected through their exposure to the event rather than by random or concealed allocation, there is a risk that the subjects are not comparable due to the presence of systematic differences in their baseline characteristics. For example, a correlational study that examines the association between ehr use and quality of care may have younger providers with more computer savvy in the exposed group because they use ehr more and with more facility than those in the unexposed group. It is also possible to have sicker patients in the exposed group since they require more frequent ehr use than unexposed patients who may be healthier and have less need for the ehr . This is sometimes referred to as response bias, where the characteristics of subjects agreed to be in the study are different from those who declined to take part.
  • Confounding – Extraneous factors that influence the outcome but are also associated with the exposure are said to have a confounding effect. One such type is confounding by indication where sicker patients are both more likely to receive treatments and also more likely to have adverse outcomes. For example, a study of cds alerts and adverse drug events may find a positive but spurious association due to the inclusion of sicker patients with multiple conditions and medications, which increases their chance of adverse events regardless of cds alerts.
  • Misclassification – When there are systematic differences in the completeness or accuracy of the data recorded on the subjects, there is a risk of misclassification in their exposures or outcomes. This is also known as information or detection bias. An example is where sicker patients may have more complete ehr data because they received more tests, treatments and outcome tracking than those who are healthier and require less attention. As such, the exposure and outcomes of sicker patients may be overestimated.

It is important to note that bias and confounding are not synonymous. Bias is caused by finding the wrong association from flawed information or subject selection. Confounding is factually correct with respect to the relationship found, but is incorrect in its interpretation due to an extraneous factor that is associated with both the exposure and outcome.

12.3.3. Controlling for Confounding Effects

There are three common methods to control for confounding effects. These are by matching, stratification, and modelling. They are described below ( Higgins & Green, 2011 ).

  • Matching – The selection of subjects with similar characteristics so that they are comparable; the matching can be done at the individual subject level where each exposed subject is matched with one or more unexposed subjects as controls. It can also be done at the group level with equal numbers of exposed and unexposed subjects. Another way to match subjects is by propensity score, that is, a measure derived from a set of characteristics in the subjects. An example is the retrospective cohort study by Zhou, Leith, Li, and Tom (2015) to examine the association between caregiver phr use and healthcare utilization by pediatric patients. In that study, a propensity score-matching algorithm was used to match phr -registered children to non-registered children. The matching model used registration as the outcome variable and all child and caregiver characteristics as the independent variables.
  • Stratification – Subjects are categorized into subgroups based on a set of characteristics such as age and sex then analyzed for the effect within each subgroup. An example is the retrospective cohort study by Staes et al. (2008) , examining the impact of computerized alerts on the quality of outpatient lab monitoring for transplant patients. In that study, the before/after comparison of the timeliness of reporting and clinician responses was stratified by the type of test (creatinine, cyclosporine A, and tacrolimus) and report source (hospital laboratory or other labs).
  • Modelling – The use of statistical models to compute adjusted effects while accounting for relevant characteristics such as age and sex differences among subjects. An example is the retrospective cohort study by Beck and colleagues (2012) to compare documentation consistency and care plan improvement before and after the implementation of an electronic asthma-specific history and physical template. In that study, before/after group characteristics were compared for differences using t -tests for continuous variables and χ 2 statistics for categorical variables. Logistic regression was used to adjust for group differences in age, gender, insurance, albuterol use at admission, and previous hospitalization.

12.3.4. Adherence to Good Practices in Prospective Observational Studies

The ispor Good Research Practices Task Force published a set of recommendations in designing, conducting and reporting prospective observational studies for comparative effectiveness research ( Berger et al., 2012 ) that are relevant to eHealth evaluation. Their key recommendations are listed below.

  • Key policy questions should be defined to allow inferences to be drawn.
  • Hypothesis testing protocol design to include the hypothesis/questions, treatment groups and outcomes, measured and unmeasured confounders, primary analyses, and required sample size.
  • Rationale for prospective observational study design over others (e.g., rct ) is based on question, feasibility, intervention characteristics and ability to answer the question versus cost and timeliness.
  • Study design choice is able to address potential biases and confounders through the use of inception cohorts, multiple comparator groups, matching designs and unaffected outcomes.
  • Explanation of study design and analytic choices is transparent.
  • Study execution is carried out in ways that ensure relevance and reasonable follow-up is not different from the usual practice.
  • Study registration takes place on publicly available sites prior to its initiation.

