StatAnalytica

200+ Experimental Quantitative Research Topics For STEM Students In 2023

Experimental Quantitative Research Topics For Stem Students

STEM stands for Science, Technology, Engineering, and Math, but these are not the only subjects we learn in school. STEM is like a treasure chest of skills that help students become great problem solvers, ready to tackle the real world’s challenges.

In this blog, we are here to explore the world of Research Topics for STEM Students. We will break down what STEM really means and why it is so important for students. In addition, we will give you the lowdown on how to pick a fascinating research topic. We will explain a list of 200+ Experimental Quantitative Research Topics For STEM Students.

And when it comes to writing a research title, we will guide you step by step. So, stay with us as we unlock the exciting world of STEM research – it is not just about grades; it is about growing smarter, more confident, and happier along the way.

What Is STEM?

Table of Contents

STEM is Science, Technology, Engineering, and Mathematics. It is a way of talking about things like learning, jobs, and activities related to these four important subjects. Science is about understanding the world around us, technology is about using tools and machines to solve problems, engineering is about designing and building things, and mathematics is about numbers and solving problems with them. STEM helps us explore, discover, and create cool stuff that makes our world better and more exciting.

Why STEM Research Is Important?

STEM research is important because it helps us learn new things about the world and solve problems. When scientists, engineers, and mathematicians study these subjects, they can discover cures for diseases, create new technology that makes life easier, and build things that help us live better. It is like a big puzzle where we put together pieces of knowledge to make our world safer, healthier, and more fun.

  • STEM research leads to new discoveries and solutions.
  • It helps find cures for diseases.
  • STEM technology makes life easier.
  • Engineers build things that improve our lives.
  • Mathematics helps us understand and solve complex problems.

How to Choose a Topic for STEM Research Paper

Here are some steps to choose a topic for STEM Research Paper:

Step 1: Identify Your Interests

Think about what you like and what excites you in science, technology, engineering, or math. It could be something you learned in school, saw in the news, or experienced in your daily life. Choosing a topic you’re passionate about makes the research process more enjoyable.

Step 2: Research Existing Topics

Look up different STEM research areas online, in books, or at your library. See what scientists and experts are studying. This can give you ideas and help you understand what’s already known in your chosen field.

Step 3: Consider Real-World Problems

Think about the problems you see around you. Are there issues in your community or the world that STEM can help solve? Choosing a topic that addresses a real-world problem can make your research impactful.

Step 4: Talk to Teachers and Mentors

Discuss your interests with your teachers, professors, or mentors. They can offer guidance and suggest topics that align with your skills and goals. They may also provide resources and support for your research.

Step 5: Narrow Down Your Topic

Once you have some ideas, narrow them down to a specific research question or project. Make sure it’s not too broad or too narrow. You want a topic that you can explore in depth within the scope of your research paper.

Here we will discuss 200+ Experimental Quantitative Research Topics For STEM Students: 

Qualitative Research Topics for STEM Students:

Qualitative research focuses on exploring and understanding phenomena through non-numerical data and subjective experiences. Here are 10 qualitative research topics for STEM students:

  • Exploring the experiences of female STEM students in overcoming gender bias in academia.
  • Understanding the perceptions of teachers regarding the integration of technology in STEM education.
  • Investigating the motivations and challenges of STEM educators in underprivileged schools.
  • Exploring the attitudes and beliefs of parents towards STEM education for their children.
  • Analyzing the impact of collaborative learning on student engagement in STEM subjects.
  • Investigating the experiences of STEM professionals in bridging the gap between academia and industry.
  • Understanding the cultural factors influencing STEM career choices among minority students.
  • Exploring the role of mentorship in the career development of STEM graduates.
  • Analyzing the perceptions of students towards the ethics of emerging STEM technologies like AI and CRISPR.
  • Investigating the emotional well-being and stress levels of STEM students during their academic journey.

Easy Experimental Research Topics for STEM Students:

These experimental research topics are relatively straightforward and suitable for STEM students who are new to research:

  •  Measuring the effect of different light wavelengths on plant growth.
  •  Investigating the relationship between exercise and heart rate in various age groups.
  •  Testing the effectiveness of different insulating materials in conserving heat.
  •  Examining the impact of pH levels on the rate of chemical reactions.
  •  Studying the behavior of magnets in different temperature conditions.
  •  Investigating the effect of different concentrations of a substance on bacterial growth.
  •  Testing the efficiency of various sunscreen brands in blocking UV radiation.
  •  Measuring the impact of music genres on concentration and productivity.
  •  Examining the correlation between the angle of a ramp and the speed of a rolling object.
  •  Investigating the relationship between the number of blades on a wind turbine and energy output.

Research Topics for STEM Students in the Philippines:

These research topics are tailored for STEM students in the Philippines:

  •  Assessing the impact of climate change on the biodiversity of coral reefs in the Philippines.
  •  Studying the potential of indigenous plants in the Philippines for medicinal purposes.
  •  Investigating the feasibility of harnessing renewable energy sources like solar and wind in rural Filipino communities.
  •  Analyzing the water quality and pollution levels in major rivers and lakes in the Philippines.
  •  Exploring sustainable agricultural practices for small-scale farmers in the Philippines.
  •  Assessing the prevalence and impact of dengue fever outbreaks in urban areas of the Philippines.
  •  Investigating the challenges and opportunities of STEM education in remote Filipino islands.
  •  Studying the impact of typhoons and natural disasters on infrastructure resilience in the Philippines.
  •  Analyzing the genetic diversity of endemic species in the Philippine rainforests.
  •  Assessing the effectiveness of disaster preparedness programs in Philippine communities.

Read More 

  • Frontend Project Ideas
  • Business Intelligence Projects For Beginners

Good Research Topics for STEM Students:

These research topics are considered good because they offer interesting avenues for investigation and learning:

  •  Developing a low-cost and efficient water purification system for rural communities.
  •  Investigating the potential use of CRISPR-Cas9 for gene therapy in genetic disorders.
  •  Studying the applications of blockchain technology in securing medical records.
  •  Analyzing the impact of 3D printing on customized prosthetics for amputees.
  •  Exploring the use of artificial intelligence in predicting and preventing forest fires.
  •  Investigating the effects of microplastic pollution on aquatic ecosystems.
  •  Analyzing the use of drones in monitoring and managing agricultural crops.
  •  Studying the potential of quantum computing in solving complex optimization problems.
  •  Investigating the development of biodegradable materials for sustainable packaging.
  •  Exploring the ethical implications of gene editing in humans.

Unique Research Topics for STEM Students:

Unique research topics can provide STEM students with the opportunity to explore unconventional and innovative ideas. Here are 10 unique research topics for STEM students:

  •  Investigating the use of bioluminescent organisms for sustainable lighting solutions.
  •  Studying the potential of using spider silk proteins for advanced materials in engineering.
  •  Exploring the application of quantum entanglement for secure communication in the field of cryptography.
  •  Analyzing the feasibility of harnessing geothermal energy from underwater volcanoes.
  •  Investigating the use of CRISPR-Cas12 for rapid and cost-effective disease diagnostics.
  •  Studying the interaction between artificial intelligence and human creativity in art and music generation.
  •  Exploring the development of edible packaging materials to reduce plastic waste.
  •  Investigating the impact of microgravity on cellular behavior and tissue regeneration in space.
  •  Analyzing the potential of using sound waves to detect and combat invasive species in aquatic ecosystems.
  •  Studying the use of biotechnology in reviving extinct species, such as the woolly mammoth.

Experimental Research Topics for STEM Students in the Philippines

Research topics for STEM students in the Philippines can address specific regional challenges and opportunities. Here are 10 experimental research topics for STEM students in the Philippines:

  • Assessing the effectiveness of locally sourced materials for disaster-resilient housing construction in typhoon-prone areas.
  • Investigating the utilization of indigenous plants for natural remedies in Filipino traditional medicine.
  • Studying the impact of volcanic soil on crop growth and agriculture in volcanic regions of the Philippines.
  • Analyzing the water quality and purification methods in remote island communities.
  • Exploring the feasibility of using bamboo as a sustainable construction material in the Philippines.
  • Investigating the potential of using solar stills for freshwater production in water-scarce regions.
  • Studying the effects of climate change on the migration patterns of bird species in the Philippines.
  • Analyzing the growth and sustainability of coral reefs in marine protected areas.
  • Investigating the utilization of coconut waste for biofuel production.
  • Studying the biodiversity and conservation efforts in the Tubbataha Reefs Natural Park.

Capstone Research Topics for STEM Students in the Philippines:

Capstone research projects are often more comprehensive and can address real-world issues. Here are 10 capstone research topics for STEM students in the Philippines:

  • Designing a low-cost and sustainable sanitation system for informal settlements in urban Manila.
  • Developing a mobile app for monitoring and reporting natural disasters in the Philippines.
  • Assessing the impact of climate change on the availability and quality of drinking water in Philippine cities.
  • Designing an efficient traffic management system to address congestion in major Filipino cities.
  • Analyzing the health implications of air pollution in densely populated urban areas of the Philippines.
  • Developing a renewable energy microgrid for off-grid communities in the archipelago.
  • Assessing the feasibility of using unmanned aerial vehicles (drones) for agricultural monitoring in rural Philippines.
  • Designing a low-cost and sustainable aquaponics system for urban agriculture.
  • Investigating the potential of vertical farming to address food security in densely populated urban areas.
  • Developing a disaster-resilient housing prototype suitable for typhoon-prone regions.

Experimental Quantitative Research Topics for STEM Students:

Experimental quantitative research involves the collection and analysis of numerical data to conclude. Here are 10 Experimental Quantitative Research Topics For STEM Students interested in experimental quantitative research:

  • Examining the impact of different fertilizers on crop yield in agriculture.
  • Investigating the relationship between exercise and heart rate among different age groups.
  • Analyzing the effect of varying light intensities on photosynthesis in plants.
  • Studying the efficiency of various insulation materials in reducing building heat loss.
  • Investigating the relationship between pH levels and the rate of corrosion in metals.
  • Analyzing the impact of different concentrations of pollutants on aquatic ecosystems.
  • Examining the effectiveness of different antibiotics on bacterial growth.
  • Trying to figure out how temperature affects how thick liquids are.
  • Finding out if there is a link between the amount of pollution in the air and lung illnesses in cities.
  • Analyzing the efficiency of solar panels in converting sunlight into electricity under varying conditions.

Descriptive Research Topics for STEM Students

Descriptive research aims to provide a detailed account or description of a phenomenon. Here are 10 topics for STEM students interested in descriptive research:

  • Describing the physical characteristics and behavior of a newly discovered species of marine life.
  • Documenting the geological features and formations of a particular region.
  • Creating a detailed inventory of plant species in a specific ecosystem.
  • Describing the properties and behavior of a new synthetic polymer.
  • Documenting the daily weather patterns and climate trends in a particular area.
  • Providing a comprehensive analysis of the energy consumption patterns in a city.
  • Describing the structural components and functions of a newly developed medical device.
  • Documenting the characteristics and usage of traditional construction materials in a region.
  • Providing a detailed account of the microbiome in a specific environmental niche.
  • Describing the life cycle and behavior of a rare insect species.

Research Topics for STEM Students in the Pandemic:

The COVID-19 pandemic has raised many research opportunities for STEM students. Here are 10 research topics related to pandemics:

  • Analyzing the effectiveness of various personal protective equipment (PPE) in preventing the spread of respiratory viruses.
  • Studying the impact of lockdown measures on air quality and pollution levels in urban areas.
  • Investigating the psychological effects of quarantine and social isolation on mental health.
  • Analyzing the genomic variation of the SARS-CoV-2 virus and its implications for vaccine development.
  • Studying the efficacy of different disinfection methods on various surfaces.
  • Investigating the role of contact tracing apps in tracking & controlling the spread of infectious diseases.
  • Analyzing the economic impact of the pandemic on different industries and sectors.
  • Studying the effectiveness of remote learning in STEM education during lockdowns.
  • Investigating the social disparities in healthcare access during a pandemic.
  • Analyzing the ethical considerations surrounding vaccine distribution and prioritization.

Research Topics for STEM Students Middle School

Research topics for middle school STEM students should be engaging and suitable for their age group. Here are 10 research topics:

  • Investigating the growth patterns of different types of mold on various food items.
  • Studying the negative effects of music on plant growth and development.
  • Analyzing the relationship between the shape of a paper airplane and its flight distance.
  • Investigating the properties of different materials in making effective insulators for hot and cold beverages.
  • Studying the effect of salt on the buoyancy of different objects in water.
  • Analyzing the behavior of magnets when exposed to different temperatures.
  • Investigating the factors that affect the rate of ice melting in different environments.
  • Studying the impact of color on the absorption of heat by various surfaces.
  • Analyzing the growth of crystals in different types of solutions.
  • Investigating the effectiveness of different natural repellents against common pests like mosquitoes.

Technology Research Topics for STEM Students

Technology is at the forefront of STEM fields. Here are 10 research topics for STEM students interested in technology:

  • Developing and optimizing algorithms for autonomous drone navigation in complex environments.
  • Exploring the use of blockchain technology for enhancing the security and transparency of supply chains.
  • Investigating the applications of virtual reality (VR) and augmented reality (AR) in medical training and surgery simulations.
  • Studying the potential of 3D printing for creating personalized prosthetics and orthopedic implants.
  • Analyzing the ethical and privacy implications of facial recognition technology in public spaces.
  • Investigating the development of quantum computing algorithms for solving complex optimization problems.
  • Explaining the use of machine learning and AI in predicting and mitigating the impact of natural disasters.
  • Studying the advancement of brain-computer interfaces for assisting individuals with
  • disabilities.
  • Analyzing the role of wearable technology in monitoring and improving personal health and wellness.
  • Investigating the use of robotics in disaster response and search and rescue operations.

Scientific Research Topics for STEM Students

Scientific research encompasses a wide range of topics. Here are 10 research topics for STEM students focusing on scientific exploration:

  • Investigating the behavior of subatomic particles in high-energy particle accelerators.
  • Studying the ecological impact of invasive species on native ecosystems.
  • Analyzing the genetics of antibiotic resistance in bacteria and its implications for healthcare.
  • Exploring the physics of gravitational waves and their detection through advanced interferometry.
  • Investigating the neurobiology of memory formation and retention in the human brain.
  • Studying the biodiversity and adaptation of extremophiles in harsh environments.
  • Analyzing the chemistry of deep-sea hydrothermal vents and their potential for life beyond Earth.
  • Exploring the properties of superconductors and their applications in technology.
  • Investigating the mechanisms of stem cell differentiation for regenerative medicine.
  • Studying the dynamics of climate change and its impact on global ecosystems.

Interesting Research Topics for STEM Students:

Engaging and intriguing research topics can foster a passion for STEM. Here are 10 interesting research topics for STEM students:

  • Exploring the science behind the formation of auroras and their cultural significance.
  • Investigating the mysteries of dark matter and dark energy in the universe.
  • Studying the psychology of decision-making in high-pressure situations, such as sports or
  • emergencies.
  • Analyzing the impact of social media on interpersonal relationships and mental health.
  • Exploring the potential for using genetic modification to create disease-resistant crops.
  • Investigating the cognitive processes involved in solving complex puzzles and riddles.
  • Studying the history and evolution of cryptography and encryption methods.
  • Analyzing the physics of time travel and its theoretical possibilities.
  • Exploring the role of Artificial Intelligence in creating art and music.
  • Investigating the science of happiness and well-being, including factors contributing to life satisfaction.

Practical Research Topics for STEM Students

Practical research often leads to real-world solutions. Here are 10 practical research topics for STEM students:

  • Developing an affordable and sustainable water purification system for rural communities.
  • Designing a low-cost, energy-efficient home heating and cooling system.
  • Investigating strategies for reducing food waste in the supply chain and households.
  • Studying the effectiveness of eco-friendly pest control methods in agriculture.
  • Analyzing the impact of renewable energy integration on the stability of power grids.
  • Developing a smartphone app for early detection of common medical conditions.
  • Investigating the feasibility of vertical farming for urban food production.
  • Designing a system for recycling and upcycling electronic waste.
  • Studying the environmental benefits of green roofs and their potential for urban heat island mitigation.
  • Analyzing the efficiency of alternative transportation methods in reducing carbon emissions.

Experimental Research Topics for STEM Students About Plants

Plants offer a rich field for experimental research. Here are 10 experimental research topics about plants for STEM students:

  • Investigating the effect of different light wavelengths on plant growth and photosynthesis.
  • Studying the impact of various fertilizers and nutrient solutions on crop yield.
  • Analyzing the response of plants to different types and concentrations of plant hormones.
  • Investigating the role of mycorrhizal in enhancing nutrient uptake in plants.
  • Studying the effects of drought stress and water scarcity on plant physiology and adaptation mechanisms.
  • Analyzing the influence of soil pH on plant nutrient availability and growth.
  • Investigating the chemical signaling and defense mechanisms of plants against herbivores.
  • Studying the impact of environmental pollutants on plant health and genetic diversity.
  • Analyzing the role of plant secondary metabolites in pharmaceutical and agricultural applications.
  • Investigating the interactions between plants and beneficial microorganisms in the rhizosphere.

Qualitative Research Topics for STEM Students in the Philippines

Qualitative research in the Philippines can address local issues and cultural contexts. Here are 10 qualitative research topics for STEM students in the Philippines:

  • Exploring indigenous knowledge and practices in sustainable agriculture in Filipino communities.
  • Studying the perceptions and experiences of Filipino fishermen in coping with climate change impacts.
  • Analyzing the cultural significance and traditional uses of medicinal plants in indigenous Filipino communities.
  • Investigating the barriers and facilitators of STEM education access in remote Philippine islands.
  • Exploring the role of traditional Filipino architecture in natural disaster resilience.
  • Studying the impact of indigenous farming methods on soil conservation and fertility.
  • Analyzing the cultural and environmental significance of mangroves in coastal Filipino regions.
  • Investigating the knowledge and practices of Filipino healers in treating common ailments.
  • Exploring the cultural heritage and conservation efforts of the Ifugao rice terraces.
  • Studying the perceptions and practices of Filipino communities in preserving marine biodiversity.

Science Research Topics for STEM Students

Science offers a diverse range of research avenues. Here are 10 science research topics for STEM students:

  • Investigating the potential of gene editing techniques like CRISPR-Cas9 in curing genetic diseases.
  • Studying the ecological impacts of species reintroduction programs on local ecosystems.
  • Analyzing the effects of microplastic pollution on aquatic food webs and ecosystems.
  • Investigating the link between air pollution and respiratory health in urban populations.
  • Studying the role of epigenetics in the inheritance of acquired traits in organisms.
  • Analyzing the physiology and adaptations of extremophiles in extreme environments on Earth.
  • Investigating the genetics of longevity and factors influencing human lifespan.
  • Studying the behavioral ecology and communication strategies of social insects.
  • Analyzing the effects of deforestation on global climate patterns and biodiversity loss.
  • Investigating the potential of synthetic biology in creating bioengineered organisms for beneficial applications.

Correlational Research Topics for STEM Students

Correlational research focuses on relationships between variables. Here are 10 correlational research topics for STEM students:

  • Analyzing the correlation between dietary habits and the incidence of chronic diseases.
  • Studying the relationship between exercise frequency and mental health outcomes.
  • Investigating the correlation between socioeconomic status and access to quality healthcare.
  • Analyzing the link between social media usage and self-esteem in adolescents.
  • Studying the correlation between academic performance and sleep duration among students.
  • Investigating the relationship between environmental factors and the prevalence of allergies.
  • Analyzing the correlation between technology use and attention span in children.
  • Studying how environmental factors are related to the frequency of allergies.
  • Investigating the link between parental involvement in education and student achievement.
  • Analyzing the correlation between temperature fluctuations and wildlife migration patterns.

Quantitative Research Topics for STEM Students in the Philippines

Quantitative research in the Philippines can address specific regional issues. Here are 10 quantitative research topics for STEM students in the Philippines

  • Analyzing the impact of typhoons on coastal erosion rates in the Philippines.
  • Studying the quantitative effects of land use change on watershed hydrology in Filipino regions.
  • Investigating the quantitative relationship between deforestation and habitat loss for endangered species.
  • Analyzing the quantitative patterns of marine biodiversity in Philippine coral reef ecosystems.
  • Studying the quantitative assessment of water quality in major Philippine rivers and lakes.
  • Investigating the quantitative analysis of renewable energy potential in specific Philippine provinces.
  • Analyzing the quantitative impacts of agricultural practices on soil health and fertility.
  • Studying the quantitative effectiveness of mangrove restoration in coastal protection in the Philippines.
  • Investigating the quantitative evaluation of indigenous agricultural practices for sustainability.
  • Analyzing the quantitative patterns of air pollution and its health impacts in urban Filipino areas.

Things That Must Keep In Mind While Writing Quantitative Research Title 

Here are a few things that must be kept in mind while writing a quantitative research:

1. Be Clear and Precise

Make sure your research title is clear and says exactly what your study is about. People should easily understand the topic and goals of your research by reading the title.

2. Use Important Words

Include words that are crucial to your research, like the main subjects, who you’re studying, and how you’re doing your research. This helps others find your work and understand what it’s about.

3. Avoid Confusing Words

Stay away from words that might confuse people. Your title should be easy to grasp, even if someone isn’t an expert in your field.

4. Show Your Research Approach

Tell readers what kind of research you did, like experiments or surveys. This gives them a hint about how you conducted your study.

5. Match Your Title with Your Research Questions

Make sure your title matches the questions you’re trying to answer in your research. It should give a sneak peek into what your study is all about and keep you on the right track as you work on it.

STEM students, addressing what STEM is and why research matters in this field. It offered an extensive list of research topics , including experimental, qualitative, and regional options, catering to various academic levels and interests. Whether you’re a middle school student or pursuing advanced studies, these topics offer a wealth of ideas. The key takeaway is to choose a topic that resonates with your passion and aligns with your goals, ensuring a successful journey in STEM research. Choose the best Experimental Quantitative Research Topics For Stem Students today!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

STEM Research Topics for an Educational Paper

example of research topic in stem strand

STEM stands for Science, Technology, Engineering, and Math. It is essential for learning and discovery, helping us understand the world, solve problems, and think critically. STEM research goes beyond classroom learning, allowing us to explore specific areas in greater detail. But what is a good topic for research STEM?

Here are a few examples to get you thinking:

  • Can computers be used to help doctors diagnose diseases?
  • How can we build houses that are strong and don't hurt the environment?
  • What are the mysteries of space that scientists haven't figured out yet?