12.3.5. The Need for Reporting Consistency

Vandenbroucke et al. (2014) published an expanded version of the Strengthening the Reporting of Observational Studies in Epidemiology ( strobe ) statement to improve the reporting of observational studies that can be applied in eHealth evaluation. It is made up of 22 items, of which 18 are common to cohort, case-control and cross-sectional studies, with four being specific to each of the three designs. The 22 reporting items are listed below (for details refer to the cited reference).

  • Title and abstract – one item that covers the type of design used, and a summary of what was done and found.
  • Introduction – two items on study background/rationale, objectives and/or hypotheses.
  • Methods – nine items on design, setting, participants, variables, data sources/measurement, bias, study size, quantitative variables and statistical methods used.
  • Results – five items on participants, descriptive, outcome data, main results and other analyses.
  • Discussion – four items on key results, limitations, interpretation and generalizability.
  • Other information – one item on funding source.

The four items specific to study design relate to the reporting of participants, statistical methods, descriptive results and outcome data. They are briefly described below for the three types of designs.

  • Cohort studies – Participant eligibility criteria and sources, methods of selection, follow-up and handling dropouts, description of follow-up time and duration, and number of outcome events or summary measures over time. For matched studies include matching criteria and number of exposed and unexposed subjects.
  • Cross-sectional studies – Participant eligibility criteria, sources and methods of selection, analytical methods accounting for sampling strategy as needed, and number of outcome events or summary measures.
  • Case-control studies – Participant eligibility criteria, sources and methods of case/control selection with rationale for choices, methods of matching cases/controls, and number of exposures by category or summary measures of exposures. For matched studies include matching criteria and number of controls per case.

12.4. Case Examples

12.4.1. cohort study of automated immunosuppressive care.

Park and colleagues (2010) conducted a retrospective cohort study to examine the association between the use of a cds (clinical decision support) system in post-liver transplant immunosuppressive care and the rates of rejection episode and drug toxicity. The study is summarized below.

  • Setting – A liver transplant program in the United States that had implemented an automated cds system to manage immunosuppressive therapy for its post-liver transplant recipients after discharge. The system consolidated all clinical information to expedite immunosuppressive review, ordering, and follow-up with recipients. Prior to automation, a paper charting system was used that involved manually tracking lab tests, transcribing results into a paper spreadsheet, finding physicians to review results and orders, and contacting recipients to notify them of changes.
  • Subjects – The study population included recipients of liver transplants between 2004 and 2008 who received outpatient immunosuppressive therapy that included tacrolimus medications.
  • Design – A retrospective cohort study with a before/after design to compare recipients managed by the paper charting system against those managed by the cds system for up to one year after discharge.
  • Measures – The outcome variables were the percentages of recipients with at least one rejection and/or tacrolimus toxicity episode during the one-year follow-up period. The independent variables included recipient, intraoperative, donor and postoperative characteristics, and use of paper charting or cds . Examples of recipient variables were age, gender, body mass index, presence of diabetes and hypertension, and pre-transplant lab results. Examples of intraoperative data were blood type match, type of transplant and volume of blood transfused. Examples of donor data included percentage of fat in the liver. Examples of post-transplantation data included the type of immunosuppressive induction therapy and the management method.
  • Analysis – Mean, standard deviation and t -tests were computed for continuous variables after checking for normal distribution. Percentages and Fisher’s exact test were computed for categorical variables. Autoregressive integrated moving average analysis was done to determine change in outcomes over time. Logistic regression with variables thought to be clinically relevant was used to identify significant univariable and multivariable factors associated with the outcomes. P values of less than 0.05 were considered significant.
  • Findings – Overall, the cds system was associated with significantly fewer episodes of rejection and tacrolimus toxicity. The integrated moving average analysis showed a significant decrease in outcome rates after the cds system was implemented compared with paper charting. Multivariable analysis showed the cds system had lower odds of a rejection episode than paper charting ( or 0.20; p < 0.01) and lower odds of tacrolimus toxicity ( or 0.5; p < 0.01). Other significant non-system related factors included the use of specific drugs, the percentage of fat in the donor liver and the volume of packed red cells transfused.

12.4.2. Cross-sectional Analysis of EHR Documentation and Care Quality

Linder, Schnipper, and Middleton (2012) conducted a cross-sectional study to examine the association between the type of ehr documentation used by physicians and the quality of care provided. The study is summarized below.