Why is STEM important? STEM is everywhere—from the phones we use to the medicine that keeps us healthy. Learning about these fields helps us build a better future by developing new technologies, protecting our environment, and solving critical problems.

Now that you understand the basics, let's dive into some of the most interesting and important research topics you can choose from.

The List of 260 STEM Research Topics

The right topic will keep you engaged and motivated throughout the writing process. However, with so many areas to explore and problems to solve, finding a unique topic can seem a bit tough. To help you with this, we have compiled a list of 260 STEM research topics. This list aims to guide your decision-making and help you discover a subject that holds significant potential for impact. And if you need further help writing about your chosen topic, feel free to hire someone to write a paper on our professional platform!

Feeling Overwhelmed by Your STEM Research Paper?

Don't go it alone! Our team of seasoned STEM Ph.D.s is here to be your assistant!

Physics Research Topics

Physics, the study of matter, energy, and their interactions, is the foundation for understanding our universe. Here are 20 topics to ignite your curiosity:

  • Can we develop more efficient solar panels to capture and utilize solar energy for a sustainable future?
  • How can we further explore the fundamental building blocks of matter, like quarks and leptons, to understand the nature of our universe?
  • How can we detect and understand dark matter and dark energy, which make up most of the universe's mass and energy but remain a mystery?
  • What happens to matter and energy when they enter a black hole?
  • How can we reconcile the theories of quantum mechanics and general relativity to understand gravity at the atomic level?
  • How can materials with zero electrical resistance be developed and used for more efficient power transmission and next-generation technologies?
  • What were the conditions of the universe moments after the Big Bang?
  • How can we manipulate and utilize sound for applications in areas like medical imaging and communication?
  • How does light behave as both a wave and a particle?
  • Can we harness the power of nuclear fusion, the process that powers stars, to create a clean and sustainable energy source for the future?
  • How can physics principles be used to understand and predict the effects of climate change and develop solutions to mitigate its impact?
  • Can we explore new physics concepts to design more efficient and sustainable aircraft?
  • What is the fundamental nature of magnetism?
  • How can we develop new materials with specific properties like superconductivity, high strength, or self-healing capabilities?
  • How do simple toys like pendulums or gyroscopes demonstrate fundamental physics concepts like motion and energy transfer?
  • How do physics principles like aerodynamics, momentum, and force transfer influence the performance of athletes and sports equipment?
  • What is the physics behind sound waves that allow us to hear and appreciate music?
  • How do technologies like X-rays, MRIs, and CT scans utilize physics principles to create images of the human body for medical diagnosis?
  • How do waves, currents, and tides behave in the ocean?
  • How do basic physics concepts like friction, gravity, and pressure play a role in everyday activities like walking, riding a bike, or playing sports?

Use our physics helper to write a paper on any of these topics of your choice!

Chemistry Research Topics

If you're curious about the world around you at the molecular level, here are 20 intriguing topic questions for you:

  • Can we create chemical reactions that are kinder to the environment?
  • How can we design new drugs to fight diseases more effectively?
  • Is it possible to develop materials with properties never seen before?
  • Can we store energy using chemical reactions for a sustainable future?
  • What's the chemistry behind creating delicious and nutritious food?
  • Can chemistry help us analyze evidence and solve crimes more efficiently?
  • Are there cleaner ways to power our vehicles using chemistry?
  • How can we reduce plastic pollution with innovative chemical solutions?
  • What chemicals influence our brain function and behavior?
  • What exciting new applications can we discover for versatile polymers?
  • What's the science behind the fascinating world of scents?
  • How can we develop effective methods for purifying water for safe consumption?
  • Can we explore the potential of nanochemistry to create revolutionary technologies?
  • What chemicals are present in the air we breathe, and how do they affect our health?
  • Why do objects have different colors? Can we explain it through the lens of chemistry?
  • Do natural catalysts like enzymes hold the key to more efficient chemical processes?
  • Can we use chemistry to analyze historical objects and uncover their stories?
  • What's the science behind the beauty products we use every day?
  • Are artificial sweeteners and flavors safe for consumption?
  • What chemicals are present in space, and how do they contribute to our universe's composition?

Engineering Research Topics

The world of engineering is all about applying scientific knowledge to solve practical problems. Here are some thought-provoking questions to guide you:

  • Can we design robots that can assist us in complex surgeries?
  • How can we create self-driving cars that are safe and reliable?
  • Is it possible to build sustainable cities that minimize environmental impact?
  • What innovative materials can we develop for stronger and more resilient buildings?
  • How can we harness renewable energy sources like wind and solar more efficiently?
  • Can we design more sustainable and eco-friendly water treatment systems?
  • What technologies can improve communication and connectivity, especially in remote areas?
  • How can we create next-generation prosthetics that provide a natural feel and function?
  • Is it possible to engineer solutions for food security and sustainable agriculture?
  • What innovative bridges and transportation systems can we design for smarter cities?
  • How can we engineer safer and more efficient methods for space exploration?
  • Can we develop robots that can perform hazardous tasks in dangerous environments?
  • Is it possible to create new manufacturing processes that minimize waste and pollution?
  • How can we engineer smarter and more efficient power grids to meet our energy demands?
  • What innovative solutions can we develop to mitigate the effects of climate change?
  • Can we design more accessible technologies that improve the lives of people with disabilities?
  • How can we engineer better disaster preparedness and response systems?
  • Is it possible to create sustainable and efficient methods for waste management?
  • What innovative clothing and protective gear can we engineer for extreme environments?
  • Can we develop new technologies for faster and more accurate medical diagnostics?

Mathematics Research Topics

Mathematics, the language of patterns and relationships, offers endless possibilities for exploration. While you ask us to do my math homework for me online , you can choose the topic for your math paper below.

  • Can we develop new methods to solve complex mathematical problems more efficiently?
  • Is there a hidden mathematical structure behind seemingly random events?
  • How can we apply mathematical models to understand and predict real-world phenomena?
  • Are there undiscovered prime numbers waiting to be found, stretching the boundaries of number theory?
  • Can we develop new methods for data encryption and security based on advanced mathematical concepts?
  • How can we utilize game theory to understand competition, cooperation, and decision-making?
  • Can we explore the fascinating world of fractals and their applications in various fields?
  • Is it possible to solve long standing mathematical problems like the Goldbach conjecture?
  • How can we apply topology to understand the properties of shapes and spaces?
  • Can we develop new mathematical models for financial markets and risk analysis?
  • What role does cryptography play in the future of secure communication?
  • How can abstract algebra help us solve problems in other areas of mathematics and science?
  • Is it possible to explore the connections between mathematics and computer science for groundbreaking discoveries?
  • Can we utilize calculus to optimize processes and solve problems in engineering and physics?
  • How can mathematical modeling help us understand and predict weather patterns?
  • Is it possible to develop new methods for solving differential equations?
  • Can we explore the applications of set theory in various branches of mathematics?
  • How can mathematical logic help us analyze arguments and ensure their validity?
  • Is it possible to apply graph theory to model complex networks like social media or transportation systems?
  • Can we explore the fascinating world of infinity and its implications for our understanding of numbers and sets?

STEM Topics for Research in Biology

Biology is the amazing study of living things, from the tiniest creatures to giant ecosystems. If you're curious about the world around you, here are 20 interesting research topics to explore:

  • Can we change plants to catch more sunlight and grow better, helping us get food in a more eco-friendly way?
  • How do animals like whales or bees use sounds or dances to chat with each other?
  • Can tiny living things in our gut be used to improve digestion, fight sickness, or even affect our mood?
  • How can special cells called stem cells be used to repair damaged organs or tissues, leading to brand-new medical treatments?
  • What happens inside our cells that makes us age, and can we possibly slow it down?
  • How do internal clocks in living things influence sleep, how their body works, and overall health?
  • How does pollution from things like tiny plastic pieces harm sea creatures and maybe even us humans?
  • Can we understand how our brains learn and remember things to create better ways of teaching?
  • Explore the relationships between different species, like clownfish and anemones, where both creatures benefit.
  • Can we use living things like bacteria to make new, eco-friendly materials like bioplastics for different uses?
  • How similar or different are identical twins raised in separate environments, helping us understand how genes and surroundings work together?
  • Can changing crops using science be a solution to hunger and not having enough healthy food in some countries?
  • How do viruses change and spread, and how can we develop better ways to fight new viruses that appear?
  • Explore how amazing creatures like fireflies make their own light and see if there are ways to use this knowledge for other things.
  • What is the purpose of play in animals' lives, like helping them grow, socialize, or even learn?
  • How can tools like drones, special cameras from a distance, or other new technology be used to help protect wildlife?
  • How can we crack the code of DNA to understand how genes work and their role in different diseases?
  • As a new science tool called CRISPR lets us change genes very precisely, what are the ethical concerns and possible risks involved?
  • Can spending time in nature, like forests, improve how we feel mentally and physically?
  • What signs could we look for to find planets with potential life on them besides Earth?

STEM Topics for Research in Robotics

Robotics is a great area for exploration. Here is the topics list that merely scratches the surface of the exciting possibilities in robotics research.

  • How can robots be programmed to make their own decisions, like self-driving cars navigating traffic?
  • How can robots be equipped with sensors to "see" and understand their surroundings?
  • How can robots be programmed to move with precision and coordination, mimicking human actions or performing delicate tasks?
  • Can robots be designed to learn and improve their skills over time, adapting to new situations?
  • How can multiple robots work together seamlessly to achieve complex tasks?
  • How can robots be designed to assist people with disabilities?
  • How can robots be built to explore the depths of oceans and aid in underwater endeavors?
  • How can robots be designed to fly for tasks like search and rescue or environmental monitoring?
  • Can robots be built on an incredibly tiny scale for medical applications or super-precise manufacturing?
  • How can robots be used to assist surgeons in operating rooms?
  • How can robots be designed to explore space and assist astronauts?
  • How can robots be used in everyday life, helping with chores or providing companionship?
  • How can robots be designed by mimicking the movement and abilities of animals?
  • What are the ethical considerations in the development and use of robots?
  • How can robots be designed to interact with humans in a safe and user-friendly way?
  • How can robots be used in agriculture to automate tasks?
  • How can robots be used in educational settings to enhance learning?
  • How will the rise of robots impact the workforce?
  • How can robots be made more affordable and accessible?
  • What exciting advancements can we expect in the future of robotics?

Experimental Research Topics for STEM Students

Here are some great topics that can serve as your starting point.

  • Test how different light intensities affect plant growth rate.
  • Compare the effectiveness of compost and fertilizer on plant growth.
  • Experiment with different materials for water filtration and compare their efficiency.
  • Does playing specific types of music affect plant growth rate?
  • Test the strength of different bridge designs using readily available materials.
  • Find the optimal angle for solar panels to maximize energy production.
  • Compare the insulating properties of different building materials.
  • Test the effectiveness of different materials (straw, feathers) in absorbing oil spills.
  • Explore the impact of social media algorithms on user behavior.
  • Evaluate the effectiveness of different cybersecurity awareness training methods.
  • Develop and test a mobile app for learning a new language through interactive exercises.
  • Experiment with different blade shapes to optimize wind turbine energy generation.
  • Test different techniques to improve website loading speed.
  • Build a simple air quality monitoring system using low-cost sensors.
  • Investigate how different light wavelengths affect the growth rate of algae.
  • Compare the effectiveness of different food preservation methods (drying, salting) on food spoilage.
  • Test the antibacterial properties of common spices.
  • Investigate the impact of sleep duration on learning and memory retention.
  • Research the development of biodegradable packaging materials from natural resources like cellulose or mushroom mycelium.
  • Compare the effectiveness of different handwashing techniques in reducing bacteria.

Qualitative Research Topics for STEM Students

Qualitative research delves into the experiences, perceptions, and opinions surrounding STEM fields.

  • How do stellar STEM teachers inspire students to become scientists, engineers, or math whizzes?
  • As artificial intelligence advances, what are people's biggest concerns and hopes?
  • What are the hurdles women in engineering face, and how can we make the field more welcoming?
  • Why do some students freeze up during math tests, and how can we build their confidence?
  • How do different cultures approach protecting the environment?
  • What makes scientists passionate about their work, and what keeps them motivated?
  • When creating new technology, what are the ethical dilemmas developers face?
  • What are the best ways to explain complex scientific concepts to everyday people?
  • What fuels people's fascination with exploring space and sending rockets beyond Earth?
  • How are STEM jobs changing, and what skills will be crucial for the future workforce?
  • Would people be comfortable with robots becoming our companions, not just machines?
  • How can we create products that everyone can use, regardless of their abilities?
  • What makes some people hesitant about vaccines while others readily get them?
  • What motivates people to volunteer their time and contribute to scientific research?
  • Does learning to code early on give kids an edge in problem-solving?
  • Can games and activities make learning math less intimidating and more enjoyable?
  • What are people's thoughts on the ethical implications of using new technology to change genes?
  • What motivates people to adopt sustainable practices and protect the environment?
  • What are people's hopes and anxieties about using technology in medicine and healthcare?
  • Why do students choose to pursue careers in science, technology, engineering, or math?

Consider using our research paper writer online to create a perfectly-researched and polished paper.

Quantitative Research Topics for STEM Students

Quantitative research uses data and statistics to uncover patterns and relationships in STEM fields.

  • Does the type of music played affect plant growth rate?
  • Investigate the relationship between light intensity and the rate of photosynthesis in plants.
  • Test the impact of bridge design on its weight-bearing capacity.
  • Analyze how the angle of solar panels affects their energy production.
  • Quantify the impact of different website optimization techniques on loading speed.
  • Explore the correlation between social media use and user engagement metrics (likes, shares).
  • Test the effectiveness of various spices in inhibiting bacterial growth.
  • Investigate the relationship between sleep duration and memory retention in students.
  • Compare the effectiveness of different handwashing techniques in reducing bacterial count.
  • Quantify the impact of play-based learning on children's problem-solving skills.
  • Measure the efficiency of different materials in filtering microplastics from water samples.
  • Compare the impact of compost and traditional fertilizer on plant growth yield.
  • Quantify the insulating properties of various building materials for energy efficiency.
  • Evaluate the effectiveness of a newly designed learning app through user performance data.
  • Develop and test a low-cost sensor system to measure air quality parameters.
  • Quantify the impact of different light wavelengths on the growth rate of algae cultures.
  • Compare the effectiveness of different food preservation methods (drying, salting) on food spoilage rates.
  • Analyze the impact of a website redesign on user engagement and retention metrics.
  • Quantify the effectiveness of different cybersecurity awareness training methods through simulated hacking attempts.
  • Investigate the relationship between website color schemes and user conversion rates (purchases, sign-ups).

Environmental Sciences Research Topics for STEM students

These environmental science topics explore the connections between our planet's ecosystems and the influence of humans.

  • Can we track microplastic movement (water, soil, organisms) to understand environmental accumulation?
  • How can we seamlessly integrate renewable energy (solar, wind) into existing power grids?
  • Green roofs, urban forests, permeable pavements: their impact on cityscapes and environmental health.
  • Sustainable forest management: balancing timber production with biodiversity conservation.
  • Rising CO2: impact on ocean acidity and consequences for marine ecosystems.
  • Nature's clean-up crew: plants/microbes for decontaminating polluted soil and water.
  • Evaluating conservation strategies (protected areas, patrols) for endangered species.
  • Citizen science: potential and limitations for environmental monitoring and data collection.
  • Circular economy: reducing waste, promoting product reuse/recycling in an eco-friendly framework.
  • Water conservation strategies: rainwater harvesting, wastewater treatment for a sustainable future.
  • Agricultural practices (organic vs. conventional): impact on soil health and water quality.
  • Lab-grown meat: environmental and ethical implications of this alternative protein source.
  • A potential solution for improving soil fertility and carbon sequestration.
  • Mangrove restoration: effectiveness in mitigating coastal erosion and providing marine habitat.
  • Air pollution control technologies: investigating efficiency in reducing emissions.
  • Climate change and extreme weather events: the link between a warming planet and weather patterns.
  • Responsible disposal and recycling solutions for electronic waste.
  • Environmental education: effectiveness in fostering pro-environmental attitudes and behaviors.
  • Sustainable fashion: exploring alternatives like organic materials and clothing recycling.
  • Smart cities: using technology to improve environmental sustainability and resource management.

Check out more science research topics in our special guide!

Health Sciences Research Topic Ideas for STEM Students

If you're curious about how the body works and how to stay healthy, these research topics are for you:

  • Can changing your diet affect your happiness by influencing gut bacteria?
  • Can your genes help doctors create a treatment plan just for you?
  • Can viruses that attack bacteria be a new way to fight infections?
  • Does getting enough sleep help students remember things better?
  • Can listening to music help people feel less pain during medical procedures?
  • Can wearable devices warn people about health problems early?
  • Can doctors use technology to treat people who live far away?
  • Can meditation techniques help people feel calmer?
  • Can staying active keep your brain healthy as you age?
  • Can computers help doctors make better diagnoses?
  • Can looking at social media make people feel bad about their bodies?
  • Why are some people hesitant to get vaccinated, and how can we encourage them?
  • Can scientists create materials for implants that the body won't reject?
  • Can we edit genes to cure diseases caused by faulty genes?
  • Does dirty air make it harder to breathe?
  • Can therapy offered online be just as helpful as in-person therapy?
  • Can what you eat affect your chances of getting cancer?
  • Can we use 3D printing to create organs for transplant surgeries?
  • Do artificial sweeteners harm the good bacteria in your gut?
  • Can laughter actually be good for your body and mind?

Interdisciplinary STEM Research Topics

Here are 20 thought-provoking questions that explore the exciting intersections between different areas of science, technology, engineering, and math:

  • Can video games become educational tools, boosting memory and learning for all ages?
  • Can artificial intelligence compose music that evokes specific emotions in listeners?
  • Could robots be designed to assist surgeons in complex operations with greater precision?
  • Does virtual reality therapy hold promise for treating phobias and anxiety?
  • Can big data analysis predict and prevent natural disasters, saving lives?
  • Is there a link between dirty air and the rise of chronic diseases in cities?
  • Can we develop strong, eco-friendly building materials for a sustainable future?
  • Could wearable tech monitor athletes' performance and prevent injuries?
  • Will AI advancements lead to the creation of conscious machines, blurring the line between humans and technology?
  • Can social media platforms be designed to promote positive interactions and reduce online bullying?
  • Can personalized learning algorithms improve educational outcomes for all students?
  • Could neuroimaging technologies unlock the secrets of human consciousness?
  • Will advancements in gene editing allow us to eradicate inherited diseases?
  • Is there a connection between gut bacteria and mental health issues like depression?
  • Can drones be used for efficient and safe delivery of medical supplies in remote areas?
  • Is there potential for using artificial intelligence to design life-saving new drugs?
  • Could advances in 3D printing revolutionize organ transplantation procedures?
  • Will vertical farming techniques offer a sustainable solution to food security concerns?
  • Can we harness the power of nanotechnology to create self-cleaning and self-repairing materials?
  • Will advancements in space exploration technology lead to the discovery of life on other planets?

STEM Topics for Research in Technology

These research topics explore how technology can solve problems, make life easier, and unlock new possibilities:

  • How can self-driving cars navigate busy roads safely, reducing accidents?
  • In what ways can robots explore the deep ocean and unlock its mysteries?
  • How might technology automate tasks in our homes, making them more efficient and comfortable?
  • What advancements are possible for directly controlling computers with our thoughts using brain-computer interfaces?
  • How can we develop stronger cybersecurity solutions to protect our online information and devices from hackers?
  • What are the methods for harnessing natural resources like wind and sun for clean energy through renewable energy sources?
  • How can wearable translators instantly translate languages, breaking down communication barriers?
  • In what ways can virtual reality allow us to explore amazing places without leaving home?
  • How can games and apps make learning more engaging and effective through educational tools?
  • What technologies can help us reduce the amount of food that gets thrown away?
  • How can online platforms tailor education to each student's needs with personalized learning systems?
  • What new technologies can help us travel farther and learn more about space?
  • How can desalination techniques turn saltwater into clean drinking water for everyone?
  • What are the ways drones can deliver aid and supplies quickly and efficiently in emergencies?
  • How can robots allow doctors to remotely examine and treat patients in distant locations?
  • What possibilities exist for 3D printers to create customized medical devices and prosthetics?
  • How can technology overlay information onto the real world, enhancing our learning and experiences with augmented reality tools?
  • What methods can we use for secure access to devices and information with biometric security systems?
  • How can AI help us develop strategies to combat climate change?
  • In what ways can we ensure technology benefits everyone and is used ethically?

While you're researching these STEM topics, learn more about how to get better at math in our dedicated article.

How Do You Choose a Research Topic in STEM?

Choosing research topics for STEM students can be an exciting task. Here are several tips to help you find a topic that is both unique and meaningful:

  • Identify Your Interests: Start by considering what areas of STEM excite you the most. Do you have a passion for renewable energy, artificial intelligence, biomedical engineering, or environmental science? Your interest in the subject will keep you motivated throughout the research process.
  • Review Current Research: Conduct a thorough review of existing research in your field. Read recent journal articles, attend seminars, and follow relevant news. This will help you understand what has already been studied and where there might be gaps or opportunities for new research.
  • Consult with Experts: Talking to professors, advisors, or professionals in your field can provide valuable insights. They can help you identify important research questions, suggest resources, and guide you toward a feasible and impactful topic.
  • Consider Real-World Problems: Think about the practical applications of your research. Focus on real-world problems that need solutions. This not only makes your research more relevant but also increases its potential impact.
  • Narrow Down Your Focus: A broad topic can be overwhelming and difficult to manage. Narrow down your focus to a specific question or problem. This will make your research more manageable and allow you to delve deeper into the subject.
  • Assess Feasibility: Consider the resources and time available to you. Ensure that you have access to the necessary equipment, data, and expertise to complete your research. A feasible topic will help you stay on track and complete your project successfully.
  • Stay Flexible: Be open to adjusting your topic as you delve deeper into your research. Sometimes, initial ideas may need refinement based on new findings or practical constraints.

These research topics have shown us a glimpse of the exciting things happening in science, technology, engineering, and math (STEM). From understanding our planet to figuring out how the human body works, STEM fields are full of new things to learn and problems to solve.

Don't be afraid to challenge ideas and work with others to find answers. The future of STEM belongs to people who think carefully, try new things, and want to make the world a better place. Remember the famous scientist Albert Einstein, who said, "It is important never to stop asking questions. Curiosity has its own reason for existing."

Drowning in Data Analysis or Struggling to Craft a Strong Argument?

Don't let a challenging STEM research paper derail your academics!