  • Setting – An integrated primary care practice-based research network affiliated with an academic centre in the United States. The network uses an in-house ehr system with decision support for preventive services, chronic care management, and medication monitoring and alerts. The ehr data include problem and medication lists, coded allergies and lab tests.
  • Subjects – Physicians and patients from 10 primary care practices that were part of an rct to examine the use of a decision support tool to manage patients with coronary artery disease and diabetes ( cad/DM ). Eligible patients were those with cad/DM in their ehr problem list prior to the rct start date.
  • Design – A nine-month retrospective cross-sectional analysis of ehr data collected from the rct . Three physician documentation styles were defined based on 188,554 visit notes in the ehr : (a) dictation, (b) structured documentation, and (c) free text note. Physicians were divided into three groups based on their predominant style defined as more than 25% of their notes composed by a given method.
  • Measures – The outcome variables were 15 ehr -based cad/DM quality measures assessed 30 days after primary care visits. They covered quality of documentation, medication use, lab testing, physiologic measures, and vaccinations. Measures collected prior to the day of visit were eligible and considered fulfilled with the presence of coded ehr data on vital signs, medications, allergies, problem lists, lab tests, and vaccinations. Independent variables on physicians and patients were included as covariates. For physicians, they included age, gender, training level, proportion of cad/DM patients in their panel, total patient visits, and self-reported experience with the ehr . For patients, they included socio-demographic factors, the number of clinic visits and hospitalizations, the number of problems and medications in the ehr , and whether their physician was in the intervention group.
  • Analysis – Baseline characteristics of physicians and patients were compared using descriptive statistics. Continuous variables were compared using anova . For categorical variables, Fisher’s exact test was used for physician variables and χ 2 test for patient variables. Multivariate logistic regression models were used for each quality measure to adjust for patient and physician clustering and potential confounders. Bonferroni procedure was used to account for multiple comparisons for the 15 quality measures.
  • Findings – During the study period, 234 physicians documented 18,569 visits from 7,000 cad/DM patients. Of these physicians, 146 (62%) typed free-text notes, 68 (25%) used structured documentation, and 20 (9%) dictated notes. After adjusting for cluster effect, physicians who dictated their notes had the worst quality of care in all 15 measures. In particular, physicians who dictated notes were significantly worse in three of 15 measures (antiplatelet medication, tobacco use, diabetic eye exam); physicians who used structured documentation were better in three measures (blood pressure, body mass, diabetic foot exam); and those who used free-text were better in one measure (influenza vaccination). In summary, physicians who dictated notes had worse quality of care than those with structured documentation.

12.4.3. Case-control Comparison of Internet Portal Use

Nielsen, Halamka, and Kinkel (2012) conducted a case-control study to evaluate whether there was an association between active Internet patient portal use by Multiple Sclerosis ( ms ) patients and medical resource utilization. Patient predictors and barriers to portal use were also identified. The study is summarized below.

  • Setting – An academic ms centre in the United States with an in-house Internet patient portal site that was accessed by ms patients to schedule clinic appointments, request prescription refills and referrals, view test results, upload personal health information, and communicate with providers via secure e-mails.
  • Subjects – 240 adult ms patients actively followed during 2008 and 2009 were randomly selected from the ehr ; 120 of these patients had submitted at least one message during that period and were defined as portal users. Another 120 patients who did not enrol in the portal or send any message were selected as non-users for comparison.
  • Design – A retrospective case-control study facilitated through a chart review comparing portal users against non-users from the same period. Patient demographic and clinical information was extracted from the ehr , while portal usage, including feature access type and frequency and e-mail message content, were provided by it staff.
  • Measures – Patient variables included age, gender, race, insurance type, employment status, number of medical problems, disease duration, psychiatric history, number of medications, and physical disability scores. Provider variables included prescription type and frequency. Portal usage variables included feature access type and frequency for test results, appointments, prescription requests and logins, and categorized messaging contents.
  • Analysis – Comparison of patient demographic, clinical and medical resource utilization data from users and non-users were made using descriptive statistics, Wilcoxon rank sum test, Fisher’s exact test and χ 2 test. Multivariate logistic regression was used to identify patient predictors and barriers to portal use. Provider prescribing habits against patient’s psychiatric history and portal use were examined by two-way analysis of variance. All statistical tests used p value of 0.05 with no adjustment made for multiple comparisons. A logistic multivariate regression model was created to predict portal use based on patient demographics, clinical condition, socio-economic status, and physical disability metrics.
  • Findings – Portal users were mostly young professionals with little physical disability. The most frequently used feature was secure patient-provider messaging, often for medication requests or refills, and self-reported side effects. Predictors and barriers of portal use were the number of medications prescribed ( or 1.69, p < 0.0001), Caucasian ethnicity ( or 5.04, p = 0.007), arm and hand disability ( or 0.23, p = 0.01), and impaired vision ( or 0.31, p = 0.01). For medical resource utilization, portal users had more frequent clinic visits, medication use and prescriptions from centre staff providers. Patients with a history of psychiatric disease were prescribed more ms medications than those without any history ( p < 0.0001). In summary, ms patients used the Internet more than the general population, but physical disability limited their access and need to be addressed.