What is STEM in Research?

What are the keys to success in stem fields, what should women in stem look for in a college.

Adam Jason

is an expert in nursing and healthcare, with a strong background in history, law, and literature. Holding advanced degrees in nursing and public health, his analytical approach and comprehensive knowledge help students navigate complex topics. On EssayPro blog, Adam provides insightful articles on everything from historical analysis to the intricacies of healthcare policies. In his downtime, he enjoys historical documentaries and volunteering at local clinics.

example of research topic in stem strand

Trending Topic Research: STEM . (n.d.). Www.aera.net. Retrieved July 15, 2024, from https://www.aera.net/Newsroom/Trending-Topic-Research-Files/Trending-Topic-Research-STEM

Social Studies Topics: Philosophy, Economics, Culture & More!

  • Open access
  • Published: 10 March 2020

Research and trends in STEM education: a systematic review of journal publications

  • Yeping Li 1 ,
  • Ke Wang 2 ,
  • Yu Xiao 1 &
  • Jeffrey E. Froyd 3  

International Journal of STEM Education volume  7 , Article number:  11 ( 2020 ) Cite this article

176k Accesses

175 Citations

5 Altmetric

Metrics details

With the rapid increase in the number of scholarly publications on STEM education in recent years, reviews of the status and trends in STEM education research internationally support the development of the field. For this review, we conducted a systematic analysis of 798 articles in STEM education published between 2000 and the end of 2018 in 36 journals to get an overview about developments in STEM education scholarship. We examined those selected journal publications both quantitatively and qualitatively, including the number of articles published, journals in which the articles were published, authorship nationality, and research topic and methods over the years. The results show that research in STEM education is increasing in importance internationally and that the identity of STEM education journals is becoming clearer over time.

Introduction

A recent review of 144 publications in the International Journal of STEM Education ( IJ - STEM ) showed how scholarship in science, technology, engineering, and mathematics (STEM) education developed between August 2014 and the end of 2018 through the lens of one journal (Li, Froyd, & Wang, 2019 ). The review of articles published in only one journal over a short period of time prompted the need to review the status and trends in STEM education research internationally by analyzing articles published in a wider range of journals over a longer period of time.

With global recognition of the growing importance of STEM education, we have witnessed the urgent need to support research and scholarship in STEM education (Li, 2014 , 2018a ). Researchers and educators have responded to this on-going call and published their scholarly work through many different publication outlets including journals, books, and conference proceedings. A simple Google search with the term “STEM,” “STEM education,” or “STEM education research” all returned more than 450,000,000 items. Such voluminous information shows the rapidly evolving and vibrant field of STEM education and sheds light on the volume of STEM education research. In any field, it is important to know and understand the status and trends in scholarship for the field to develop and be appropriately supported. This applies to STEM education.

Conducting systematic reviews to explore the status and trends in specific disciplines is common in educational research. For example, researchers surveyed the historical development of research in mathematics education (Kilpatrick, 1992 ) and studied patterns in technology usage in mathematics education (Bray & Tangney, 2017 ; Sokolowski, Li, & Willson, 2015 ). In science education, Tsai and his colleagues have conducted a sequence of reviews of journal articles to synthesize research trends in every 5 years since 1998 (i.e., 1998–2002, 2003–2007, 2008–2012, and 2013–2017), based on publications in three main science education journals including, Science Education , the International Journal of Science Education , and the Journal of Research in Science Teaching (e.g., Lin, Lin, Potvin, & Tsai, 2019 ; Tsai & Wen, 2005 ). Erduran, Ozdem, and Park ( 2015 ) reviewed argumentation in science education research from 1998 to 2014 and Minner, Levy, and Century ( 2010 ) reviewed inquiry-based science instruction between 1984 and 2002. There are also many literature reviews and syntheses in engineering and technology education (e.g., Borrego, Foster, & Froyd, 2015 ; Xu, Williams, Gu, & Zhang, 2019 ). All of these reviews have been well received in different fields of traditional disciplinary education as they critically appraise and summarize the state-of-art of relevant research in a field in general or with a specific focus. Both types of reviews have been conducted with different methods for identifying, collecting, and analyzing relevant publications, and they differ in terms of review aim and topic scope, time period, and ways of literature selection. In this review, we systematically analyze journal publications in STEM education research to overview STEM education scholarship development broadly and globally.

The complexity and ambiguity of examining the status and trends in STEM education research

A review of research development in a field is relatively straight forward, when the field is mature and its scope can be well defined. Unlike discipline-based education research (DBER, National Research Council, 2012 ), STEM education is not a well-defined field. Conducting a comprehensive literature review of STEM education research require careful thought and clearly specified scope to tackle the complexity naturally associated with STEM education. In the following sub-sections, we provide some further discussion.

Diverse perspectives about STEM and STEM education

STEM education as explicated by the term does not have a long history. The interest in helping students learn across STEM fields can be traced back to the 1990s when the US National Science Foundation (NSF) formally included engineering and technology with science and mathematics in undergraduate and K-12 school education (e.g., National Science Foundation, 1998 ). It coined the acronym SMET (science, mathematics, engineering, and technology) that was subsequently used by other agencies including the US Congress (e.g., United States Congress House Committee on Science, 1998 ). NSF also coined the acronym STEM to replace SMET (e.g., Christenson, 2011 ; Chute, 2009 ) and it has become the acronym of choice. However, a consensus has not been reached on the disciplines included within STEM.

To clarify its intent, NSF published a list of approved fields it considered under the umbrella of STEM (see http://bit.ly/2Bk1Yp5 ). The list not only includes disciplines widely considered under the STEM tent (called “core” disciplines, such as physics, chemistry, and materials research), but also includes disciplines in psychology and social sciences (e.g., political science, economics). However, NSF’s list of STEM fields is inconsistent with other federal agencies. Gonzalez and Kuenzi ( 2012 ) noted that at least two US agencies, the Department of Homeland Security and Immigration and Customs Enforcement, use a narrower definition that excludes social sciences. Researchers also view integration across different disciplines of STEM differently using various terms such as, multidisciplinary, interdisciplinary, and transdisciplinary (Vasquez, Sneider, & Comer, 2013 ). These are only two examples of the ambiguity and complexity in describing and specifying what constitutes STEM.

Multiple perspectives about the meaning of STEM education adds further complexity to determining the extent to which scholarly activity can be categorized as STEM education. For example, STEM education can be viewed with a broad and inclusive perspective to include education in the individual disciplines of STEM, i.e., science education, technology education, engineering education, and mathematics education, as well as interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines (English, 2016 ; Li, 2014 ). On the other hand, STEM education can be viewed by others as referring only to interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines (Honey, Pearson, & Schweingruber, 2014 ; Johnson, Peters-Burton, & Moore, 2015 ; Kelley & Knowles, 2016 ; Li, 2018a ). These multiple perspectives allow scholars to publish articles in a vast array and diverse journals, as long as journals are willing to take the position as connected with STEM education. At the same time, however, the situation presents considerable challenges for researchers intending to locate, identify, and classify publications as STEM education research. To tackle such challenges, we tried to find out what we can learn from prior reviews related to STEM education.

Guidance from prior reviews related to STEM education

A search for reviews of STEM education research found multiple reviews that could suggest approaches for identifying publications (e.g., Brown, 2012 ; Henderson, Beach, & Finkelstein, 2011 ; Kim, Sinatra, & Seyranian, 2018 ; Margot & Kettler, 2019 ; Minichiello, Hood, & Harkness, 2018 ; Mizell & Brown, 2016 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ). The review conducted by Brown ( 2012 ) examined the research base of STEM education. He addressed the complexity and ambiguity by confining the review with publications in eight journals, two in each individual discipline, one academic research journal (e.g., the Journal of Research in Science Teaching ) and one practitioner journal (e.g., Science Teacher ). Journals were selected based on suggestions from some faculty members and K-12 teachers. Out of 1100 articles published in these eight journals from January 1, 2007, to October 1, 2010, Brown located 60 articles that authors self-identified as connected to STEM education. He found that the vast majority of these 60 articles focused on issues beyond an individual discipline and there was a research base forming for STEM education. In a follow-up study, Mizell and Brown ( 2016 ) reviewed articles published from January 2013 to October 2015 in the same eight journals plus two additional journals. Mizell and Brown used the same criteria to identify and include articles that authors self-identified as connected to STEM education, i.e., if the authors included STEM in the title or author-supplied keywords. In comparison to Brown’s findings, they found that many more STEM articles were published in a shorter time period and by scholars from many more different academic institutions. Taking together, both Brown ( 2012 ) and Mizell and Brown ( 2016 ) tended to suggest that STEM education mainly consists of interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines, but their approach consisted of selecting a limited number of individual discipline-based journals and then selecting articles that authors self-identified as connected to STEM education.

In contrast to reviews on STEM education, in general, other reviews focused on specific issues in STEM education (e.g., Henderson et al., 2011 ; Kim et al., 2018 ; Margot & Kettler, 2019 ; Minichiello et al., 2018 ; Schreffler, Vasquez III, Chini, & James, 2019 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ). For example, the review by Henderson et al. ( 2011 ) focused on instructional change in undergraduate STEM courses based on 191 conceptual and empirical journal articles published between 1995 and 2008. Margot and Kettler ( 2019 ) focused on what is known about teachers’ values, beliefs, perceived barriers, and needed support related to STEM education based on 25 empirical journal articles published between 2000 and 2016. The focus of these reviews allowed the researchers to limit the number of articles considered, and they typically used keyword searches of selected databases to identify articles on STEM education. Some researchers used this approach to identify publications from journals only (e.g., Henderson et al., 2011 ; Margot & Kettler, 2019 ; Schreffler et al., 2019 ), and others selected and reviewed publications beyond journals (e.g., Minichiello et al., 2018 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ).

The discussion in this section suggests possible reasons contributing to the absence of a general literature review of STEM education research and development: (1) diverse perspectives in existence about STEM and STEM education that contribute to the difficulty of specifying a scope of literature review, (2) its short but rapid development history in comparison to other discipline-based education (e.g., science education), and (3) difficulties in deciding how to establish the scope of the literature review. With respect to the third reason, prior reviews have used one of two approaches to identify and select articles: (a) identifying specific journals first and then searching and selecting specific articles from these journals (e.g., Brown, 2012 ; Erduran et al., 2015 ; Mizell & Brown, 2016 ) and (b) conducting selected database searches with keywords based on a specific focus (e.g., Margot & Kettler, 2019 ; Thibaut et al., 2018 ). However, neither the first approach of selecting a limited number of individual discipline-based journals nor the second approach of selecting a specific focus for the review leads to an approach that provides a general overview of STEM education scholarship development based on existing journal publications.

Current review

Two issues were identified in setting the scope for this review.

What time period should be considered?

What publications will be selected for review?

Time period

We start with the easy one first. As discussed above, the acronym STEM did exist until the early 2000s. Although the existence of the acronym does not generate scholarship on student learning in STEM disciplines, it is symbolic and helps focus attention to efforts in STEM education. Since we want to examine the status and trends in STEM education, it is reasonable to start with the year 2000. Then, we can use the acronym of STEM as an identifier in locating specific research articles in a way as done by others (e.g., Brown, 2012 ; Mizell & Brown, 2016 ). We chose the end of 2018 as the end of the time period for our review that began during 2019.

Focusing on publications beyond individual discipline-based journals

As mentioned before, scholars responded to the call for scholarship development in STEM education with publications that appeared in various outlets and diverse languages, including journals, books, and conference proceedings. However, journal publications are typically credited and valued as one of the most important outlets for research exchange (e.g., Erduran et al., 2015 ; Henderson et al., 2011 ; Lin et al., 2019 ; Xu et al., 2019 ). Thus, in this review, we will also focus on articles published in journals in English.

The discourse above on the complexity and ambiguity regarding STEM education suggests that scholars may publish their research in a wide range of journals beyond individual discipline-based journals. To search and select articles from a wide range of journals, we thought about the approach of searching selected databases with keywords as other scholars used in reviewing STEM education with a specific focus. However, existing journals in STEM education do not have a long history. In fact, IJ-STEM is the first journal in STEM education that has just been accepted into the Social Sciences Citation Index (SSCI) (Li, 2019a ). Publications in many STEM education journals are practically not available in several important and popular databases, such as the Web of Science and Scopus. Moreover, some journals in STEM education were not normalized due to a journal’s name change or irregular publication schedule. For example, the Journal of STEM Education was named as Journal of SMET Education when it started in 2000 in a print format, and the journal’s name was not changed until 2003, Vol 4 (3 and 4), and also went fully on-line starting 2004 (Raju & Sankar, 2003 ). A simple Google Scholar search with keywords will not be able to provide accurate information, unless you visit the journal’s website to check all publications over the years. Those added complexities prevented us from taking the database search as a viable approach. Thus, we decided to identify journals first and then search and select articles from these journals. Further details about the approach are provided in the “ Method ” section.

Research questions

Given a broader range of journals and a longer period of time to be covered in this review, we can examine some of the same questions as the IJ-STEM review (Li, Froyd, & Wang, 2019 ), but we do not have access to data on readership, articles accessed, or articles cited for the other journals selected for this review. Specifically, we are interested in addressing the following six research questions:

What were the status and trends in STEM education research from 2000 to the end of 2018 based on journal publications?

What were the patterns of publications in STEM education research across different journals?

Which countries or regions, based on the countries or regions in which authors were located, contributed to journal publications in STEM education?

What were the patterns of single-author and multiple-author publications in STEM education?

What main topics had emerged in STEM education research based on the journal publications?

What research methods did authors tend to use in conducting STEM education research?

Based on the above discussion, we developed the methods for this literature review to follow careful sequential steps to identify journals first and then identify and select STEM education research articles published in these journals from January 2000 to the end of 2018. The methods should allow us to obtain a comprehensive overview about the status and trends of STEM education research based on a systematic analysis of related publications from a broad range of journals and over a longer period of time.

Identifying journals

We used the following three steps to search and identify journals for inclusion:

We assumed articles on research in STEM education have been published in journals that involve more than one traditional discipline. Thus, we used Google to search and identify all education journals with their titles containing either two, three, or all four disciplines of STEM. For example, we did Google search of all the different combinations of three areas of science, mathematics, technology Footnote 1 , and engineering as contained in a journal’s title. In addition, we also searched possible journals containing the word STEAM in the title.

Since STEM education may be viewed as encompassing discipline-based education research, articles on STEM education research may have been published in traditional discipline-based education journals, such as the Journal of Research in Science Teaching . However, there are too many such journals. Yale’s Poorvu Center for Teaching and Learning has listed 16 journals that publish articles spanning across undergraduate STEM education disciplines (see https://poorvucenter.yale.edu/FacultyResources/STEMjournals ). Thus, we selected from the list some individual discipline-based education research journals, and also added a few more common ones such as the Journal of Engineering Education .

Since articles on research in STEM education have appeared in some general education research journals, especially those well-established ones. Thus, we identified and selected a few of those journals that we noticed some publications in STEM education research.

Following the above three steps, we identified 45 journals (see Table  1 ).

Identifying articles

In this review, we will not discuss or define the meaning of STEM education. We used the acronym STEM (or STEAM, or written as the phrase of “science, technology, engineering, and mathematics”) as a term in our search of publication titles and/or abstracts. To identify and select articles for review, we searched all items published in those 45 journals and selected only those articles that author(s) self-identified with the acronym STEM (or STEAM, or written as the phrase of “science, technology, engineering, and mathematics”) in the title and/or abstract. We excluded publications in the sections of practices, letters to editors, corrections, and (guest) editorials. Our search found 798 publications that authors self-identified as in STEM education, identified from 36 journals. The remaining 9 journals either did not have publications that met our search terms or published in another language other than English (see the two separate lists in Table 1 ).

Data analysis

To address research question 3, we analyzed authorship to examine which countries/regions contributed to STEM education research over the years. Because each publication may have either one or multiple authors, we used two different methods to analyze authorship nationality that have been recognized as valuable from our review of IJ-STEM publications (Li, Froyd, & Wang, 2019 ). The first method considers only the corresponding author’s (or the first author, if no specific indication is given about the corresponding author) nationality and his/her first institution affiliation, if multiple institution affiliations are listed. Method 2 considers every author of a publication, using the following formula (Howard, Cole, & Maxwell, 1987 ) to quantitatively assign and estimate each author’s contribution to a publication (and thus associated institution’s productivity), when multiple authors are included in a publication. As an example, each publication is given one credit point. For the publication co-authored by two, the first author would be given 0.6 and the second author 0.4 credit point. For an article contributed jointly by three authors, the three authors would be credited with scores of 0.47, 0.32, and 0.21, respectively.

After calculating all the scores for each author of each paper, we added all the credit scores together in terms of each author’s country/region. For brevity, we present only the top 10 countries/regions in terms of their total credit scores calculated using these two different methods, respectively.

To address research question 5, we used the same seven topic categories identified and used in our review of IJ-STEM publications (Li, Froyd, & Wang, 2019 ). We tested coding 100 articles first to ensure the feasibility. Through test-coding and discussions, we found seven topic categories could be used to examine and classify all 798 items.

K-12 teaching, teacher, and teacher education in STEM (including both pre-service and in-service teacher education)

Post-secondary teacher and teaching in STEM (including faculty development, etc.)

K-12 STEM learner, learning, and learning environment

Post-secondary STEM learner, learning, and learning environments (excluding pre-service teacher education)

Policy, curriculum, evaluation, and assessment in STEM (including literature review about a field in general)

Culture and social and gender issues in STEM education

History, epistemology, and perspectives about STEM and STEM education

To address research question 6, we coded all 798 publications in terms of (1) qualitative methods, (2) quantitative methods, (3) mixed methods, and (4) non-empirical studies (including theoretical or conceptual papers, and literature reviews). We assigned each publication to only one research topic and one method, following the process used in the IJ-STEM review (Li, Froyd, & Wang, 2019 ). When there was more than one topic or method that could have been used for a publication, a decision was made in choosing and assigning a topic or a method. The agreement between two coders for all 798 publications was 89.5%. When topic and method coding discrepancies occurred, a final decision was reached after discussion.

Results and discussion

In the following sections, we report findings as corresponding to each of the six research questions.

The status and trends of journal publications in STEM education research from 2000 to 2018

Figure  1 shows the number of publications per year. As Fig.  1 shows, the number of publications increased each year beginning in 2010. There are noticeable jumps from 2015 to 2016 and from 2017 to 2018. The result shows that research in STEM education had grown significantly since 2010, and the most recent large number of STEM education publications also suggests that STEM education research gained its own recognition by many different journals for publication as a hot and important topic area.

figure 1

The distribution of STEM education publications over the years

Among the 798 articles, there were 549 articles with the word “STEM” (or STEAM, or written with the phrase of “science, technology, engineering, and mathematics”) included in the article’s title or both title and abstract and 249 articles without such identifiers included in the title but abstract only. The results suggest that many scholars tended to include STEM in the publications’ titles to highlight their research in or about STEM education. Figure  2 shows the number of publications per year where publications are distinguished depending on whether they used the term STEM in the title or only in the abstract. The number of publications in both categories had significant increases since 2010. Use of the acronym STEM in the title was growing at a faster rate than using the acronym only in the abstract.

figure 2

The trends of STEM education publications with vs. without STEM included in the title

Not all the publications that used the acronym STEM in the title and/or abstract reported on a study involving all four STEM areas. For each publication, we further examined the number of the four areas involved in the reported study.

Figure  3 presents the number of publications categorized by the number of the four areas involved in the study, breaking down the distribution of these 798 publications in terms of the content scope being focused on. Studies involving all four STEM areas are the most numerous with 488 (61.2%) publications, followed by involving one area (141, 17.7%), then studies involving both STEM and non-STEM (84, 10.5%), and finally studies involving two or three areas of STEM (72, 9%; 13, 1.6%; respectively). Publications that used the acronym STEAM in either the title or abstract were classified as involving both STEM and non-STEM. For example, both of the following publications were included in this category.

Dika and D’Amico ( 2016 ). “Early experiences and integration in the persistence of first-generation college students in STEM and non-STEM majors.” Journal of Research in Science Teaching , 53 (3), 368–383. (Note: this article focused on early experience in both STEM and Non-STEM majors.)

Sochacka, Guyotte, and Walther ( 2016 ). “Learning together: A collaborative autoethnographic exploration of STEAM (STEM+ the Arts) education.” Journal of Engineering Education , 105 (1), 15–42. (Note: this article focused on STEAM (both STEM and Arts).)

figure 3

Publication distribution in terms of content scope being focused on. (Note: 1=single subject of STEM, 2=two subjects of STEM, 3=three subjects of STEM, 4=four subjects of STEM, 5=topics related to both STEM and non-STEM)

Figure  4 presents the number of publications per year in each of the five categories described earlier (category 1, one area of STEM; category 2, two areas of STEM; category 3, three areas of STEM; category 4, four areas of STEM; category 5, STEM and non-STEM). The category that had grown most rapidly since 2010 is the one involving all four areas. Recent growth in the number of publications in category 1 likely reflected growing interest of traditional individual disciplinary based educators in developing and sharing multidisciplinary and interdisciplinary scholarship in STEM education, as what was noted recently by Li and Schoenfeld ( 2019 ) with publications in IJ-STEM.

figure 4

Publication distribution in terms of content scope being focused on over the years

Patterns of publications across different journals

Among the 36 journals that published STEM education articles, two are general education research journals (referred to as “subject-0”), 12 with their titles containing one discipline of STEM (“subject-1”), eight with journal’s titles covering two disciplines of STEM (“subject-2”), six covering three disciplines of STEM (“subject-3”), seven containing the word STEM (“subject-4”), and one in STEAM education (“subject-5”).

Table  2 shows that both subject-0 and subject-1 journals were usually mature journals with a long history, and they were all traditional subscription-based journals, except the Journal of Pre - College Engineering Education Research , a subject-1 journal established in 2011 that provided open access (OA). In comparison to subject-0 and subject-1 journals, subject-2 and subject-3 journals were relatively newer but still had quite many years of history on average. There are also some more journals in these two categories that provided OA. Subject-4 and subject-5 journals had a short history, and most provided OA. The results show that well-established journals had tended to focus on individual disciplines or education research in general. Multidisciplinary and interdisciplinary education journals were started some years later, followed by the recent establishment of several STEM or STEAM journals.

Table 2 also shows that subject-1, subject-2, and subject-4 journals published approximately a quarter each of the publications. The number of publications in subject-1 journals is interested, because we selected a relatively limited number of journals in this category. There are many other journals in the subject-1 category (as well as subject-0 journals) that we did not select, and thus it is very likely that we did not include some STEM education articles published in subject-0 or subject-1 journals that we did not include in our study.