12.4.4. Limitations

A general limitation of a correlational study is that it can determine association between exposure and outcomes but cannot predict causation. The more specific limitations of the three case examples cited by the authors are listed below.

  • Automated immunosuppressive care – Baseline differences existed between groups with unknown effects; possible other unmeasured confounders; possible Hawthorne effects from focus on immunosuppressive care.
  • ehr documentation and care quality – Small sample size; only three documentation styles were considered (e.g., scribe and voice recognition software were excluded) and unsure if they were stable during study period; quality measures specific to cad/DM conditions only; complex methods of adjusting for clustering and confounding that did not account for unmeasured confounders; the level of physician training (e.g., attending versus residents) not adjusted.
  • Internet portal use – Small sample size not representative of the study population; referral centre site could over-represent complex patients requiring advanced care; all patients had health insurance.

12.5. Summary

In this chapter we described cohort, case-control and cross-sectional studies as three types of correlational studies used in eHealth evaluation. The methodological issues addressed include bias and confounding, controlling for confounders, adherence to good practices and consistency in reporting. Three case examples were included to show how eHealth correlational studies are done.

1 ISPOR – International Society for Pharmacoeconomics and Outcomes Research

  • Beck A. F., Sauers H. S., Kahn R. S., Yau C., Weiser J., Simmons J.M. Improved documentation and care planning with an asthma-specific history and physical. Hospital Pediatrics. 2012; 2 (4):194–201. [ PubMed : 24313025 ]
  • Berger M. L., Dreyer N., Anderson F., Towse A., Sedrakyan A., Normand S.L. Prospective observational studies to address comparative effectiveness: The ispor good research practices task force report. Value in Health. 2012; 15 (2):217–230. Retrieved from http://www ​.sciencedirect ​.com/science/article ​/pii/S1098301512000071 . [ PubMed : 22433752 ]
  • Elwood M. Critical appraisal of epidemiological studies and clinical studies. 3rd ed. Oxford: Oxford University Press; 2007.
  • Fleurence R. L., Naci H., Jansen J.P. The critical role of observational evidence in comparative effectiveness research. Health Affairs. 2010; 29 (10):1826–1833. [ PubMed : 20921482 ]
  • Friedman C. P., Wyatt J.C. Evaluation methods in biomedical informatics. 2nd ed. New York: Springer Science + Business Media, Inc; 2006.
  • Higgins J. P. T., Green S., editors. Cochrane handbook for systematic reviews of interventions. London: The Cochrane Collaboration; 2011. (Version 5.1.0, updated March 2011) Retrieved from http://handbook ​.cochrane.org/
  • Levin K. A. Study design iv : Cohort studies. Evidence-based Dentistry. 2003a; 7 :51–52. [ PubMed : 16858385 ]
  • Levin K. A. Study design v : Case-control studies. Evidence-based Dentistry. 2003b; 7 :83–84. [ PubMed : 17003803 ]
  • Levin K. A. Study design iii : Cross-sectional studies. Evidence-based Dentistry. 2006; 7 :24–25. [ PubMed : 16557257 ]
  • Linder J. A., Schnipper J. L., Middleton B. Method of electronic health record documentation and quality of primary care. Journal of the American Medical Informatics Association. 2012; 19 (6):1019–1024. [ PMC free article : PMC3534457 ] [ PubMed : 22610494 ]
  • Nielsen A. S., Halamka J. D., Kinkel R.P. Internet portal use in an academic multiple sclerosis center. Journal of the American Medical Informatics Association. 2012; 19 (1):128–133. [ PMC free article : PMC3240754 ] [ PubMed : 21571744 ]
  • Park E. S., Peccoud M. R., Wicks K. A., Halldorson J. B., Carithers R. L. Jr., Reyes J. D., Perkins J.D. Use of an automated clinical management system improves outpatient immunosuppressive care following liver transplantation. Journal of the American Medical Informatics Association. 2010; 17 (4):396–402. [ PMC free article : PMC2995663 ] [ PubMed : 20595306 ]
  • Shamliyan T., Kane R. L., Dickinson S. A systematic review of tools used to assess the quality of observational studies that examine incidence or prevalence and risk factors for diseases. Journal of Clinical Epidemiology. 2010; 63 (10):1061–1070. [ PubMed : 20728045 ]
  • Staes C. J., Evans R. S., Rocha B. H. S. C., Sorensen J. B., Huff S. M., Arata J., Narus S.P. Computerized alerts improve outpatient laboratory monitoring of transplant patients. Journal of the American Medical Informatics Association. 2008; 15 (3):324–332. [ PMC free article : PMC2410008 ] [ PubMed : 18308982 ]
  • Vandenbroucke J. P., von Elm E., Altman D. G., Gotzsche P. C., Mulrow C. D., Pocock S. J., Egger M. for the strobe Initiative. Strengthening the reporting of observational studies in epidemiology ( strobe ): explanation and elaboration. International Journal of Surgery. 2014; 12 (12):1500–1524. Retrieved from http://www.sciencedirect.com/science/article/pii/ s174391911400212x . [ PubMed : 25046751 ]
  • Zhou Y. Y., Leith W. M., Li H., Tom J.O. Personal health record use for children and health care utilization: propensity score-matched cohort analysis. Journal of the American Medical Informatics Association. 2015; 22 (4):748–754. [ PubMed : 25656517 ]

This publication is licensed under a Creative Commons License, Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0): see https://creativecommons.org/licenses/by-nc/4.0/

  • Cite this Page Lau F. Chapter 12 Methods for Correlational Studies. In: Lau F, Kuziemsky C, editors. Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. Victoria (BC): University of Victoria; 2017 Feb 27.
  • PDF version of this title (4.5M)
  • Disable Glossary Links

In this Page

  • Introduction
  • Types of Correlational Studies
  • Methodological Considerations
  • Case Examples

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Recent Activity

  • Chapter 12 Methods for Correlational Studies - Handbook of eHealth Evaluation: A... Chapter 12 Methods for Correlational Studies - Handbook of eHealth Evaluation: An Evidence-based Approach

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

IMAGES

  1. Descriptive Correlational: Descriptive vs correlational research

    descriptive correlational research definition

  2. What Is a Correlational Study And Examples of correlational research

    descriptive correlational research definition

  3. PPT

    descriptive correlational research definition

  4. Descriptive Correlation Design

    descriptive correlational research definition

  5. Descriptive Correlational: Descriptive vs correlational research

    descriptive correlational research definition

  6. PPT

    descriptive correlational research definition

COMMENTS

  1. Descriptive Correlational: Descriptive vs Correlational Research

    Descriptive research is used to uncover new facts and the meaning of research. Correlational research is carried out to measure two variables. Nature. Descriptive research is analytical, where in-depth studies help collect information during research. Correlational nature is mathematical in nature.

  2. Correlational Research

    A correlational research design investigates relationships between variables without the researcher controlling or manipulating any of them. A correlation reflects the strength and/or direction of the relationship between two (or more) variables. The direction of a correlation can be either positive or negative. Positive correlation.

  3. 2.2 Psychologists Use Descriptive, Correlational, and Experimental

    Descriptive research is frequently used by psychologists to get an estimate of the prevalence ... The operational definition of the dependent variable (aggressive behavior) was the level and duration of noise delivered to the opponent. ... Correlational research designs measure two or more relevant variables and assess a relationship between or ...

  4. Descriptive Research Design

    Descriptive Research Design. Definition: Descriptive research design is a type of research methodology that aims to describe or document the characteristics, behaviors, attitudes, opinions, or perceptions of a group or population being studied. ... For example, if a descriptive study finds a correlation between two variables, this could lead to ...