Figure  5 shows the number of publications per year in each of the five categories described earlier (subject-0 through subject-5). The number of publications per year in subject-5 and subject-0 journals did not change much over the time period of the study. On the other hand, the number of publications per year in subject-4 (all 4 areas), subject-1 (single area), and subject-2 journals were all over 40 by the end of the study period. The number of publications per year in subject-3 journals increased but remained less than 30. At first sight, it may be a bit surprising that the number of publications in STEM education per year in subject-1 journals increased much faster than those in subject-2 journals over the past few years. However, as Table 2 indicates these journals had long been established with great reputations, and scholars would like to publish their research in such journals. In contrast to the trend in subject-1 journals, the trend in subject-4 journals suggests that STEM education journals collectively started to gain its own identity for publishing and sharing STEM education research.

figure 5

STEM education publication distribution across different journal categories over the years. (Note: 0=subject-0; 1=subject-1; 2=subject-2; 3=subject-3; 4=subject-4; 5=subject-5)

Figure  6 shows the number of STEM education publications in each journal where the bars are color-coded (yellow, subject-0; light blue, subject-1; green, subject-2; purple, subject-3; dark blue, subject-4; and black, subject-5). There is no clear pattern shown in terms of the overall number of STEM education publications across categories or journals, but very much individual journal-based performance. The result indicates that the number of STEM education publications might heavily rely on the individual journal’s willingness and capability of attracting STEM education research work and thus suggests the potential value of examining individual journal’s performance.

figure 6

Publication distribution across all 36 individual journals across different categories with the same color-coded for journals in the same subject category

The top five journals in terms of the number of STEM education publications are Journal of Science Education and Technology (80 publications, journal number 25 in Fig.  6 ), Journal of STEM Education (65 publications, journal number 26), International Journal of STEM Education (64 publications, journal number 17), International Journal of Engineering Education (54 publications, journal number 12), and School Science and Mathematics (41 publications, journal number 31). Among these five journals, two journals are specifically on STEM education (J26, J17), two on two subjects of STEM (J25, J31), and one on one subject of STEM (J12).

Figure  7 shows the number of STEM education publications per year in each of these top five journals. As expected, based on earlier trends, the number of publications per year increased over the study period. The largest increase was in the International Journal of STEM Education (J17) that was established in 2014. As the other four journals were all established in or before 2000, J17’s short history further suggests its outstanding performance in attracting and publishing STEM education articles since 2014 (Li, 2018b ; Li, Froyd, & Wang, 2019 ). The increase was consistent with the journal’s recognition as the first STEM education journal for inclusion in SSCI starting in 2019 (Li, 2019a ).

figure 7

Publication distribution of selected five journals over the years. (Note: J12: International Journal of Engineering Education; J17: International Journal of STEM Education; J25: Journal of Science Education and Technology; J26: Journal of STEM Education; J31: School Science and Mathematics)

Top 10 countries/regions where scholars contributed journal publications in STEM education

Table  3 shows top countries/regions in terms of the number of publications, where the country/region was established by the authorship using the two different methods presented above. About 75% (depending on the method) of contributions were made by authors from the USA, followed by Australia, Canada, Taiwan, and UK. Only Africa as a continent was not represented among the top 10 countries/regions. The results are relatively consistent with patterns reported in the IJ-STEM study (Li, Froyd, & Wang, 2019 )

Further examination of Table 3 reveals that the two methods provide not only fairly consistent results but also yield some differences. For example, Israel and Germany had more publication credit if only the corresponding author was considered, but South Korea and Turkey had more publication credit when co-authors were considered. The results in Table 3 show that each method has value when analyzing and comparing publications by country/region or institution based on authorship.

Recognizing that, as shown in Fig. 1 , the number of publications per year increased rapidly since 2010, Table  4 shows the number of publications by country/region over a 10-year period (2009–2018) and Table 5 shows the number of publications by country/region over a 5-year period (2014–2018). The ranks in Tables  3 , 4 , and 5 are fairly consistent, but that would be expected since the larger numbers of publications in STEM education had occurred in recent years. At the same time, it is interesting to note in Table 5 some changes over the recent several years with Malaysia, but not Israel, entering the top 10 list when either method was used to calculate author's credit.

Patterns of single-author and multiple-author publications in STEM education

Since STEM education differs from traditional individual disciplinary education, we are interested in determining how common joint co-authorship with collaborations was in STEM education articles. Figure  8 shows that joint co-authorship was very common among these 798 STEM education publications, with 83.7% publications with two or more co-authors. Publications with two, three, or at least five co-authors were highest, with 204, 181, and 157 publications, respectively.

figure 8

Number of publications with single or different joint authorship. (Note: 1=single author; 2=two co-authors; 3=three co-authors; 4=four co-authors; 5=five or more co-authors)

Figure  9 shows the number of publications per year using the joint authorship categories in Fig.  8 . Each category shows an increase consistent with the increase shown in Fig. 1 for all 798 publications. By the end of the time period, the number of publications with two, three, or at least five co-authors was the largest, which might suggest an increase in collaborations in STEM education research.

figure 9

Publication distribution with single or different joint authorship over the years. (Note: 1=single author; 2=two co-authors; 3=three co-authors; 4=four co-authors; 5=five or more co-authors)

Co-authors can be from the same or different countries/regions. Figure  10 shows the number of publications per year by single authors (no collaboration), co-authors from the same country (collaboration in a country/region), and co-authors from different countries (collaboration across countries/regions). Each year the largest number of publications was by co-authors from the same country, and the number increased dramatically during the period of the study. Although the number of publications in the other two categories increased, the numbers of publications were noticeably fewer than the number of publications by co-authors from the same country.

figure 10

Publication distribution in authorship across different categories in terms of collaboration over the years

Published articles by research topics

Figure  11 shows the number of publications in each of the seven topic categories. The topic category of goals, policy, curriculum, evaluation, and assessment had almost half of publications (375, 47%). Literature reviews were included in this topic category, as providing an overview assessment of education and research development in a topic area or a field. Sample publications included in this category are listed as follows:

DeCoito ( 2016 ). “STEM education in Canada: A knowledge synthesis.” Canadian Journal of Science , Mathematics and Technology Education , 16 (2), 114–128. (Note: this article provides a national overview of STEM initiatives and programs, including success, criteria for effective programs and current research in STEM education.)

Ring-Whalen, Dare, Roehrig, Titu, and Crotty ( 2018 ). “From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units.” International Journal of Education in Mathematics Science and Technology , 6 (4), 343–362. (Note: this article investigates the conceptions of integrated STEM education held by in-service science teachers through the use of photo-elicitation interviews and examines how those conceptions were reflected in teacher-created integrated STEM curricula.)

Schwab et al. ( 2018 ). “A summer STEM outreach program run by graduate students: Successes, challenges, and recommendations for implementation.” Journal of Research in STEM Education , 4 (2), 117–129. (Note: the article details the organization and scope of the Foundation in Science and Mathematics Program and evaluates this program.)

figure 11

Frequencies of publications’ research topic distributions. (Note: 1=K-12 teaching, teacher and teacher education; 2=Post-secondary teacher and teaching; 3=K-12 STEM learner, learning, and learning environment; 4=Post-secondary STEM learner, learning, and learning environments; 5=Goals and policy, curriculum, evaluation, and assessment (including literature review); 6=Culture, social, and gender issues; 7=History, philosophy, Epistemology, and nature of STEM and STEM education)

The topic with the second most publications was “K-12 teaching, teacher and teacher education” (103, 12.9%), followed closely by “K-12 learner, learning, and learning environment” (97, 12.2%). The results likely suggest the research community had a broad interest in both teaching and learning in K-12 STEM education. The top three topics were the same in the IJ-STEM review (Li, Froyd, & Wang, 2019 ).

Figure  11 also shows there was a virtual tie between two topics with the fourth most cumulative publications, “post-secondary STEM learner & learning” (76, 9.5%) and “culture, social, and gender issues in STEM” (78, 9.8%), such as STEM identity, students’ career choices in STEM, and inclusion. This result is different from the IJ-STEM review (Li, Froyd, & Wang, 2019 ), where “post-secondary STEM teacher & teaching” and “post-secondary STEM learner & learning” were tied as the fourth most common topics. This difference is likely due to the scope of journals and the length of the time period being reviewed.

Figure  12 shows the number of publications per year in each topic category. As expected from the results in Fig.  11 the number of publications in topic category 5 (goals, policy, curriculum, evaluation, and assessment) was the largest each year. The numbers of publications in topic category 3 (K-12 learner, learning, and learning environment), 1 (K-12 teaching, teacher, and teacher education), 6 (culture, social, and gender issues in STEM), and 4 (post-secondary STEM learner and learning) were also increasing. Although Fig.  11 shows the number of publications in topic category 1 was slightly more than the number of publications in topic category 3 (see Fig.  11 ), the number of publications in topic category 3 was increasing more rapidly in recent years than its counterpart in topic category 1. This may suggest a more rapidly growing interest in K-12 STEM learner, learning, and learning environment. The numbers of publications in topic categories 2 and 7 were not increasing, but the number of publications in IJ-STEM in topic category 2 was notable (Li, Froyd, & Wang, 2019 ). It will be interesting to follow trends in the seven topic categories in the future.

figure 12

Publication distributions in terms of research topics over the years

Published articles by research methods

Figure  13 shows the number of publications per year by research methods in empirical studies. Publications with non-empirical studies are shown in a separate category. Although the number of publications in each of the four categories increased during the study period, there were many more publications presenting empirical studies than those without. For those with empirical studies, the number of publications using quantitative methods increased most rapidly in recent years, followed by qualitative and then mixed methods. Although there were quite many publications with non-empirical studies (e.g., theoretical or conceptual papers, literature reviews) during the study period, the increase of the number of publications in this category was noticeably less than empirical studies.

figure 13

Publication distributions in terms of research methods over the years. (Note: 1=qualitative, 2=quantitative, 3=mixed, 4=Non-empirical)

Concluding remarks

The systematic analysis of publications that were considered to be in STEM education in 36 selected journals shows tremendous growth in scholarship in this field from 2000 to 2018, especially over the past 10 years. Our analysis indicates that STEM education research has been increasingly recognized as an important topic area and studies were being published across many different journals. Scholars still hold diverse perspectives about how research is designated as STEM education; however, authors have been increasingly distinguishing their articles with STEM, STEAM, or related words in the titles, abstracts, and lists of keywords during the past 10 years. Moreover, our systematic analysis shows a dramatic increase in the number of publications in STEM education journals in recent years, which indicates that these journals have been collectively developing their own professional identity. In addition, the International Journal of STEM Education has become the first STEM education journal to be accepted in SSCI in 2019 (Li, 2019a ). The achievement may mark an important milestone as STEM education journals develop their own identity for publishing and sharing STEM education research.

Consistent with our previous reviews (Li, Froyd, & Wang, 2019 ; Li, Wang, & Xiao, 2019 ), the vast majority of publications in STEM education research were contributed by authors from the USA, where STEM and STEAM education originated, followed by Australia, Canada, and Taiwan. At the same time, authors in some countries/regions in Asia were becoming very active in the field over the past several years. This trend is consistent with findings from the IJ-STEM review (Li, Froyd, & Wang, 2019 ). We certainly hope that STEM education scholarship continues its development across all five continents to support educational initiatives and programs in STEM worldwide.

Our analysis has shown that collaboration, as indicated by publications with multiple authors, has been very common among STEM education scholars, as that is often how STEM education distinguishes itself from the traditional individual disciplinary based education. Currently, most collaborations occurred among authors from the same country/region, although collaborations across cross-countries/regions were slowly increasing.

With the rapid changes in STEM education internationally (Li, 2019b ), it is often difficult for researchers to get an overall sense about possible hot topics in STEM education especially when STEM education publications appeared in a vast array of journals across different fields. Our systematic analysis of publications has shown that studies in the topic category of goals, policy, curriculum, evaluation, and assessment have been the most prevalent, by far. Our analysis also suggests that the research community had a broad interest in both teaching and learning in K-12 STEM education. These top three topic categories are the same as in the IJ-STEM review (Li, Froyd, & Wang, 2019 ). Work in STEM education will continue to evolve and it will be interesting to review the trends in another 5 years.

Encouraged by our recent IJ-STEM review, we began this review with an ambitious goal to provide an overview of the status and trends of STEM education research. In a way, this systematic review allowed us to achieve our initial goal with a larger scope of journal selection over a much longer period of publication time. At the same time, there are still limitations, such as the decision to limit the number of journals from which we would identify publications for analysis. We understand that there are many publications on STEM education research that were not included in our review. Also, we only identified publications in journals. Although this is one of the most important outlets for scholars to share their research work, future reviews could examine publications on STEM education research in other venues such as books, conference proceedings, and grant proposals.

Availability of data and materials

The data and materials used and analyzed for the report are publicly available at the various journal websites.

Journals containing the word "computers" or "ICT" appeared automatically when searching with the word "technology". Thus, the word of "computers" or "ICT" was taken as equivalent to "technology" if appeared in a journal's name.

Abbreviations

Information and Communications Technology

International Journal of STEM Education

Kindergarten–Grade 12

Science, Mathematics, Engineering, and Technology

Science, Technology, Engineering, Arts, and Mathematics

Science, Technology, Engineering, and Mathematics

Borrego, M., Foster, M. J., & Froyd, J. E. (2015). What is the state of the art of systematic review in engineering education? Journal of Engineering Education, 104 (2), 212–242. https://doi.org/10.1002/jee.20069 .

Article   Google Scholar  

Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research – a systematic review of recent trends. Computers & Education, 114 , 255–273.

Brown, J. (2012). The current status of STEM education research. Journal of STEM Education: Innovations & Research, 13 (5), 7–11.

Google Scholar  

Christenson, J. (2011). Ramaley coined STEM term now used nationwide . Winona Daily News Retrieved from http://www.winonadailynews.com/news/local/article_457afe3e-0db3-11e1-abe0-001cc4c03286.html Accessed on 16 Jan 2018.

Chute, E. (2009). STEM education is branching out . Pittsburgh Post-Gazette Feb 9, 2009. https://www.post-gazette.com/news/education/2009/02/10/STEM-education-is-branching-out/stories/200902100165 Accessed on 2 Jan 2020.

DeCoito, I. (2016). STEM education in Canada: A knowledge synthesis. Canadian Journal of Science, Mathematics and Technology Education, 16 (2), 114–128.

Dika, S. L., & D'Amico, M. M. (2016). Early experiences and integration in the persistence of first-generation college students in STEM and non-STEM majors. Journal of Research in Science Teaching, 53 (3), 368–383.

English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3 , 3. https://doi.org/10.1186/s4059%204-016-0036-1 .

Erduran, S., Ozdem, Y., & Park, J.-Y. (2015). Research trends on argumentation in science education: A journal content analysis from 1998-2014. International Journal of STEM Education, 2 , 5. https://doi.org/10.1186/s40594-015-0020-1 .

Gonzalez, H. B. & Kuenzi, J. J. (2012). Science, technology, engineering, and mathematics (STEM) education: A primer. CRS report for congress, R42642, https://fas.org/sgp/crs/misc/R42642.pdf Accessed on 2 Jan 2020.

Henderson, C., Beach, A., & Finkelstein, N. (2011). Facilitating change in undergraduate STEM instructional practices: An analytic review of the literature. Journal of Research in Science Teaching, 48 (8), 952–984.

Honey, M., Pearson, G., & Schweingruber, A. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research . Washington: National Academies Press.

Howard, G. S., Cole, D. A., & Maxwell, S. E. (1987). Research productivity in psychology based on publication in the journals of the American Psychological Association. American Psychologist, 42 (11), 975–986.

Johnson, C. C., Peters-Burton, E. E., & Moore, T. J. (2015). STEM roadmap: A framework for integration . London: Taylor & Francis.

Book   Google Scholar  

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3 , 11. https://doi.org/10.1186/s40594-016-0046-z .

Kilpatrick, J. (1992). A history of research in mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 3–38). New York: Macmillan.

Kim, A. Y., Sinatra, G. M., & Seyranian, V. (2018). Developing a STEM identity among young women: A social identity perspective. Review of Educational Research, 88 (4), 589–625.

Li, Y. (2014). International journal of STEM education – a platform to promote STEM education and research worldwide. International Journal of STEM Education, 1 , 1. https://doi.org/10.1186/2196-7822-1-1 .

Li, Y. (2018a). Journal for STEM education research – promoting the development of interdisciplinary research in STEM education. Journal for STEM Education Research, 1 (1–2), 1–6. https://doi.org/10.1007/s41979-018-0009-z .

Li, Y. (2018b). Four years of development as a gathering place for international researchers and readers in STEM education. International Journal of STEM Education, 5 , 54. https://doi.org/10.1186/s40594-018-0153-0 .

Li, Y. (2019a). Five years of development in pursuing excellence in quality and global impact to become the first journal in STEM education covered in SSCI. International Journal of STEM Education, 6 , 42. https://doi.org/10.1186/s40594-019-0198-8 .

Li, Y. (2019b). STEM education research and development as a rapidly evolving and international field. 数学教育学报(Journal of Mathematics Education), 28 (3), 42–44.

Li, Y., Froyd, J. E., & Wang, K. (2019). Learning about research and readership development in STEM education: A systematic analysis of the journal’s publications from 2014 to 2018. International Journal of STEM Education, 6 , 19. https://doi.org/10.1186/s40594-019-0176-1 .

Li, Y., & Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics as ‘given’ in STEM education. International Journal of STEM Education, 6 , 44. https://doi.org/10.1186/s40594-019-0197-9 .

Li, Y., Wang, K., & Xiao, Y. (2019). Exploring the status and development trends of STEM education research: A review of research articles in selected journals published between 2000 and 2018. 数学教育学报(Journal of Mathematics Education), 28 (3), 45–52.

Lin, T.-J., Lin, T.-C., Potvin, P., & Tsai, C.-C. (2019). Research trends in science education from 2013 to 2017: A systematic content analysis of publications in selected journals. International Journal of Science Education, 41 (3), 367–387.

Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: A systematic literature review. International Journal of STEM Education, 6 , 2. https://doi.org/10.1186/s40594-018-0151-2 .

Minichiello, A., Hood, J. R., & Harkness, D. S. (2018). Bring user experience design to bear on STEM education: A narrative literature review. Journal for STEM Education Research, 1 (1–2), 7–33.

Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction – what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47 (4), 474–496.

Mizell, S., & Brown, S. (2016). The current status of STEM education research 2013-2015. Journal of STEM Education: Innovations & Research, 17 (4), 52–56.

National Research Council. (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering . Washington DC: National Academies Press.

National Science Foundation (1998). Information technology: Its impact on undergraduate education in science, mathematics, engineering, and technology. (NSF 98–82), April 18–20, 1996. http://www.nsf.gov/cgi-bin/getpub?nsf9882 Accessed 16 Jan 2018.

Raju, P. K., & Sankar, C. S. (2003). Editorial. Journal of STEM Education: Innovations & Research, 4 (3&4), 2.

Ring-Whalen, E., Dare, E., Roehrig, G., Titu, P., & Crotty, E. (2018). From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units. International Journal of Education in Mathematics, Science and Technology, 6 (4), 343–362.

Schreffler, J., Vasquez III, E., Chini, J., & James, W. (2019). Universal design for learning in postsecondary STEM education for students with disabilities: A systematic literature review. International Journal of STEM Education, 6 , 8. https://doi.org/10.1186/s40594-019-0161-8 .

Schwab, D. B., Cole, L. W., Desai, K. M., Hemann, J., Hummels, K. R., & Maltese, A. V. (2018). A summer STEM outreach program run by graduate students: Successes, challenges, and recommendations for implementation. Journal of Research in STEM Education, 4 (2), 117–129.

Sochacka, N. W., Guyotte, K. W., & Walther, J. (2016). Learning together: A collaborative autoethnographic exploration of STEAM (STEM+ the Arts) education. Journal of Engineering Education, 105 (1), 15–42.

Sokolowski, A., Li, Y., & Willson, V. (2015). The effects of using exploratory computerized environments in grades 1 to 8 mathematics: A meta-analysis of research. International Journal of STEM Education, 2 , 8. https://doi.org/10.1186/s40594-015-0022-z .

Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., Pauw, J. B., Dehaene, W., Deprez, J., De Cock, M., Hellinckx, L., Knipprath, H., Langie, G., Struyven, K., Van de Velde, D., Van Petegem, P., & Depaepe, F. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3 (1), 2.

Tsai, C. C., & Wen, L. M. C. (2005). Research and trends in science education from 1998 to 2002: A content analysis of publication in selected journals. International Journal of Science Education, 27 (1), 3–14.

United States Congress House Committee on Science. (1998). The state of science, math, engineering, and technology (SMET) education in America, parts I-IV, including the results of the Third International Mathematics and Science Study (TIMSS): hearings before the Committee on Science, U.S. House of Representatives, One Hundred Fifth Congress, first session, July 23, September 24, October 8 and 29, 1997. Washington: U.S. G.P.O.

Vasquez, J., Sneider, C., & Comer, M. (2013). STEM lesson essentials, grades 3–8: Integrating science, technology, engineering, and mathematics . Portsmouth, NH: Heinemann.

Wu, S. P. W., & Rau, M. A. (2019). How students learn content in science, technology, engineering, and mathematics (STEM) through drawing activities. Educational Psychology Review . https://doi.org/10.1007/s10648-019-09467-3 .

Xu, M., Williams, P. J., Gu, J., & Zhang, H. (2019). Hotspots and trends of technology education in the International Journal of Technology and Design Education: 2000-2018. International Journal of Technology and Design Education . https://doi.org/10.1007/s10798-019-09508-6 .

Download references

Not applicable

Author information

Authors and affiliations.