  5. 3.2 Psychologists Use Descriptive, Correlational, and Experimental

    Descriptive research is research designed to provide a snapshot of the current state of affairs. Correlational research is research designed to discover relationships among variables and to allow the prediction of future events from present knowledge. ... The operational definition of the dependent variable (aggressive behaviour) was the level ...

  6. Descriptive Research

    Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what, where, when and how questions, but not why questions. A descriptive research design can use a wide variety of research methods to investigate one or more variables. Unlike in experimental research, the researcher does ...

  7. Correlational Research

    A correlational research design investigates relationships between variables without the researcher controlling or manipulating any of them. A correlation reflects the strength and/or direction of the relationship between two (or more) variables. The direction of a correlation can be either positive or negative. Positive correlation.

  8. 7.2 Correlational Research

    Correlational research is a type of nonexperimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are essentially two reasons that researchers interested in statistical relationships between ...

  9. 12 Quantitative Descriptive and Correlational Research

    Researchers investigating descriptive or correlational research questions commonly use surveys or observational methods to gather data. Surveys are an efficient method for gathering large amounts of information about such things as individuals' experiences, beliefs, and attitudes. When designing a survey, researchers must consider many things ...

  10. Descriptive/Correlational Research

    Correlation, a statistical measure of a relationship between two or more variables, gives an indication of how one variable may predict another. The descriptive techniques discussed above permit a statement, in the form of correlations, about that relationship. However, correlation does not imply causation; that is, simply because two events ...

  11. 2.2 Research Designs in Psychology

    Correlational research is designed to discover relationships among variables. Experimental research is designed to assess cause and effect. Each of the three research designs has specific strengths and limitations, and it is important to understand how each differs. See the table below for a summary. Table 2.2.

  12. Correlational Research

    Correlational research is a type of non-experimental research in which the researcher measures two variables (binary or continuous) and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are many reasons that researchers interested in statistical ...

  13. Psychologists Use Descriptive, Correlational, and Experimental Research

    Descriptive research is research designed to provide a snapshot of the current state of affairs. Correlational research is research designed to discover relationships among variables and to allow the prediction of future events from present knowledge. Experimental research is research in which initial equivalence among research participants in ...

  14. Descriptive Correlational Design in Research

    This research paper focused on descriptive correlation design definition and goals. This quantitative research method aims to describe two or more variables and their relationships. Descriptive correlation design can provide a picture of the current state of affairs. For instance, in psychology, it can be a picture of a given group of ...

  15. Correlational Research

    Correlational research has many practical applications in various fields, including: Psychology: Correlational research is commonly used in psychology to explore the relationships between variables such as personality traits, behaviors, and mental health outcomes. For example, researchers may use correlational research to examine the ...

  16. Study designs: Part 2

    INTRODUCTION. In our previous article in this series, [ 1] we introduced the concept of "study designs"- as "the set of methods and procedures used to collect and analyze data on variables specified in a particular research question.". Study designs are primarily of two types - observational and interventional, with the former being ...

  17. 6.2 Correlational Research

    Correlational research is a type of non-experimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are many reasons that researchers interested in statistical relationships between variables ...

  18. Types of Research Designs Compared

    You can also create a mixed methods research design that has elements of both. Descriptive research vs experimental research. Descriptive research gathers data without controlling any variables, while experimental research manipulates and controls variables to determine cause and effect.

  19. The 3 Descriptive Research Methods of Psychology

    Correlational research: examines two variables at once, ... One challenge of the case study is that the definition of this descriptive research method can vary widely among scientists, across and ...

  20. 3.5 Psychologists Use Descriptive, Correlational, and Experimental

    Descriptive research is research designed to provide a snapshot of the current state of affairs. Correlational research is research designed to discover relationships among variables and to allow the prediction of future events from present knowledge. ... The operational definition of the dependent variable (aggressive behaviour) was the level ...

  21. What Is Descriptive Correlational Method?

    In scientific research, a descriptive correlational method refers to a type of study in which information is collected without making any changes to the study subject. This means that the experimenter cannot directly interact with the environment in which she is studying in a way that would cause any changes related to the experiment. These types of studies are also sometimes known as ...

  22. Chapter 12 Methods for Correlational Studies

    Correlational studies aim to find out if there are differences in the characteristics of a population depending on whether or not its subjects have been exposed to an event of interest in the naturalistic setting. In eHealth, correlational studies are often used to determine whether the use of an eHealth system is associated with a particular set of user characteristics and/or quality of care ...