Texas A&M University, College Station, TX, 77843-4232, USA

Yeping Li & Yu Xiao

Nicholls State University, Thibodaux, LA, 70310, USA

Ohio State University, Columbus, OH, 43210, USA

Jeffrey E. Froyd

You can also search for this author in PubMed   Google Scholar

Contributions

YL conceptualized the study and drafted the manuscript. KW and YX contributed with data collection, coding, and analyses. JEF reviewed drafts and contributed to manuscript revisions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yeping Li .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Li, Y., Wang, K., Xiao, Y. et al. Research and trends in STEM education: a systematic review of journal publications. IJ STEM Ed 7 , 11 (2020). https://doi.org/10.1186/s40594-020-00207-6

Download citation

Received : 10 February 2020

Accepted : 12 February 2020

Published : 10 March 2020

DOI : https://doi.org/10.1186/s40594-020-00207-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Journal publication
  • Literature review
  • STEM education research

example of research topic in stem strand

dept nd white

  • Mission & Vision
  • Core Beliefs
  • AdvancED Certification
  • Faculty & Staff
  • Research Fellows & Assistants
  • Research Projects
  • Evaluation Projects
  • AP Teacher Investment Program (AP-TIP)
  • Notre Dame STEM Teaching Fellows
  • Summer STEM Camps
  • Alliance for Catholic Education
  • 2021 Excellence in Teaching Conference
  • STEM Teaching Fellows
  • AP-TIP Team
  • Apply to Cohort 12
  • AP® Summer Institute
  • Fall Conference
  • Mock Exam Training
  • Remote Teacher Collaboratives
  • News and Announcements
  • Contact AP-TIP

Research by Topics

Underrepresented population in stem.

  • Teacher Leadership
  • Instruction
  • Informal Learning
  • Curriculum Studies
  • View All Projects
  • Center for STEM Education Lab
  • Kloser Science Education Lab
  • Svarovsky Early Engineering Lab
  • Trinter Math Education Lab
  • STEM and Catholic Schools
  • Underrepresented Populations in STEM

example of research topic in stem strand

  • 2023 AERA in the News
  • 2022 AERA in the News
  • 2021 AERA In the News
  • 2020 AERA In the News
  • 2019 AERA In the News
  • 2018 AERA In the News
  • 2017 AERA In the News
  • 2016 AERA In the News
  • 2015 AERA In the News
  • 2014 AERA In the News
  • 2013 AERA In the News
  • 2023 AERA News Releases
  • 2022 AERA News Releases
  • 2021 AERA News Releases
  • 2020 AERA News Releases
  • 2019 AERA News Releases
  • 2018 AERA News Releases
  • 2017 AERA News Releases
  • 2016 AERA News Releases
  • 2015 AERA News Releases
  • 2014 AERA News Releases
  • 2013 AERA News Releases
  • 2012 AERA News Releases
  • 2011 News Releases
  • 2010 News Releases
  • 2009 News Releases
  • 2008 News Releases
  • 2007 News Releases
  • 2006 News Releases
  • 2005 News Releases
  • 2004 News Releases
  • AERA Research Archive
  • Trending Topic Research Files
  • Communication Resources for Researchers
  • AERA Highlights Archival Issues
  • AERA Video Gallery

example of research topic in stem strand

Share 

 
STEM

Science, Technology Engineering, and Mathematics (STEM) is one of the most talked about topics in education, emphasizing research, problem solving, critical thinking, and creativity.

The following compendium of open-access articles are inclusive of all substantive AERA journal content regarding STEM published since 1969. This page will be updated as new articles are published. 


Jason Jabbari, Yung Chun, Wenrui Huang, Stephen Roll
October 2023
Researchers found that program acceptance was significantly associated with increased earnings and probabilities of working in a science, technology, engineering, and math (STEM) profession.


Robert R. Martinez, Jr., James M. Ellis
September 2023
Researchers found that STEM-CR involves four related yet distinct dimensions of Think, Know, Act, and Go. Results also demonstrated soundness of these STEM-CR dimensions by race and gender (key learning skills and techniques/Act).


Rosemary J. Perez, Rudisang Motshubi, Sarah L. Rodriguez
April 2023
Researchers found that because participants did not attend to how racism and White supremacy fostered negative climate, their strategies (e.g., increased recruitment, committees, workshops) left systemic racism intact and (un)intentionally amplified labor for racially minoritized graduate students and faculty champions who often led change efforts with little support.


Kathleen Lynch, Lily An, Zid Mancenido
, July 2022
Researchers found an average weighted impact estimate of +0.10 standard deviations on mathematics achievement outcomes.


Luis A. Leyva, R. Taylor McNeill, B R. Balmer, Brittany L. Marshall, V. Elizabeth King, Zander D. Alley
, May 2022
Researchers address this research gap by exploring four Black queer students’ experiences of oppression and agency in navigating invisibility as STEM majors.


Angela Starrett, Matthew J. Irvin, Christine Lotter, Jan A. Yow
, May 2022
Researchers found that the more place-based workforce development adolescents reported, the higher their expectancy beliefs, STEM career interest, and rural community aspirations.


Matthew H. Rafalow, Cassidy Puckett
May 2022
Researchers found that educational resources, like digital technologies, are also sorted by schools.


Pamela Burnard, Laura Colucci-Gray, Carolyn Cooke
 April 2022
This article makes a case for repositioning STEAM education as democratized enactments of transdisciplinary education, where arts and sciences are not separate or even separable endeavors.


Salome Wörner, Jochen Kuhn, Katharina Scheiter
, April 2022
Researchers conclude that for combining real and virtual experiments, apart from the individual affordances and the learning objectives of the different experiment types, especially their specific function for the learning task must be considered.


Seung-hyun Han, Eunjung Grace Oh, Sun “Pil” Kang
April 2022
Researchers found that the knowledge sharing mechanism and student learning outcomes can be explained in terms of their social capital within social networks.


Barbara Schneider, Joseph Krajcik, Jari Lavonen, Katariina Salmela-Aro, Christopher Klager, Lydia Bradford, I-Chien Chen, Quinton Baker, Israel Touitou, Deborah Peek-Brown, Rachel Marias Dezendorf, Sarah Maestrales, Kayla Bartz
March 2022 
Researchers found that improving secondary school science learning is achievable with a coherent system comprising teacher and student learning experiences, professional learning, and formative unit assessments that support students in “doing” science.


Paulo Tan, Alexis Padilla, Rachel Lambert
, March 2022
Researchers found that studies continue to avoid meaningful intersectional considerations of race and disability.


Ta-yang Hsieh, Sandra D. Simpkins
March 2022
Researchers found patterns with overall high/low beliefs, patterns with varying levels of motivational beliefs, and patterns characterized by domain differentiation.


Jonté A. Myers, Bradley S. Witzel, Sarah R. Powell, Hongli Li, Terri D. Pigott, Yan Ping Xin, Elizabeth M. Hughes
, February 2022
Findings of meta-regression analyses showed several moderators, such as sample composition, group size, intervention dosage, group assignment approach, interventionist, year of publication, and dependent measure type, significantly explained heterogeneity in effects across studies.


Grace A. Chen, Ilana S. Horn
, January 2022
The findings from this review highlight the interconnectedness of structures and individual lives, of the material and ideological elements of marginalization, of intersectionality and within-group heterogeneity, and of histories and institutions.


Victor R. Lee, Michelle Hoda Wilkerson, Kathryn Lanouette
December 2021
Researchers offer an interdisciplinary framework based on literature from multiple bodies of educational research to inform design, teaching and research for more effective, responsible, and inclusive student learning experiences with and about data.


Ido Davidesco, Camillia Matuk, Dana Bevilacqua, David Poeppel, Suzanne Dikker
December 2021
This essay critically evaluates the value added by portable brain technologies in education research and outlines a proposed research agenda, centered around questions related to student engagement, cognitive load, and self-regulation.


Guan K. Saw, Charlotte A. Agger
December 2021
Researchers found that during high school rural and small-town students shifted away from STEM fields and that geographic disparities in postsecondary STEM participation were largely explained by students’ demographics and precollege STEM career aspirations and academic preparation.


Kyle M. Whitcomb, Sonja Cwik, Chandralekha Singh
November 2021
Researchers found that on average across all years of study, underrepresented minority (URM) students experience a larger penalty to their mean overall and STEM GPA than even the most disadvantaged non-URM students.


Lana M. Minshew, Amanda A. Olsen, Jacqueline E. McLaughlin
, October 2021
Researchers found that the CA framework is a useful and effective model for supporting faculty in cultivating rich learning opportunities for STEM graduate students.


Xin Lin, Sarah R. Powell
, October 2021
Findings suggested fluency in both mathematics and reading, as well as working memory, yielded greater impacts on subsequent mathematics performance.


Christine L. Bae, Daphne C. Mills, Fa Zhang, Martinique Sealy, Lauren Cabrera, Marquita Sea
, September 2021
This systematic literature review is guided by a complex systems framework to organize and synthesize empirical studies of science talk in urban classrooms across individual (student or teacher), collective (interpersonal), and contextual (sociocultural, historical) planes.


Toya Jones Frank, Marvin G. Powell, Jenice L. View, Christina Lee, Jay A. Bradley, Asia Williams
 August/September 2021
Researchers found that teachers’ experiences of microaggressions accounted for most of the variance in our modeling of teachers’ thoughts of leaving the profession.


Ebony McGee, Yuan Fang, Yibin (Amanda) Ni, Thema Monroe-White
August 2021
Researchers found that 40.7% of the respondents reported that their career plans have been affected by Trump’s antiscience policies, 54.5% by the COVID-19 pandemic.


Martha Cecilia Bottia, Roslyn Arlin Mickelson, Cayce Jamil, Kyleigh Moniz, Leanne Barry
, May 2021
Consistent with cumulative disadvantage and critical race theories, findings reveal that the disproportionality of racially minoritized students in STEM is related to their inferior secondary school preparation; the presence of racialized lower quality educational contexts; reduced levels of psychosocial factors associated with STEM success; less exposure to inclusive and appealing curricula and instruction; lower levels of family social, cultural, and financial capital that foster academic outcomes; and fewer prospects for supplemental STEM learning opportunities. Policy implications of findings are discussed.


Iris Daruwala, Shani Bretas, Douglas D. Ready
 April 2021
Researchers describe how teachers, school leaders, and program staff navigated institutional pressures to improve state grade-level standardized test scores while implementing tasks and technologies designed to personalize student learning.


Michael A. Gottfried, Jay Plasman, Jennifer A. Freeman, Shaun Dougherty
March 2021
Researchers found that students with learning disabilities were more likely to earn more units in CTE courses compared with students without disabilities.


Ebony Omotola McGee
 December 2020
This manuscript also discusses how universities institutionalize diversity mentoring programs designed mostly to fix (read “assimilate”) underrepresented students of color while ignoring or minimizing the role of the STEM departments in creating racially hostile work and educational spaces.


Miray Tekkumru-Kisa, Mary Kay Stein, Walter Doyle
 November 2020
The purpose of this article is to revisit theory and research on tasks, a construct introduced by Walter Doyle nearly 40 years ago.


Elizabeth S. Park, Federick Ngo
November 2020
Researchers found that lower math placement may have supported women, and to a lesser extent URM students, in completing transferable STEM credits.


Karisma Morton, Catherine Riegle-Crumb
 August/September 2020
Results of regression analyses reveal that, net of school, teacher, and student characteristics, the time that teachers report spending on algebra and more advanced content in eighth grade algebra classes is significantly lower in schools that are predominantly Black compared to those that are not predominantly minority. Implications for future research are discussed.


Qi Zhang, Jessaca Spybrook, Fatih Unlu
, July 2020
Researchers consider strategies to maximize the efficiency of the study design when both student and teacher effects are of primary interest.


Jennifer Lin Russell, Richard Correnti, Mary Kay Stein, Ally Thomas, Victoria Bill, Laurie Speranzo
, July 20, 2020
Analysis of videotaped coaching conversations and teaching events suggests that model-trained coaches improved their capacity to use a high-leverage coaching practice—deep and specific prelesson planning conversations—and that growth in this practice predicted teaching improvement, specifically increased opportunities for students to engage in conceptual thinking.


Maithreyi Gopalan, Kelly Rosinger, Jee Bin Ahn
, April 21, 2020
The overarching purpose of this chapter is to explore and document the growth, applicability, promise, and limitations of quasi-experimental research designs in education research.


Thomas M. Philip, Ayush Gupta
, April 21, 2020
By bringing this collection of articles together, this chapter provides collective epistemic and empirical weight to claims of power and learning as co-constituted and co-constructed through interactional, microgenetic, and structural dynamics.


Steve Graham, Sharlene A. Kiuhara, Meade MacKay
, March 19, 2020
This meta-analysis examined if students writing about content material in science, social studies, and mathematics facilitated learning.


Janina Roloff, Uta Klusmann, Oliver Lüdtke, Ulrich Trautwein
, January 2020 
Multilevel regression analyses revealed that agreeableness, high school GPA, and the second state examination grade predicted teachers’ instructional quality.

: Contemporary Views on STEM Subjects and Language With English Learners
Okhee Lee, Amy Stephens
, 2020 
With the release of the consensus report , the authors highlight foundational constructs and perspectives associated with STEM subjects and language with English learners that frame the report.


Angela Calabrese Barton and Edna Tan
, 2020 
This essay presents a rightful presence framework to guide the study of teaching and learning in justice-oriented ways.


Day Greenberg, Angela Calabrese Barton, Carmen Turner, Kelly Hardy, Akeya Roper, Candace Williams, Leslie Rupert Herrenkohl, Elizabeth A. Davis, Tammy Tasker
, 2020
Researchers  report on how one community builds capacity for disrupting injustice and supporting each other during the COVID-19 crisis.


Tatiana Melguizo, Federick Ngo
, 2020
This study explores the extent to which “college-ready” students, by high school standards, are assigned to remedial courses in college.


Karisma Morton and Catherine Riegle-Crumb
, 2020
Results of regression analyses reveal that, net of school, teacher, and student characteristics, the time that teachers report spending on algebra and more advanced content in eighth grade algebra classes is significantly lower in schools that are predominantly Black compared to those that are not predominantly minority. Implications for future research are discussed.


Jonathan D. Schweig, Julia H. Kaufman, and V. Darleen Opfer
, 2020
Researchers found that there are both substantial fluctuations in students’ engagement in these practices and reported cognitive demand from day to day, as well as large differences across teachers.


David Blazar and Casey Archer
, 2020
Researchers found that exposure to “ambitious” mathematics practices is more strongly associated with test score gains of English language learners compared to those of their peers in general education classrooms.


Megan Hopkins, Hayley Weddle, Maxie Gluckman, Leslie Gautsch
, December 2019 
Researchers show how both researchers and practitioners facilitated research use.


Adrianna Kezar, Samantha Bernstein-Sierra
, October 2019
Findings suggest that Association of American Universities’ influence was a powerful motivator for institutions to alter deeply ingrained perceptions and behaviors.


Denis Dumas, Daniel McNeish, Julie Sarama, Douglas Clements
, October 2019
While students who receive a short-term intervention in preschool may not differ from a control group in terms of their long-term mathematics outcomes at the end of elementary school, they do exhibit significantly steeper growth curves as they approach their eventual skill level.


Jessica Thompson, Jennifer Richards, Soo-Yean Shim, Karin Lohwasser, Kerry Soo Von Esch, Christine Chew, Bethany Sjoberg, Ann Morris
, September 2019
Researchers used data from professional learning communities to analyze pathways into improvement work and reflective data to understand practitioners’ perspectives.


Ross E. O’Hara, Betsy Sparrow
, September 2019
Results indicate that interventions that target psychosocial barriers experienced by community college STEM students can increase retention and should be considered alongside broader reforms.


Ran Liu, Andrea Alvarado-Urbina, Emily Hannum
, September 2019
Findings reveal disparate national patterns in gender gaps across the performance distribution.


Adam Kirk Edgerton
, September 2019 
Through an analysis of 52 interviews with state, regional, and district officials in California, Texas, Ohio, Pennsylvania, and Massachusetts, the author investigates the decline in the popularity of K–12 standards-based reform.


Amy Noelle Parks
, September 2019 
The study suggests that more research needs to represent mathematics lessons from the perspectives of children and youth, particularly those students who engage with teachers infrequently or in atypical ways.


Rajeev Darolia, Cory Koedel, Joyce B. Main, J. Felix Ndashimye, Junpeng Yan
, September 30, 2019
Researchers found that differential access to high school courses does not affect postsecondary STEM enrollment or degree attainment.


Laura A. Davis, Gregory C. Wolniak, Casey E. George, Glen R. Nelson
, August 2019
The findings point to variation in informational quality across dimensions ranging from clarity of language use and terminology, to consistency and coherence of visual displays, which accompany navigational challenges stemming from information fragmentation and discontinuity across pages.


Juan E. Saavedra, Emma Näslund-Hadley, Mariana Alfonso
, August 12, 2019
Researchers present results from the first randomized experiment of a remedial inquiry-based science education program for low-performing elementary students in a developing country.


F. Chris Curran, James Kitchin
, July 2019
Researchers found suggestive evidence in some models (student fixed effects and regression with observable controls) that time on science instruction is related to science achievement but little evidence that the number of science topics/skills covered are related to greater science achievement.


Kathleen Lynch, Heather C. Hill, Kathryn E. Gonzalez, Cynthia Pollard
, June 2019
Programs saw stronger outcomes when they helped teachers learn to use curriculum materials; focused on improving teachers’ content knowledge, pedagogical content knowledge, and/or understanding of how students learn; incorporated summer workshops; and included teacher meetings to troubleshoot and discuss classroom implementation. We discuss implications for policy and practice.


Elizabeth Stearns, Martha Cecilia Bottia, Jason Giersch, Roslyn Arlin Mickelson, Stephanie Moller, Nandan Jha, Melissa Dancy
, June 2019 
Researchers found that relative advantages in college academic performance in STEM versus non-STEM subjects do not contribute to the gender gap in STEM major declaration.


Nicole Shechtman, Jeremy Roschelle, Mingyu Feng, Corinne Singleton
, May 2019
As educational leaders throughout the United States adopt digital mathematics curricula and adaptive, blended approaches, the findings provide a relevant caution.


Colleen M. Ganley, Robert C. Schoen, Mark LaVenia, Amanda M. Tazaz
, March 2019
Factor analyses support a distinction between components of general math anxiety and anxiety about teaching math.


Felicia Moore Mensah
, February 2019 
The implications for practice in both teacher education and science education show that educational and emotional support for teachers of color throughout their educational and professional journey is imperative to increasing and sustaining Black teachers.


Herbert W. Marsh, Brooke Van Zanden, Philip D. Parker, Jiesi Guo, James Conigrave, Marjorie Seaton
, February 2019 
Researchers evaluated STEM coursework selection by women and men in senior high school and university, controlling achievement and expectancy-value variables.


Yasemin Copur-Gencturk, Debra Plowman, Haiyan Bai
, January 2019 
The results showed that a focus on curricular content knowledge and examining students’ work were significantly related to teachers’ learning.


Rebecca Colina Neri, Maritza Lozano, Louis M. Gomez
, 2019
Researchers found that teacher resistance to CRE as a multilevel learning problem stems from (a) limited understanding and belief in the efficacy of CRE and (b) a lack of know-how needed to execute it.


Russell T. Warne, Gerhard Sonnert, and Philip M. Sadler
, 2019
Researchers  investigated the relationship between participation in AP mathematics courses (AP Calculus and AP Statistics) and student career interest in STEM.


Catherine Riegle-Crumb, Barbara King, and Yasmiyn Irizarry
, 2019 
Results reveal evidence of persistent racial/ethnic inequality in STEM degree attainment not found in other fields.


Eben B. Witherspoon, Paulette Vincent-Ruz, and Christian D. Schunn
, 2019 
Researchers found that high-performing women often graduate with lower paying, lower status degrees.


Bruce Fuller, Yoonjeon Kim, Claudia Galindo, Shruti Bathia, Margaret Bridges, Greg J. Duncan, and Isabel García Valdivia
, 2019
This article details the growing share of Latino children from low-income families populating schools, 1998 to 2010.


Rebekka Darner
, 2019
Drawing from motivated reasoning and self-determination theories, this essay builds a theoretical model of how negative emotions, thwarting of basic psychological needs, and the backfire effect interact to undermine critical evaluation of evidence, leading to science denial.


Okhee Lee
, 2019
As the fast-growing population of English learners (ELs) is expected to meet college- and career-ready content standards, the purpose of this article is to highlight key issues in aligning ELP standards with content standards.


Mark C. Long, Dylan Conger, and Raymond McGhee, Jr.
, 2019
The authors offer the first model of the components inherent in a well-implemented AP science course and the first evaluation of AP implementation with a focus on public schools newly offering the inquiry-based version of AP Biology and Chemistry courses.


Yasemin Copur-Gencturk, Joseph R. Cimpian, Sarah Theule Lubienski, and Ian Thacker
, 2019
Results indicate that teachers are not free of bias, and that teachers from marginalized groups may be susceptible to bias that favors stereotype-advantaged groups.


Geoffrey B. Saxe and Joshua Sussman
, 2019 
Multilevel analysis of longitudinal data on a specialized integers and fractions assessment, as well as a California state mathematics assessment, revealed that the ELs in LMR classrooms showed greater gains than comparison ELs and gained at similar rates to their EP peers in LMR classrooms.


Jordan Rickles, Jessica B. Heppen, Elaine Allensworth, Nicholas Sorensen, and Kirk Walters
, 2019 
The authors discuss whether it would have been appropriate to test for nominally equivalent outcomes, given that the study was initially conceived and designed to test for significant differences, and that the conclusion of no difference was not solely based on a null hypothesis test.


Soobin Kim, Gregory Wallsworth, Ran Xu, Barbara Schneider, Kenneth Frank, Brian Jacob, Susan Dynarski
, 2019
Using detailed Michigan high school transcript data, this article examines the effect of the MMC on various students’ course-taking and achievement outcomes.


Dario Sansone
, December 2018
Researchers found that students were less likely to believe that men were better than women in math or science when assigned to female teachers or to teachers who valued and listened to ideas from their students.


Ebony McGee
, December 2018
The authors argues that both racial groups endure emotional distress because each group responds to its marginalization with an unrelenting motivation to succeed that imposes significant costs.


Barbara Means, Haiwen Wang, Xin Wei, Emi Iwatani, Vanessa Peters
, November 2018
Students overall and from under-represented groups who had attended inclusive STEM high schools were significantly more likely to be in a STEM bachelor’s degree program two years after high school graduation.


Paulo Tan, Kathleen King Thorius
, November 2018 
Results indicate identity and power tensions that worked against equitable practices.


Caesar R. Jackson
, November 2018
This study investigated the validity and reliability of the Motivated Strategies for Learning Questionnaire (MSLQ) for minority students enrolled in STEM courses at a historically black college/university (HBCU).


Tuan D. Nguyen, Christopher Redding
, September 2018
The results highlight the importance of recruiting qualified STEM teachers to work in high-poverty schools and providing supports to help them thrive and remain in the classroom.


Joseph A. Taylor, Susan M. Kowalski, Joshua R. Polanin, Karen Askinas, Molly A. M. Stuhlsatz, Christopher D. Wilson, Elizabeth Tipton, Sandra Jo Wilson
, August 2018
The meta-analysis examines the relationship between science education intervention effect sizes and a host of study characteristics, allowing primary researchers to access better estimates of effect sizes for a priori power analyses. The results of this meta-analysis also support programmatic decisions by setting realistic expectations about the typical magnitude of impacts for science education interventions.


Brian A. Burt, Krystal L. Williams, Gordon J. M. Palmer
, August 2018
Three factors are identified as helping them persist from year to year, and in many cases through completion of the doctorate: the role of family, spirituality and faith-based community, and undergraduate mentors.


Anna-Lena Rottweiler, Jamie L. Taxer, Ulrike E. Nett
, June 2018
Suppression improved mood in exam-related anxiety, while distraction improved mood only in non-exam-related anxiety.


Gabriel Estrella, Jacky Au, Susanne M. Jaeggi, Penelope Collins
, April 2018
Although an analysis of 26 articles confirmed that inquiry instruction produced significantly greater impacts on measures of science achievement for ELLs compared to direct instruction, there was still a differential learning effect suggesting greater efficacy for non-ELLs compared to ELLs.


Heather C. Hill, Mark Chin
, April 2018
In this article, evidence from 284 teachers suggests that accuracy can be adequately measured and relates to instruction and student outcomes.


Darrell M. Hull, Krystal M. Hinerman, Sarah L. Ferguson, Qi Chen, Emma I. Näslund-Hadley
, April 20, 2018
Both quantitative and qualitative evidence suggest students within this culture respond well to this relatively simple and inexpensive intervention that departs from traditional, expository math instruction in many developing countries.


Erika C. Bullock
, April 2018
The author reviews CME studies that employ intersectionality as a way of analyzing the complexities of oppression.


Angela Calabrese Barton, Edna Tan
, March 2018 
Building a conceptual argument for an equity-oriented culture of making, the authors discuss the ways in which making with and in community opened opportunities for youth to project their communities’ rich culture knowledge and wisdom onto their making while also troubling and negotiating the historicized injustices they experience.


Sabrina M. Solanki, Di Xu
, March 2018 
Researchers found that having a female instructor narrows the gender gap in terms of engagement and interest; further, both female and male students tend to respond to instructor gender.


Susanne M. Jaeggi, Priti Shah
, February 2018
These articles provide excellent examples for how neuroscientific approaches can complement behavioral work, and they demonstrate how understanding the neural level can help researchers develop richer models of learning and development.


Danyelle T. Ireland, Kimberley Edelin Freeman, Cynthia E. Winston-Proctor, Kendra D. DeLaine, Stacey McDonald Lowe, Kamilah M. Woodson
, 2018
Researchers found that (1) identity; (2) STEM interest, confidence, and persistence; (3) achievement, ability perceptions, and attributions; and (4) socializers and support systems are key themes within the experiences of Black women and girls in STEM education.


Ann Y. Kim, Gale M. Sinatra, Viviane Seyranian
, 2018
Findings indicate that young women experience challenges to their participation and inclusion when they are in STEM settings.


Guan Saw, Chi-Ning Chang, and Hsun-Yu Chan
, 2018 
Results indicated that female, Black, Hispanic, and low SES students were less likely to show, maintain, and develop an interest in STEM careers during high school years.


Di Xu, Sabrina Solanki, Peter McPartlan, and Brian Sato
, 2018
This paper estimates the causal effects of a first-year STEM learning communities program on both cognitive and noncognitive outcomes at a large public 4-year institution.


Christina S. Chhin, Katherine A. Taylor, and Wendy S. Wei
, 2018
Data showed that IES has not funded any direct replications that duplicate all aspects of the original study, but almost half of the funded grant applications can be considered conceptual replications that vary one or more dimensions of a prior study.


Okhee Lee
, 2018
As federal legislation requires that English language proficiency (ELP) standards are aligned with content standards, this article addresses issues and concerns in aligning ELP standards with content standards in English language arts, mathematics, and science.


Jordan Rickles, Jessica B. Heppen, Elaine Allensworth, Nicholas Sorensen, and Kirk Walters
, 2018
Researchers found no statistically significant differences in longer term outcomes between students in the online and face-to-face courses. Implications of these null findings are discussed.


Colleen M. Ganley, Casey E. George, Joseph R. Cimpian, Martha B. Makowski
, December 2017 
Researchers found that perceived gender bias against women emerges as the dominant predictor of the gender balance in college majors.


James P. Spillane, Megan Hopkins, Tracy M. Sweet
, December 2017
This article examines the relationship between teachers’ instructional ties and their beliefs about mathematics instruction in one school district working to transform its approach to elementary mathematics education. 


Susan A. Yoon, Sao-Ee Goh, Miyoung Park
, December 6, 2017
Results revealed needs in five areas of research: a need to diversify the knowledge domains within which research is conducted, more research on learning about system states, agreement on the essential features of complex systems content, greater focus on contextual factors that support learning including teacher learning, and a need for more comparative research.


Candace Walkington, Virginia Clinton, Pooja Shivraj
, November 2017 
Textual features that make problems more difficult to process appear to differentially negatively impact struggling students, while features that make language easier to process appear to differentially positively impact struggling students.


Rebecca L. Matz, Benjamin P. Koester, Stefano Fiorini, Galina Grom, Linda Shepard, Charles G. Stangor, Brad Weiner, Timothy A. McKay
, November 2017
Biology, chemistry, physics, accounting, and economics lecture courses regularly exhibit gendered performance differences that are statistically and materially significant, whereas lab courses in the same subjects do not.


Adam V. Maltese, Christina S. Cooper
, August 2017
The results reveal that although there is no singular pathway into STEM fields, self-driven interest is a large factor in persistence, especially for males, and females rely more heavily on support from others.


Brian R. Belland, Andrew E. Walker, Nam Ju Kim
, August 2017
Scaffolding has a consistently strong effect across student populations, STEM disciplines, and assessment levels, and a strong effect when used with most problem-centered instructional and educational levels.


Di Xu, Shanna Smith Jaggars
, July 2017
The findings indicate a robust negative impact of online course taking for both subjects.


Maisie L. Gholson, Charles E. Wilkes
, June 2017
This chapter reviews two strands of identity-based research in mathematics education related to Black children, exemplified by Martin (2000) and Nasir (2002).


Sarah Theule Lubienski, Emily K. Miller, and Evthokia Stephanie Saclarides
, November 2017 
Using data from a survey of doctoral students at one large institution, this study finds that men submitted and published more scholarly works than women across many fields, with differences largest in natural/biological sciences and engineering. 


David Blazar, Cynthia Pollard
, October 2017
Drawing on classroom observations and teacher surveys, researchers find that test preparation activities predict lower quality and less ambitious mathematics instruction in upper-elementary classrooms.


Nicole M. Joseph, Meseret Hailu, Denise Boston
, June 2017
This integrative review used critical race theory (CRT) and Black feminism as interpretive frames to explore factors that contribute to Black women’s and girls’ persistence in the mathematics pipeline and the role these factors play in shaping their academic outcomes.


Benjamin L. Wiggins, Sarah L. Eddy, Daniel Z. Grunspan, Alison J. Crowe
, May 2017
Researchers describe the results of a quasi-experimental study to test the apex of the ICAP framework (interactive, constructive, active, and passive) in this ecological classroom environment.


Sean Gehrke, Adrianna Kezar
, May 2017 
This study examines how involvement in four cross-institutional STEM faculty communities of practice is associated with local departmental and institutional change for faculty members belonging to these communities.


Lawrence Ingvarson, Glenn Rowley
, May 2017
This study investigated the relationship between policies related to the recruitment, selection, preparation, and certification of new teachers and (a) the quality of future teachers as measured by their mathematics content and pedagogy content knowledge and (b) student achievement in mathematics at the national level. 


Will Tyson, Josipa Roksa
, April 2017
This study examines how course grades and course rigor are associated with math attainment among students with similar eighth-grade standardized math test scores. 


Anne K. Morris, James Hiebert
, March 2017
Researchers investigated whether the content pre-service teachers studied in elementary teacher preparation mathematics courses was related to their performance on a mathematics lesson planning task 2 and 3 years after graduation. 


Laura M. Desimone, Kirsten Lee Hill
, March 2017
Researchers use data from a randomized controlled trial of a middle school science intervention to explore the causal mechanisms by which the intervention produced previously documented gains in student achievement.


Okhee Lee
, March 2017
This article focuses on how the Common Core State Standards (CCSS) and the Next Generation Science Standards (NGSS) treat “argument,” especially in Grades K–5, and the extent to which each set of standards is grounded in research literature, as claimed.


Cory Koedel, Diyi Li, Morgan S. Polikoff, Tenice Hardaway, Stephani L. Wrabel
, February 2017
Researchers estimate relative achievement effects of the four most commonly adopted elementary mathematics textbooks in the fall of 2008 and fall of 2009 in California.


Mary Kay Stein, Richard Correnti, Debra Moore, Jennifer Lin Russell, Katelynn Kelly
, January 2017
Researchers argue that large-scale, standards-based improvements in the teaching and learning of mathematics necessitate advances in theories regarding how teaching affects student learning and progress in how to measure instruction.


Alan H. Schoenfeld
, December 2016
The author begins by tracing the growth and change in research in mathematics education and its interdependence with research in education in general over much of the 20th century, with an emphasis on changes in research perspectives and methods and the philosophical/empirical/disciplinary approaches that underpin them. 


Marcia C. Linn, Libby Gerard, Camillia Matuk, Kevin W. McElhaney
, December 2016
This chapter focuses on how investigators from varied fields of inquiry who initially worked separately began to interact, eventually formed partnerships, and recently integrated their perspectives to strengthen science education.

: Are Teachers’ Implicit Cognitions Another Piece of the Puzzle?
Almut E. Thomas
, December 2016
Drawing on expectancy-value theory, this study investigated whether teachers’ implicit science-is-male stereotypes predict between-teacher variation in males’ and females’ motivational beliefs regarding physical science. 

: A By-Product of STEM College Culture?
Ebony O. McGee
, December 2016 
The researcher found that the 38 high-achieving Black and Latino/a STEM study participants, who attended institutions with racially hostile academic spaces, deployed an arsenal of strategies (e.g., stereotype management) to deflect stereotyping and other racial assaults (e.g., racial microaggressions), which are particularly prevalent in STEM fields. 


James Cowan, Dan Goldhaber, Kyle Hayes, Roddy Theobald
, November 2016
Researchers discuss public policies that contribute to teacher shortages in specific subjects (e.g., STEM and special education) and specific types of schools (e.g., disadvantaged) as well as potential solutions.

: A Sociological Analysis of Multimethod Data From Young Women Aged 10–16 to Explore Gendered Patterns of Post-16 Participation
Louise Archer, Julie Moote, Becky Francis, Jennifer DeWitt, Lucy Yeomans
, November 2016
Researchers draw on survey data from more than 13,000 year 11 (age 15/16) students and interviews with 70 students (who had been tracked from age 10 to 16), focusing in particular on seven girls who aspired to continue with physics post-16, discussing how the cultural arbitrary of physics requires these girls to be highly “exceptional,” undertaking considerable identity work and deployment of capital in order to “possibilize” a physics identity—an endeavor in which some girls are better positioned to be successful than others.


Jeremy Roschelle, Mingyu Feng, Robert F. Murphy, Craig A. Mason
, October 2016
In a randomized field trial with 2,850 seventh-grade mathematics students, researchers evaluated whether an educational technology intervention increased mathematics learning.

: Making Research Participation Instructionally Effective
Sherry A. Southerland, Ellen M. Granger, Roxanne Hughes, Patrick Enderle, Fengfeng Ke, Katrina Roseler, Yavuz Saka, Miray Tekkumru-Kisa
, October 2016
As current reform efforts in science place a premium on student sense making and participation in the practices of science, researchers use a close examination of 106 science teachers participating in Research Experiences for Teachers (RET) to identify, through structural equation modeling, the essential features in supporting teacher learning from these experiences.


Brian R. Belland, Andrew E. Walker, Nam Ju Kim, Mason Lefler
, October 2016
This review addresses the need for a comprehensive meta-analysis of research on scaffolding in STEM education by synthesizing the results of 144 experimental studies (333 outcomes) on the effects of computer-based scaffolding designed to assist the full range of STEM learners (primary through adult education) as they navigated ill-structured, problem-centered curricula.


Vaughan Prain, Brian Hand
, October 2016
Researchers claim that there are strong evidence-based reasons for viewing writing as a central but not sole resource for learning, drawing on both past and current research on writing as an epistemological tool and on their professional background in science education research, acknowledging its distinctive take on the use of writing for learning. 


June Ahn, Austin Beck, John Rice, Michelle Foster
, September 2016
Researchers present analyses from a researcher-practitioner partnership in the District of Columbia Public Schools, where the researchers are exploring the impact of educational software on students’ academic achievement.


Barbara King
, September 2016
This study uses nationally representative data from a recent cohort of college students to investigate thoroughly gender differences in STEM persistence. 


Ryan C. Svoboda, Christopher S. Rozek, Janet S. Hyde, Judith M. Harackiewicz, Mesmin Destin
, August 2016
This longitudinal study draws on identity-based and expectancy-value theories of motivation to explain the socioeconomic status (SES) and mathematics and science course-taking relationship. 

Mathematics Course Placements in California Middle Schools, 2003–2013
Thurston Domina, Paul Hanselman, NaYoung Hwang, Andrew McEachin
, July 2016 
Researchers consider the organizational processes that accompanied the curricular intensification of the proportion of California eighth graders enrolled in algebra or a more advanced course nearly doubling to 65% between 2003 and 2013.


Lina Shanley
, July 2016
Using a nationally representative longitudinal data set, this study compared various models of mathematics achievement growth on the basis of both practical utility and optimal statistical fit and explored relationships within and between early and later mathematics growth parameters. 


Mimi Engel, Amy Claessens, Tyler Watts, George Farkas
, June 2016
Analyzing data from two nationally representative kindergarten cohorts, researchers examine the mathematics content teachers cover in kindergarten.


F. Chris Curran, Ann T. Kellogg
, June 2016
Researchers present findings from the recently released Early Childhood Longitudinal Study, Kindergarten Class of 2010–2011 that demonstrate significant gaps in science achievement in kindergarten and first grade by race/ethnicity.


Rachel Garrett, Guanglei Hong
, June 2016
Analyzing the Early Childhood Longitudinal Study–Kindergarten cohort data, researchers find that heterogeneous grouping or a combination of heterogeneous and homogeneous grouping under relatively adequate time allocation is optimal for enhancing teacher ratings of language minority kindergartners’ math performance, while using homogeneous grouping only is detrimental. 


Jennifer Gnagey, Stéphane Lavertu
, May 2016
This study is one of the first to estimate the impact of “inclusive” science, technology, engineering, and mathematics (STEM) high schools using student-level data. 


Hanna Gaspard, Anna-Lena Dicke, Barbara Flunger, Isabelle Häfner, Brigitte M. Brisson, Ulrich Trautwein, Benjamin Nagengast
, May 2016 
Through data from a cluster-randomized study in which a value intervention was successfully implemented in 82 ninth-grade math classrooms, researchers address how interventions on students’ STEM motivation in school affect motivation in subjects not targeted by the intervention.


Rebecca M. Callahan, Melissa H. Humphries
, April 2016 
Researchers employ multivariate methods to investigate immigrant college going by linguistic status using the Educational Longitudinal Study of 2002.


Federick Ngo, Tatiana Melguizo
, March 2016
Researchers take advantage of heterogeneous placement policy in a large urban community college district in California to compare the effects of math remediation under different policy contexts.

: An Analysis of German Fourth- and Sixth-Grade Classrooms
Steffen Tröbst, Thilo Kleickmann, Kim Lange-Schubert, Anne Rothkopf, Kornelia Möller
, February 2016 
Researchers examined if changes in instructional practices accounted for differences in situational interest in science instruction and enduring individual interest in science between elementary and secondary school classrooms.

: A Mixed-Methods Study
David F. Feldon, Michelle A. Maher, Josipa Roksa, James Peugh
, February 2016 
Researchers offer evidence of a similar phenomenon to cumulative advantage, accounting for differential patterns of research skill development in graduate students over an academic year and explore differences in socialization that accompany diverging developmental trajectories. 

 : The Influence of Time, Peers, and Place
Luke Dauter, Bruce Fuller
, February 2016 
Researchers hypothesize that pupil mobility stems from the (a) student’s time in school and grade; (b) student’s race, class, and achievement relative to peers; (c) quality of schooling relative to nearby alternatives; and (4) proximity, abundance, and diversity of local school options. 

: How Workload and Curricular Affordances Shape STEM Faculty Decisions About Teaching and Learning
Matthew T. Hora
, January 2016
In this study the idea of the “problem space” from cognitive science is used to examine how faculty construct mental representations for the task of planning undergraduate courses. 


Jessaca Spybrook, Carl D. Westine, Joseph A. Taylor
, January 2016
This article provides empirical estimates of design parameters necessary for planning adequately powered cluster randomized trials (CRTs) focused on science achievement. 


Paul L. Morgan, George Farkas, Marianne M. Hillemeier, Steve Maczuga
, January 2016
Researchers examined the age of onset, over-time dynamics, and mechanisms underlying science achievement gaps in U.S. elementary and middle schools. 

: Opportunity Structures and Outcomes in Inclusive STEM-Focused High Schools
Lois Weis, Margaret Eisenhart, Kristin Cipollone, Amy E. Stich, Andrea B. Nikischer, Jarrod Hanson, Sarah Ohle Leibrandt, Carrie D. Allen, Rachel Dominguez
, December 2015 
Researchers present findings from a three-year comparative longitudinal and ethnographic study of how schools in two cities, Buffalo and Denver, have taken up STEM education reform, including the idea of “inclusive STEM-focused schools,” to address weaknesses in urban high schools with majority low-income and minority students. 

: How Do They Interact in Promoting Science Understanding?
Jasmin Decristan, Eckhard Klieme, Mareike Kunter, Jan Hochweber, Gerhard Büttner, Benjamin Fauth, A. Lena Hondrich, Svenja Rieser, Silke Hertel, Ilonca Hardy
, December 2015
Researchers examine the interplay between curriculum-embedded formative assessment—a well-known teaching practice—and general features of classroom process quality (i.e., cognitive activation, supportive climate, classroom management) and their combined effect on elementary school students’ understanding of the scientific concepts of floating and sinking.

: An International Perspective
William H. Schmidt, Nathan A. Burroughs, Pablo Zoido, Richard T. Houang
, October 2015
In this paper, student-level indicators of opportunity to learn (OTL) included in the 2012 Programme for International Student Assessment are used to explore the joint relationship of OTL and socioeconomic status (SES) to student mathematics literacy. 


Xueli Wang
, September 2015
This study examines the effect of beginning at a community college on baccalaureate success in science, technology, engineering, and mathematics (STEM) fields. 

: Trends and Predictors
David M. Quinn, North Cooc
, August 2015
With research on science achievement disparities by gender and race/ethnicity often neglecting the beginning of the pipeline in the early grades, researchers address this limitation using nationally representative data following students from Grades 3 to 8. 


Shaun M. Dougherty, Joshua S. Goodman, Darryl V. Hill, Erica G. Litke, Lindsay C. Page
, May 2015
Researchers highlight a collaboration to investigate one district’s effort to increase middle school algebra course-taking.


David F. Feldon, Michelle A. Maher, Melissa Hurst, Briana Timmerman
, April 2015
This mixed-method study investigates agreement between student mentees’ and their faculty mentors’ perceptions of the students’ developing research knowledge and skills in STEM. 

: Reviving Science Education for Civic Ends
John L. Rudolph
, December 2014 
This article revisits John Dewey’s now-well-known address “Science as Subject-Matter and as Method” and examines the development of science education in the United States in the years since that address.


Dermot F. Donnelly, Marcia C. Linn Sten Ludvigsen
, December 2014
The National Science Foundation–sponsored report Fostering Learning in the Networked World called for “a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences”; we review research on science inquiry learning environments (ILEs) to characterize current platforms. 

: A Longitudinal Case Study of America’s Chemistry Teachers
Gregory T. Rushton, Herman E. Ray, Brett A. Criswell, Samuel J. Polizzi, Clyde J. Bearss, Nicholas Levelsmier, Himanshu Chhita, Mary Kirchhoff
, November 2014 
Researchers perform a longitudinal case study of U.S. public school chemistry teachers to illustrate a diffusion of responsibility within the STEM community regarding who is responsible for the teacher workforce. 

: Relations Between Early Mathematics Knowledge and High School Achievement
Tyler W. Watts, Greg J. Duncan, Robert S. Siegler, Pamela E. Davis-Kean
, October 2014
Researchers find that preschool mathematics ability predicts mathematics achievement through age 15, even after accounting for early reading, cognitive skills, and family and child characteristics.


T. Jared Robinson, Lane Fischer, David Wiley, John Hilton, III
, October 2014
The purpose of this quantitative study is to analyze whether the adoption of open science textbooks significantly affects science learning outcomes for secondary students in earth systems, chemistry, and physics.

: 1968–2009
Robert N. Ronau, Christopher R. Rakes, Sarah B. Bush, Shannon O. Driskell, Margaret L. Niess, David K. Pugalee
, October 2014 
We examined 480 dissertations on the use of technology in mathematics education and developed a Quality Framework (QF) that provided structure to consistently define and measure quality.


Andrew D. Plunk, William F. Tate, Laura J. Bierut, Richard A. Grucza
, June 2014
Using logistic regression with Census and American Community Survey (ACS) data (  = 2,892,444), researchers modeled mathematics and science course graduation requirement (CGR) exposure on (a) high school dropout, (b) beginning college, and (c) obtaining any college degree. 


Corey Drake, Tonia J. Land, Andrew M. Tyminski
, April 2014
Building on the work of Ball and Cohen and that of Davis and Krajcik, as well as more recent research related to teacher learning from and about curriculum materials, researchers seek to answer the question, How can prospective teachers (PTs) learn to read and use educative curriculum materials in ways that support them in acquiring the knowledge needed for teaching?


Lorraine M. McDonnell, M. Stephen Weatherford
, December 2013
This article draws on theories of political and policy learning and interviews with major participants to examine the role that the Common Core State Standards (CCSS) supporters have played in developing and implementing the standards, supporters’ reasons for mobilizing, and the counterarguments and strategies of recently emerging opposition groups.

: Motivation, High School Learning, and Postsecondary Context of Support
Xueli Wang
, October 2013 
This study draws upon social cognitive career theory and higher education literature to test a conceptual framework for understanding the entrance into science, technology, engineering, and mathematics (STEM) majors by recent high school graduates attending 4-year institutions. 


Philip M. Sadler, Gerhard Sonnert, Harold P. Coyle, Nancy Cook-Smith, Jaimie L. Miller
, October 2013
This study examines the relationship between teacher knowledge and student learning for 9,556 students of 181 middle school physical science teachers.

: Teaching Critical Mathematics in a Remedial Secondary Classroom
Andrew Brantlinger
, October 2013 
The researcher presents results from a practitioner research study of his own teaching of critical mathematics (CM) to low-income students of color in a U.S. context. 


Jason G. Hill, Ben Dalton
, October 2013
This study investigates the distribution of math teachers with a major or certification in math using data from the National Center for Education Statistics’ High School Longitudinal Study of 2009 (HSLS:09).


Kristin F. Butcher, Mary G. Visher
, September 2013
This study uses random assignment to investigate the impact of a “light-touch” intervention, where an individual visited math classes a few times during the semester, for a few minutes each time, to inform students about available services.


Janet M. Dubinsky, Gillian Roehrig, Sashank Varma
, August 2013 
Researchers argue that the neurobiology of learning, and in particular the core concept of  , have the potential to directly transform teacher preparation and professional development, and ultimately to affect how students think about their own learning. 

: The Impact of Undergraduate Research Programs
M. Kevin Eagan, Jr., Sylvia Hurtado, Mitchell J. Chang, Gina A. Garcia, Felisha A. Herrera, Juan C. Garibay
, August 2013 
Researchers’ findings indicate that participation in an undergraduate research program significantly improved students’ probability of indicating plans to enroll in a STEM graduate program.


Okhee Lee, Helen Quinn, Guadalupe Valdés
, May 2013
This article addresses language demands and opportunities that are embedded in the science and engineering practices delineated in “A Framework for K–12 Science Education,” released by the National Research Council (2011).


Liliana M. Garces
, April 2013 
This study examines the effects of affirmative action bans in four states (California, Florida, Texas, and Washington) on the enrollment of underrepresented students of color within six different graduate fields of study: the natural sciences, engineering, social sciences, business, education, and humanities.

: Learning Lessons From Research on Diversity in STEM Fields
Shirley M. Malcom, Lindsey E. Malcom-Piqueux
, April 2013
Researchers argue that social scientists ought to look to the vast STEM education research literature to begin the task of empirically investigating the questions raised in the   case. 


Roslyn Arlin Mickelson, Martha Cecilia Bottia, Richard Lambert
, March 2013
This metaregression analysis reviewed the social science literature published in the past 20 years on the relationship between mathematics outcomes and the racial composition of the K–12 schools students attend. 


Jeffrey Grigg, Kimberle A. Kelly, Adam Gamoran, Geoffrey D. Borman
, March 2013
Researchers examine classroom observations from a 3-year large-scale randomized trial in the Los Angeles Unified School District (LAUSD) to investigate the extent to which a professional development initiative in inquiry science influenced teaching practices in in 4th and 5th grade classrooms in 73 schools.


Angela Calabrese Barton, Hosun Kang, Edna Tan, Tara B. O’Neill, Juanita Bautista-Guerra, Caitlin Brecklin
, February 2013 
This longitudinal ethnographic study traces the identity work that girls from nondominant backgrounds do as they engage in science-related activities across school, club, and home during the middle school years. 

: A Review of the State of the Field
Shuchi Grover, Roy Pea
, January 2013 
This article frames the current state of discourse on computational thinking in K–12 education by examining mostly recently published academic literature that uses Jeannette Wing’s article as a springboard, identifies gaps in research, and articulates priorities for future inquiries.


Catherine Riegle-Crumb, Barbara King, Eric Grodsky, Chandra Muller
, December 2012 
This article investigates the empirical basis for often-repeated arguments that gender differences in entrance into science, technology, engineering, and mathematics (STEM) majors are largely explained by disparities in prior achievement. 


Richard M. Ingersoll, Henry May
, December 2012
This study examines the magnitude, destinations, and determinants of mathematics and science teacher turnover. 

: How Families Shape Children’s Engagement and Identification With Science
Louise Archer, Jennifer DeWitt, Jonathan Osborne, Justin Dillon, Beatrice Willis, Billy Wong
, October 2012 
Drawing on the conceptual framework of Bourdieu, this article explores how the interplay of family habitus and capital can make science aspirations more “thinkable” for some (notably middle-class) children than others.


Erin Marie Furtak, Tina Seidel, Heidi Iverson, Derek C. Briggs
, September 2012
This meta-analysis introduces a framework for inquiry-based teaching that distinguishes between cognitive features of the activity and degree of guidance given to students. 


Jaekyung Lee, Todd Reeves
, June 2012
This study examines the impact of high-stakes school accountability, capacity, and resources under NCLB on reading and math achievement outcomes through comparative interrupted time-series analyses of 1990–2009 NAEP state assessment data. 

: Toward a Theory of Teaching
Paola Sztajn, Jere Confrey, P. Holt Wilson, Cynthia Edgington
, June 2012
Researchers propose a theoretical connection between research on learning and research on teaching through recent research on students’ learning trajectories (LTs). 

: The Perspectives of Exemplary African American Teachers
Jianzhong Xu, Linda T. Coats, Mary L. Davidson
, February 2012 
Researchers argue both the urgency and the promise of establishing a constructive conversation among different bodies of research, including science interest, sociocultural studies in science education, and culturally relevant teaching. 


Rebecca M. Schneider, Kellie Plasman
, December 2011
This review examines the research on science teachers’ pedagogical content knowledge (PCK) in order to refine ideas about science teacher learning progressions and how to support them. 


Brian A. Nosek, Frederick L. Smyth
, October 2011 
Researchers examined implicit math attitudes and stereotypes among a heterogeneous sample of 5,139 participants. 


Libby F. Gerard, Keisha Varma, Stephanie B. Corliss, Marcia C. Linn
, September 2011
Researchers’ findings suggest that professional development programs that engaged teachers in a comprehensive, constructivist-oriented learning process and were sustained beyond 1 year significantly improved students’ inquiry learning experiences in K–12 science classrooms. 

: Teaching and Learning Impacts of Reading Apprenticeship Professional Development
Cynthia L. Greenleaf, Cindy Litman, Thomas L. Hanson, Rachel Rosen, Christy K. Boscardin, Joan Herman, Steven A. Schneider, Sarah Madden, Barbara Jones
, June 2011 
This study examined the effects of professional development integrating academic literacy and biology instruction on science teachers’ instructional practices and students’ achievement in science and literacy. 


Paul Cobb, Kara Jackson
, May 2011
The authors comment on Porter, McMaken, Hwang, and Yang’s recent analysis of the Common Core State Standards for Mathematics by critiquing their measures of the focus of the standards and the absence of an assessment of coherence. 


P. Wesley Schultz, Paul R. Hernandez, Anna Woodcock, Mica Estrada, Randie C. Chance, Maria Aguilar, Richard T. Serpe
, March 2011
This study reports results from a longitudinal study of students supported by a national National Institutes of Health–funded minority training program, and a propensity score matched control. 

: Three Large-Scale Studies
Jeremy Roschelle, Nicole Shechtman, Deborah Tatar, Stephen Hegedus, Bill Hopkins, Susan Empson, Jennifer Knudsen, Lawrence P. Gallagher
, December 2010 
The authors present three studies (two randomized controlled experiments and one embedded quasi-experiment) designed to evaluate the impact of replacement units targeting student learning of advanced middle school mathematics. 

: Examining Disparities in College Major by Gender and Race/Ethnicity
Catherine Riegle-Crumb, Barbara King
, December 2010 
The authors analyze national data on recent college matriculants to investigate gender and racial/ethnic disparities in STEM fields, with an eye toward the role of academic preparation and attitudes in shaping such disparities. 


Mary Kay Stein, Julia H. Kaufman
, September 2010 
This article begins to unravel the question, “What curricular materials work best under what kinds of conditions?” The authors address this question from the point of view of teachers and their ability to implement mathematics curricula that place varying demands and provide varying levels of support for their learning. 


Andy R. Cavagnetto
, September 2010
This study of 54 articles from the research literature examines how argument interventions promote scientific literacy. 


Victoria M. Hand
, March 2010
The researcher examined how the teacher and students in a low-track mathematics classroom jointly constructed opposition through their classroom interactions.


Terrence E. Murphy, Monica Gaughan, Robert Hume, S. Gordon Moore, Jr.
, March 2010
Researchers evaluate the association of a summer bridge program with the graduation rate of underrepresented minority (URM) students at a selective technical university. 

Advertisement

Advertisement

Trends and Hot Topics of STEM and STEM Education: a Co-word Analysis of Literature Published in 2011–2020

  • Published: 23 February 2023
  • Volume 33 , pages 1069–1092, ( 2024 )

Cite this article

example of research topic in stem strand

  • Ying-Shao Hsu   ORCID: orcid.org/0000-0002-1635-8213 1 , 2 ,
  • Kai-Yu Tang   ORCID: orcid.org/0000-0002-3965-3055 3 &
  • Tzu-Chiang Lin   ORCID: orcid.org/0000-0003-3842-3749 4 , 5  

1208 Accesses

3 Citations

Explore all metrics

This study explored research trends in science, technology, engineering, and mathematics (STEM) education. Descriptive analysis and co-word analysis were used to examine articles published in Social Science Citation Index journals from 2011 to 2020. From a search of the Web of Science database, a total of 761 articles were selected as target samples for analysis. A growing number of STEM-related publications were published after 2016. The most frequently used keywords in these sample papers were also identified. Further analysis identified the leading journals and most represented countries among the target articles. A series of co-word analyses were conducted to reveal word co-occurrence according to the title, keywords, and abstract. Gender moderated engagement in STEM learning and career selection. Higher education was critical in training a STEM workforce to satisfy societal requirements for STEM roles. Our findings indicated that the attention of STEM education researchers has shifted to the professional development of teachers. Discussions and potential research directions in the field are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

example of research topic in stem strand

Similar content being viewed by others

example of research topic in stem strand

An Integrative Review with Word Cloud Analysis of STEM Education

example of research topic in stem strand

A review of STEM education with the support of visualizing its structure through the CiteSpace software

example of research topic in stem strand

A systematic review of STEM education research in the GCC countries: trends, gaps and barriers

Data availability.

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Akgunduz, D. (2016). A Research about the placement of the top thousand students placed in STEM fields in Turkey between the years 2000 and 2014. EURASIA Journal of Mathematics, Science and Technology Education, 12 (5), 1365–1377.

Google Scholar  

Appianing, J., & Van Eck, R. N. (2018). Development and validation of the Value-Expectancy STEM Assessment Scale for students in higher education. International Journal of STEM Education , 5 , article 24.

Assefa, S. G., & Rorissa, A. (2013). A bibliometric mapping of the structure of STEM education using co-word analysis. Journal of the American Society for Information Science and Technology, 64 (12), 2513–2536.

Belland, B. R., Walker, A. E., Kim, N. J., & Lefler, M. (2017). Synthesizing results from empirical research on computer-based scaffolding in STEM education: A meta-analysis. Review of Educational Research, 87 (2), 309–344.

Brotman, J. S., & Moore, F. M. (2008). Girls and science: A review of four themes in the science education literature. Journal of Research in Science Teaching, 45 (9), 971–1002.

Brown, R. E., & Bogiages, C. A. (2019). Professional development through STEM integration: How early career math and science teachers respond to experiencing integrated STEM tasks. International Journal of Science and Mathematics Education, 17 (1), 111–128.

Burt, B. A., Williams, K. L., & Palmer, G. J. M. (2019). It takes a village: The role of emic and etic adaptive strengths in the persistence of black men in engineering graduate programs. American Educational Research Journal, 56 (1), 39–74.

Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Scientometrics, 22 (1), 155–205.

Carlisle, D. L. & Weaver, G. C. (2018). STEM education centers: Catalyzing the improvement of undergraduate STEM education. International Journal of STEM Education, 5 , article 47.

Chang, D. F., & ChangTzeng, H. C. (2020). Patterns of gender parity in the humanities and STEM programs: The trajectory under the expanded higher education system. Studies in Higher Education, 45 (6), 1108–1120.

Charleston, L. J. (2012). A qualitative investigation of African Americans’ decision to pursue computing science degrees: Implications for cultivating career choice and aspiration. Journal of Diversity in Higher Education, 5 (4), 222–243.

Charleston, L. J., George, P. L., Jackson, J. F. L., Berhanu, J., & Amechi, M. H. (2014). Navigating underrepresented STEM spaces: Experiences of black women in US computing science higher education programs who actualize success. Journal of Diversity in Higher Education, 7 (3), 166–176.

Chien, Y. H., & Chu, P. Y. (2018). The different learning outcomes of high school and college students on a 3D-printing STEAM engineering design curriculum. International Journal of Science and Mathematics Education, 16 (6), 1047–1064.

Dehdarirad, T., Villarroya, A., & Barrios, M. (2014). Research trends in gender differences in higher education and science: A co-word analysis. Scientometrics, 101 (1), 273–290.

Dickerson, D. L., Eckhoff, A., Stewart, C. O., Chappell, S., & Hathcock, S. (2014). The examination of a pullout STEM program for urban upper elementary students. Research in Science Education, 44 (3), 483–506.

Eccles, J., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J., & Midgley, C. (1983). Expectancies, values and academic behaviors. In J. T. Spence (Ed.), Achievement and Achievement Motives . W. San Francisco: H. Freeman.

Ellison, S., & Allen, B. (2018). Disruptive innovation, labor markets, and Big Valley STEM School: Network analysis in STEM education. Cultural Studies of Science Education, 13 (1), 267–298.

Erdogan, N., Navruz, B., Younes, R., & Capraro, R. M. (2016). Viewing how STEM project-based learning influences students’ science achievement through the implementation lens: A latent growth modeling. Eurasia Journal of Mathematics, Science and Technology Education, 12 (8), 2139–2154.

European Commission, Directorate-General for Education, Youth, Sport and Culture (2016). Does the EU need more STEM graduates? Final report . Retrieve from https://data.europa.eu/doi/10.2766/000444

Fredricks, J. A., Hofkens, T., Wang, M. T., Mortenson, E., & Scott, P. (2018). Supporting girls’ and boys’ engagement in math and science learning: A mixed methods study. Journal of Research in Science Teaching, 55 (2), 271–298.

Fry, R., Kennedy, B., & Funk, C. (2021). Stem jobs see uneven progress in increasing gender, racial and ethnic diversity. Retrieve from https://www.pewresearch.org/science/wp-content/uploads/sites/16/2021/03/PS_2021.04.01_diversity-in-STEM_REPORT.pdf

Ganley, C. M., George, C. E., Cimpian, J. R., & Makowski, M. B. (2018). Gender equity in college majors: Looking beyond the STEM/non-STEM dichotomy for answers regarding female participation. American Educational Research Journal, 55 (3), 453–487.

Gehrke, S., & Kezar, A. (2019). Perceived outcomes associated with engagement in and design of faculty communities of practice focused on STEM reform. Research in Higher Education, 60 (4), 844–869.

Gilmore, J., Vieyra, M., Timmerman, B., Feldon, D., & Maher, M. (2015). The relationship between undergraduate research participation and subsequent research performance of early career STEM graduate students. Journal of Higher Education, 86 (6), 834–863.

Godwin, A., Potvin, G., Hazari, Z., & Lock, R. (2016). Identity, critical agency, and engineering: An affective model for predicting engineering as a career choice. Journal of Engineering Education, 105 (2), 312–340.

Han, S., Yalvac, B., Capraro, M. M., & Capraro, R. M. (2015). In-service teachers’ implementation and understanding of STEM project based learning. Eurasia Journal of Mathematics Science and Technology Education, 11 (1), 63–76.

Heras, M., Ruiz-Mallén, I., & Gallois, S. (2020). Staging science with young people: Bringing science closer to students through stand-up comedy. International Journal of Science Education, 42 (12), 1968–1987.

Hernandez, P. R., Estrada, M., Woodcock, A., & Schultz, P. W. (2017). Protégé perceptions of high mentorship quality depend on shared values more than on demographic match. Journal of Experimental Education, 85 (3), 450–468.

Hinojo Lucena, F. J., Lopez Belmonte, J., Fuentes Cabrera, A., Trujillo Torres, J. M., & Pozo Sanchez, S. (2020). Academic effects of the use of flipped learning in physical education. International journal of Environmental Research and Public Health , 17 (1), article 276.

Holmes, K., Gore, J., Smith, M., & Lloyd, A. (2018). An integrated analysis of school students’ aspirations for STEM careers: Which student and school factors are most predictive? International Journal of Science and Mathematics Education, 16 (4), 655–675.

Huang, X., & Qiao, C. (2022). Enhancing computational thinking skills through artificial intelligence education at a STEAM high school. Science & Education . https://doi.org/10.1007/s11191-022-00392-6

Article   Google Scholar  

Hughes, R. M., Nzekwe, B., & Molynearx, K. J. (2013). The single sex debate for girls in science: A comparison between two informal science programs on middle school students’ STEM identity formation. Research in Science Education, 43 , 1979–2007.

Hughes, B. S., Corrigan, M. W., Grove, D., Andersen, S. B., & Wong, J. T. (2022). Integrating arts with STEM and leading with STEAM to increase science learning with equity for emerging bilingual learners in the United States. International Journal of STEM Education , 9 , article 58.

Johnson, A. M. (2019). “I can turn it on when I need to”: Pre-college integration, culture, and peer academic engagement among black and Latino/a engineering students. Sociology of Education, 92 (1), 1–20.

Kayan-Fadlelmula, F., Sellami, A., Abdelkader, N., & Umer, S. (2022). A systematic review of STEM education research in the GCC countries: Trends, gaps and barriers. International Journal of STEM Education, 9 , article 2.

Kelly, R., Mc Garr, O., Leahy, K., & Goos, M. (2020). An investigation of university students and professionals’ professional STEM identity status. Journal of Science Education and Technology, 29 (4), 536–546.

Kezar, A., Gehrke, S., & Bernstein-Sierra, S. (2017). Designing for success in STEM communities of practice: Philosophy and personal interactions. The Review of Higher Education, 40 (2), 217–244.

Kezar, A., Gehrke, S., & Bernstein-Sierra, S. (2018). Communities of transformation: Creating changes to deeply entrenched issues. The Journal of Higher Education, 89 (6), 832–864.

Kricorian, K., Seu, M., Lpoez, D., Ureta, E., & Equils, O. (2020). Factors influencing participation of underrepresented students in STEM fields: Matched mentors and mindsets. International Journal of STEM Education, 7 , article 16.

Ku, C. J., Hsu, Y. S., Chang, M. C., & Lin, K. Y. (2022). A model for examining middle school students’ STEM integration behavior in a national technology competition. International Journal of STEM Education, 9 (1), 3.

Leydesdroff, L. (1989). Words and co-words as indicators of intellectual organization. Research Policy, 18 (4), 209–223.

Li, Y., Wang, K., Xiao, Y., & Froyd, J. E. (2020a). Research and trends in STEM education: A systematic review of journal publications. International Journal of STEM Education, 7 , article 11.

Li, Y., Wang, K., Xiao, Y., Froyd, J. E., Nite, S. B. (2020b). Research and trends in STEM education: A systematic analysis of publicly funded projects. International Journal of STEM Education, 7 , article 17.

Lin, T. C., Lin, T. J., & Tsai, C. C. (2014). Research trends in science education from 2008 to 2012: A systematic content analysis of publications in selected journals. International Journal of Science Education, 36 (8), 1346–1372.

Lin, T. J., Lin, T. C., Potvin, P., & Tsai, C. C. (2019). Research trends in science education from 2013 to 2017: A systematic content analysis of publications in selected journals. International Journal of Science Education, 41 (3), 367–387.

Lin, T. C., Tang, K. Y., Lin, S. S., Changlai, M. L., & Hsu, Y. S. (2022). A co-word analysis of selected science education literature: Identifying research trends of scaffolding in two decades (2000–2019). Frontiers in Psychology, 13 , 844425.

Liu, J. S., & Lu, L. Y. (2012). An integrated approach for main path analysis: Development of the Hirsch index as an example. Journal of the American Society for Information Science and Technology, 63 (3), 528–542.

Liu, C. Y., & Wu, C. J. (2022). STEM without art: A ship without a sail. Thinking Skills and Creativity, 43 , 100977.

Lou, S. H., Shih, R. C., Diez, C. R., & Tseng, K. H. (2011). The impact of problem-based learning strategies on STEM knowledge integration and attitudes: An exploratory study among female Taiwanese senior high school students. International Journal of Technology and Design Education, 21 (2), 195–215.

Lynch, S. J., Burton, E. P., Behrend, T., House, A., Ford, M., Spillane, N., Matray, S., Han, E., & Means, B. (2018). Understanding inclusive STEM high schools as opportunity structures for underrepresented students: Critical components. Journal of Research in Science Teaching, 55 (5), 712–748.

Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The Role of mathematics in interdisciplinary STEM education. ZDM-Mathematics Education, 51 (6), 869–884.

Mansfield, K. C. (2014). How listening to student voices informs and strengthens social justice research and practice. Educational Administration Quarterly, 50 (3), 392–430.

Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: A systematic literature review. International Journal of STEM education , 6 , article 2.

Marín-Marín, J. A., Moreno-Guerrero, A. J., Dúo-Terrón, P., & López-Belmonte, J. (2021). STEAM in education: A bibliometric analysis of performance and co-words in Web of Science. International Journal of STEM Education , 8 , article 41.

Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A Review of Literature. Science Education, 103 (4), 799–822.

McGee, E. O. (2020). Interrogating structural racism in STEM higher education. Educational Researcher, 49 (9), 633–644.

Meho, L. I., & Yang, K. (2006). A new era in citation and bibliometric analyses: Web of Science, Scopus, and Google Scholar. arXiv preprint cs/0612132 .

Mejias, S., Thompson, N., Sedas, R. M., Rosin, M., Soep, E., Peppler, K., Roche, J., Wong, J., Hurley, M., Bell, P., & Bevan, B. (2021). The trouble with STEAM and why we use it anyway. Science Education, 105 (2), 209–231.

Micari, M., Van Winkle, Z., & Pazos, P. (2016). Among friends: The role of academic-preparedness diversity in individual performance within a small-group STEM learning environment. International Journal of Science Education, 38 (12), 1904–1922.

Millar, V. (2020). Trends, issues and possibilities for an interdisciplinary STEM curriculum. Science & Education, 29 (4), 929–948.

Nadelson, L. S., Callahan, J., Pyke, P., Hay, A., Dance, M., & Pfiester, J. (2013). Teacher STEM perception and preparation: Inquiry-based STEM professional development for elementary teachers. Journal of Educational Research, 106 (2), 157–168.

Nakatoh, T., & Hirokawa, S. (2019, July). Evaluation index to find relevant papers: Improvement of focused citation count. In International Conference on Human-Computer Interaction (pp. 555–566). Springer, Cham.

National Science Technology Council. (2012). Coordinating federal science, technology, engineering, and mathematics (STEM) education investments: Progress report. Retrieved from https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/nstc_federal_stem_education_coordination_report.pdf

National Science Technology Council. (2013). Federal Science, Technology, Engineering, and Mathematics (STEM) Education 5-Year Strategic Plan. Retrieved from https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/stem_stratplan_2013.pdf

Ong, M., Smith, J. M., & Ko, L. T. (2018). Counterspaces for women of color in STEM higher education: Marginal and central spaces for persistence and success. Journal of Research in Science Teaching, 55 (2), 206–245.

Organisation for Economic Cooperation and Development, OECD (2021). Education at A Glance 2021. Retrieve from https://read.oecd.org/10.1787/b35a14e5-en?format=pdf

Perez-Felkner, L., Felkner, J. S., Nix, S., & Magalhaes, M. (2020). The puzzling relationship between international development and gender equity: The case of STEM postsecondary education in Cambodia. International Journal of Educational Development, 72 , 102102.

Perignat, E., & Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31 , 31–43.

Quigley, C. F., & Herro, D. (2016). “Finding the joy in the unknown”: Implementation of steam teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25 (3), 410–426.

Ramey, K. E., & Stevens, R. (2019). Interest development and learning in choice-based, in-school, making activities: The case of a 3D printer. Learning, Culture and Social Interaction, 23 , 100262.

Salami, M. K., Makela, C. J., & de Miranda, M. A. (2017). Assessing changes in teachers’ attitudes toward interdisciplinary STEM teaching. International Journal of Technology and Design Education, 27 (1), 63–88.

Sanders, M. (2009). Integrative STEM education primer. The Technology Teacher, 68 (4), 20–26.

Saorín, J. L., Melian-Díaz, D., Bonnet, A., Carrera, C. C., Meier, C., & De La Torre-Cantero, J. (2017). Makerspace teaching-learning environment to enhance creative competence in engineering students. Thinking Skills and Creativity, 23 , 188–198.

Simon, R. M., Wagner, A., & Killion, B. (2017). Gender and choosing a STEM major in college: Femininity, masculinity, chilly climate, and occupational values. Journal of Research in Science Teaching, 54 (3), 299–323.

Stolle-McAllister, K., Domingo, M. R. S., & Carrillo, A. (2011). The Meyerhoff way: How the Meyerhoff scholarship program helps black students succeed in the sciences. Journal of Science Education and Technology, 20 (1), 5–16.

Thomas, B., & Watters, J. J. (2015). Perspectives on Australian, Indian and Malaysian approaches to STEM education. International Journal of Educational Development, 45 , 42–53.

Tosun, C. (2022). Analysis of the last 40 years of science education research via bibliometric methods. Science & Education . https://doi.org/10.1007/s11191-022-00400-9

Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84 (2), 523–538.

Vencent-Ruz, P., & Schunn, C. D. (2017). The increasingly important role of science competency beliefs for science learning in girls. Journal of Research in Science Teaching, 54 (6), 790–822.

Wang, S., Chen, Y., Lv, X., & Xu, J. (2022). Hot topics and frontier evolution of science education research: A bibliometric mapping from 2001 to 2020. Science & Education . https://doi.org/10.1007/s11191-022-00337-z

Weeden, K. A., Gelbgiser, D., & Morgan, S. L. (2020). Pipeline dreams: Occupational plans and gender differences in STEM major persistence and completion. Sociology of Education, 93 (4), 297–314.

Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25 (1), 68–81.

Download references

Author information

Authors and affiliations.

Graduate Institute of Science Education, National Taiwan Normal University, No. 88, Ting-Jou Rd., Sec. 4, Taipei City, 116, Taiwan

Ying-Shao Hsu

Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, No. 88, Ting-Jou Rd., Sec. 4, Taipei City, 116, Taiwan

Graduate Institute of Library & Information Science, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan

Kai-Yu Tang

Center for Liberal Arts, National Kaohsiung University of Science and Technology, No. 415, Jiangong Rd., Sanmin Dist, Kaohsiung City, 807618, Taiwan

Tzu-Chiang Lin

Center for Teacher Education, National Kaohsiung University of Science and Technology, No. 415, Jiangong Rd., Sanmin Dist, Kaohsiung City, 807618, Taiwan

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Tzu-Chiang Lin .

Ethics declarations

Ethical approval and consent to participate.

This study involves neither human participants’ data nor relevant biological material. Ethics approval and informed consent are hence not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Hsu, YS., Tang, KY. & Lin, TC. Trends and Hot Topics of STEM and STEM Education: a Co-word Analysis of Literature Published in 2011–2020. Sci & Educ 33 , 1069–1092 (2024). https://doi.org/10.1007/s11191-023-00419-6

Download citation

Accepted : 26 January 2023

Published : 23 February 2023

Issue Date : August 2024

DOI : https://doi.org/10.1007/s11191-023-00419-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • STEM education
  • Co-word analysis
  • Research trends
  • Find a journal
  • Publish with us
  • Track your research

ct-logo

189+ Good Quantitative Research Topics For STEM Students

Quantitative research is an essential part of STEM (Science, Technology, Engineering, and Mathematics) fields. It involves collecting and analyzing numerical data to answer research questions and test hypotheses. 

In 2023, STEM students have a wealth of exciting research opportunities in various disciplines. Whether you’re an undergraduate or graduate student, here are quantitative research topics to consider for your next project.

If you are looking for the best list of quantitative research topics for stem students, then you can check the given list in each field. It offers STEM students numerous opportunities to explore and contribute to their respective fields in 2023 and beyond. 

Whether you’re interested in astrophysics, biology, engineering, mathematics, or any other STEM field.

Also Read: Most Exciting Qualitative Research Topics For Students

What Is Quantitative Research

Table of Contents

Quantitative research is a type of research that focuses on the organized collection, analysis, and evaluation of numerical data to answer research questions, test theories, and find trends or connections between factors. It is an organized, objective way to do study that uses measurable data and scientific methods to come to results.

Quantitative research is often used in many areas, such as the natural sciences, social sciences, economics, psychology, education, and market research. It gives useful information about patterns, trends, cause-and-effect relationships, and how often things happen. Quantitative tools are used by researchers to answer questions like “How many?” and “How often?” “Is there a significant difference?” or “What is the relationship between the variables?”

In comparison to quantitative research, qualitative research uses non-numerical data like conversations, notes, and open-ended surveys to understand and explore the ideas, experiences, and points of view of people or groups. Researchers often choose between quantitative and qualitative methods based on their research goals, questions, and the type of thing they are studying.

How To Choose Quantitative Research Topics For STEM

Here’s a step-by-step guide on how to choose quantitative research topics for STEM:

Step 1:- Identify Your Interests and Passions

Start by reflecting on your personal interests within STEM. What areas or subjects in STEM excite you the most? Choosing a topic you’re passionate about will keep you motivated throughout the research process.

Step 2:- Review Coursework and Textbooks

Look through your coursework, textbooks, and class notes. Identify concepts, theories, or areas that you found particularly intriguing or challenging. These can be a source of potential research topics.

Step 3:- Consult with Professors and Advisors

Discuss your research interests with professors, academic advisors, or mentors. They can provide valuable insights, suggest relevant topics, and guide you toward areas with research opportunities.

Step 4:- Read Recent Literature

Explore recent research articles, journals, and publications in STEM fields. This will help you identify current trends, gaps in knowledge, and areas where further research is needed.

Step 5:- Narrow Down Your Focus

Once you have a broad area of interest, narrow it down to a specific research focus. Consider questions like:

  • What specific problem or phenomenon do you want to investigate?
  • Are there unanswered questions or controversies in this area?
  • What impact could your research have on the field or society?

Step 6:- Consider Resources and Access

Assess the resources available to you, including access to laboratories, equipment, databases, and funding. Ensure that your chosen topic aligns with the resources you have or can access.

Step 7:- Think About Practicality

Consider the feasibility of conducting research on your chosen topic. Are the data readily available, or will you need to collect data yourself? Can you complete the research within your available time frame?

Step 8:- Define Your Research Question

Formulate a clear and specific research question or hypothesis. Your research question should guide your entire study and provide a focus for your data collection and analysis.

Step 9:- Conduct a Literature Review

Dive deeper into the existing literature related to your chosen topic. This will help you understand the current state of research, identify gaps, and refine your research question.

Step 10:- Consider the Impact

Think about the potential impact of your research. How does your topic contribute to the advancement of knowledge in your field? Does it have practical applications or implications for society?

Step 11:- Brainstorm Research Methods

Determine the quantitative research methods and data collection techniques you plan to use. Consider whether you’ll conduct experiments, surveys, data analysis, simulations, or use existing datasets.

Step 12:- Seek Feedback

Share your research topic and ideas with peers, advisors, or mentors. They can provide valuable feedback and help you refine your research focus.

Step 13:- Assess Ethical Considerations

Consider ethical implications related to your research, especially if it involves human subjects, sensitive data, or potential environmental impacts. Ensure that your research adheres to ethical guidelines.

Step 14:- Finalize Your Research Topic

Once you’ve gone through these steps, finalize your research topic. Write a clear and concise research proposal that outlines your research question, objectives, methods, and expected outcomes.

Step 15:- Stay Open to Adjustments

Be open to adjusting your research topic as you progress. Sometimes, new insights or challenges may lead you to refine or adapt your research focus.

Following are the most interesting quantitative research topics for stem students. These are given below.

Quantitative Research Topics In Physics and Astronomy

  • Quantum Computing Algorithms : Investigate new algorithms for quantum computers and their potential applications.
  • Dark Matter Detection Methods : Explore innovative approaches to detect dark matter particles.
  • Quantum Teleportation : Study the principles and applications of quantum teleportation.
  • Exoplanet Characterization : Analyze data from telescopes to characterize exoplanets.
  • Nuclear Fusion Modeling : Create mathematical models for nuclear fusion reactions.
  • Superconductivity at High Temperatures : Research the properties and applications of high-temperature superconductors.
  • Gravitational Wave Analysis : Analyze gravitational wave data to study astrophysical phenomena.
  • Black Hole Thermodynamics : Investigate the thermodynamics of black holes and their entropy.

Quantitative Research Topics In Biology and Life Sciences

  • Genome-Wide Association Studies (GWAS) : Conduct GWAS to identify genetic factors associated with diseases.
  • Pharmacokinetics and Pharmacodynamics : Study drug interactions in the human body.
  • Ecological Modeling : Model ecosystems to understand population dynamics.
  • Protein Folding : Research the kinetics and thermodynamics of protein folding.
  • Cancer Epidemiology : Analyze cancer incidence and risk factors in specific populations.
  • Neuroimaging Analysis : Develop algorithms for analyzing brain imaging data.
  • Evolutionary Genetics : Investigate evolutionary patterns using genetic data.
  • Stem Cell Differentiation : Study the factors influencing stem cell differentiation.

Engineering and Technology Quantitative Research Topics

  • Renewable Energy Efficiency : Optimize the efficiency of solar panels or wind turbines.
  • Aerodynamics of Drones : Analyze the aerodynamics of drone designs.
  • Autonomous Vehicle Safety : Evaluate safety measures for autonomous vehicles.
  • Machine Learning in Robotics : Implement machine learning algorithms for robot control.
  • Blockchain Scalability : Research methods to scale blockchain technology.
  • Quantum Computing Hardware : Design and test quantum computing hardware components.
  • IoT Security : Develop security protocols for the Internet of Things (IoT).
  • 3D Printing Materials Analysis : Study the mechanical properties of 3D-printed materials.

Quantitative Research Topics In Mathematics and Statistics

Following are the best Quantitative Research Topics For STEM Students in mathematics and statistics.

  • Prime Number Distribution : Investigate the distribution of prime numbers.
  • Graph Theory Algorithms : Develop algorithms for solving graph theory problems.
  • Statistical Analysis of Financial Markets : Analyze financial data and market trends.
  • Number Theory Research : Explore unsolved problems in number theory.
  • Bayesian Machine Learning : Apply Bayesian methods to machine learning models.
  • Random Matrix Theory : Study the properties of random matrices in mathematics and physics.
  • Topological Data Analysis : Use topology to analyze complex data sets.
  • Quantum Algorithms for Optimization : Research quantum algorithms for optimization problems.

Experimental Quantitative Research Topics In Science and Earth Sciences

  • Climate Change Modeling : Develop climate models to predict future trends.
  • Biodiversity Conservation Analysis : Analyze data to support biodiversity conservation efforts.
  • Geographic Information Systems (GIS) : Apply GIS techniques to solve environmental problems.
  • Oceanography and Remote Sensing : Use satellite data for oceanographic research.
  • Air Quality Monitoring : Develop sensors and models for air quality assessment.
  • Hydrological Modeling : Study the movement and distribution of water resources.
  • Volcanic Activity Prediction : Predict volcanic eruptions using quantitative methods.
  • Seismology Data Analysis : Analyze seismic data to understand earthquake patterns.

Chemistry and Materials Science Quantitative Research Topics

  • Nanomaterial Synthesis and Characterization : Research the synthesis and properties of nanomaterials.
  • Chemoinformatics : Analyze chemical data for drug discovery and materials science.
  • Quantum Chemistry Simulations : Perform quantum simulations of chemical reactions.
  • Materials for Renewable Energy : Investigate materials for energy storage and conversion.
  • Catalysis Kinetics : Study the kinetics of chemical reactions catalyzed by materials.
  • Polymer Chemistry : Research the properties and applications of polymers.
  • Analytical Chemistry Techniques : Develop new analytical techniques for chemical analysis.
  • Sustainable Chemistry : Explore green chemistry approaches for sustainable materials.

Computer Science and Information Technology Topics

  • Natural Language Processing (NLP) : Work on NLP algorithms for language understanding.
  • Cybersecurity Analytics : Analyze cybersecurity threats and vulnerabilities.
  • Big Data Analytics : Apply quantitative methods to analyze large data sets.
  • Machine Learning Fairness : Investigate bias and fairness issues in machine learning models.
  • Human-Computer Interaction (HCI) : Study user behavior and interaction patterns.
  • Software Performance Optimization : Optimize software applications for performance.
  • Distributed Systems Analysis : Analyze the performance of distributed computing systems.
  • Bioinformatics Data Mining : Develop algorithms for mining biological data.

Good Quantitative Research Topics Students In Medicine and Healthcare

  • Clinical Trial Data Analysis : Analyze clinical trial data to evaluate treatment effectiveness.
  • Epidemiological Modeling : Model disease spread and intervention strategies.
  • Healthcare Data Analytics : Analyze healthcare data for patient outcomes and cost reduction.
  • Medical Imaging Algorithms : Develop algorithms for medical image analysis.
  • Genomic Medicine : Apply genomics to personalized medicine approaches.
  • Telemedicine Effectiveness : Study the effectiveness of telemedicine in healthcare delivery.
  • Health Informatics : Analyze electronic health records for insights into patient care.

Agriculture and Food Sciences Topics

  • Precision Agriculture : Use quantitative methods for optimizing crop production.
  • Food Safety Analysis : Analyze food safety data and quality control.
  • Aquaculture Sustainability : Research sustainable practices in aquaculture.
  • Crop Disease Modeling : Model the spread of diseases in agricultural crops.
  • Climate-Resilient Agriculture : Develop strategies for agriculture in changing climates.
  • Food Supply Chain Optimization : Optimize food supply chain logistics.
  • Soil Health Assessment : Analyze soil data for sustainable land management.

Social Sciences with Quantitative Approaches

  • Educational Data Mining : Analyze educational data for improving learning outcomes.
  • Sociodemographic Surveys : Study social trends and demographics using surveys.
  • Psychometrics : Develop and validate psychological measurement instruments.
  • Political Polling Analysis : Analyze political polling data and election trends.
  • Economic Modeling : Develop economic models for policy analysis.
  • Urban Planning Analytics : Analyze data for urban planning and infrastructure.
  • Climate Policy Evaluation : Evaluate the impact of climate policies on society.

Environmental Engineering Quantitative Research Topics

  • Water Quality Assessment : Analyze water quality data for environmental monitoring.
  • Waste Management Optimization : Optimize waste collection and recycling programs.
  • Environmental Impact Assessments : Evaluate the environmental impact of projects.
  • Air Pollution Modeling : Model the dispersion of air pollutants in urban areas.
  • Sustainable Building Design : Apply quantitative methods to sustainable architecture.

Quantitative Research Topics Robotics and Automation

  • Robotic Swarm Behavior : Study the behavior of robot swarms in different tasks.
  • Autonomous Drone Navigation : Develop algorithms for autonomous drone navigation.
  • Humanoid Robot Control : Implement control algorithms for humanoid robots.
  • Robotic Grasping and Manipulation : Study robotic manipulation techniques.
  • Reinforcement Learning for Robotics : Apply reinforcement learning to robotic control.

Quantitative Research Topics Materials Engineering

  • Additive Manufacturing Process Optimization : Optimize 3D printing processes.
  • Smart Materials for Aerospace : Research smart materials for aerospace applications.
  • Nanostructured Materials for Energy Storage : Investigate energy storage materials.
  • Corrosion Prevention : Develop corrosion-resistant materials and coatings.

Nuclear Engineering Quantitative Research Topics

  • Nuclear Reactor Safety Analysis : Study safety aspects of nuclear reactor designs.
  • Nuclear Fuel Cycle Analysis : Analyze the nuclear fuel cycle for efficiency.
  • Radiation Shielding Materials : Research materials for radiation protection.

Quantitative Research Topics In Biomedical Engineering

  • Medical Device Design and Testing : Develop and test medical devices.
  • Biomechanics Analysis : Analyze biomechanics in sports or rehabilitation.
  • Biomaterials for Medical Implants : Investigate materials for medical implants.

Good Quantitative Research Topics Chemical Engineering

  • Chemical Process Optimization : Optimize chemical manufacturing processes.
  • Industrial Pollution Control : Develop strategies for pollution control in industries.
  • Chemical Reaction Kinetics : Study the kinetics of chemical reactions in industries.

Best Quantitative Research Topics In Renewable Energy

  • Energy Storage Systems : Research and optimize energy storage solutions.
  • Solar Cell Efficiency : Improve the efficiency of photovoltaic cells.
  • Wind Turbine Performance Analysis : Analyze and optimize wind turbine designs.

Brilliant Quantitative Research Topics In Astronomy and Space Sciences

  • Astrophysical Simulations : Simulate astrophysical phenomena using numerical methods.
  • Spacecraft Trajectory Optimization : Optimize spacecraft trajectories for missions.
  • Exoplanet Detection Algorithms : Develop algorithms for exoplanet detection.

Quantitative Research Topics In Psychology and Cognitive Science

  • Cognitive Psychology Experiments : Conduct quantitative experiments in cognitive psychology.
  • Emotion Recognition Algorithms : Develop algorithms for emotion recognition in AI.
  • Neuropsychological Assessments : Create quantitative assessments for brain function.

Geology and Geological Engineering Quantitative Research Topics

  • Geological Data Analysis : Analyze geological data for mineral exploration.
  • Geological Hazard Prediction : Predict geological hazards using quantitative models.

Top Quantitative Research Topics In Forensic Science

  • Forensic Data Analysis : Analyze forensic evidence using quantitative methods.
  • Crime Pattern Analysis : Study crime patterns and trends in urban areas.

Great Quantitative Research Topics In Cybersecurity

  • Network Intrusion Detection : Develop quantitative methods for intrusion detection.
  • Cryptocurrency Analysis : Analyze blockchain data and cryptocurrency trends.

Mathematical Biology Quantitative Research Topics

  • Epidemiological Modeling : Model disease spread and control in populations.
  • Population Genetics : Analyze genetic data to understand population dynamics.

Quantitative Research Topics In Chemical Analysis

  • Analytical Chemistry Methods : Develop quantitative methods for chemical analysis.
  • Spectroscopy Analysis : Analyze spectroscopic data for chemical identification.

Mathematics Education Quantitative Research Topics

  • Mathematics Curriculum Analysis : Analyze curriculum effectiveness in mathematics education.
  • Mathematics Assessment Development : Develop quantitative assessments for mathematics skills.

Quantitative Research Topics In Social Research

  • Social Network Analysis : Analyze social network structures and dynamics.
  • Survey Research : Conduct quantitative surveys on social issues and trends.

Quantitative Research Topics In Computational Neuroscience

  • Neural Network Modeling : Model neural networks and brain functions computationally.
  • Brain Connectivity Analysis : Analyze functional and structural brain connectivity.

Best Topics In Transportation Engineering

  • Traffic Flow Modeling : Model and optimize traffic flow in urban areas.
  • Public Transportation Efficiency : Analyze the efficiency of public transportation systems.

Good Quantitative Research Topics In Energy Economics

  • Energy Policy Analysis : Evaluate the economic impact of energy policies.
  • Renewable Energy Cost-Benefit Analysis : Assess the economic viability of renewable energy projects.

Quantum Information Science

  • Quantum Cryptography Protocols : Develop and analyze quantum cryptography protocols.
  • Quantum Key Distribution : Study the security of quantum key distribution systems.

Human Genetics

  • Genome Editing Ethics : Investigate ethical issues in genome editing technologies.
  • Population Genomics : Analyze genomic data for population genetics research.

Marine Biology

  • Coral Reef Health Assessment : Quantitatively assess the health of coral reefs.
  • Marine Ecosystem Modeling : Model marine ecosystems and biodiversity.

Data Science and Machine Learning

  • Machine Learning Explainability : Develop methods for explaining machine learning models.
  • Data Privacy in Machine Learning : Study privacy issues in machine learning applications.
  • Deep Learning for Image Analysis : Develop deep learning models for image recognition.

Environmental Engineering

Robotics and automation, materials engineering, nuclear engineering, biomedical engineering, chemical engineering, renewable energy, astronomy and space sciences, psychology and cognitive science, geology and geological engineering, forensic science, cybersecurity, mathematical biology, chemical analysis, mathematics education, quantitative social research, computational neuroscience, quantitative research topics in transportation engineering, quantitative research topics in energy economics, topics in quantum information science, amazing quantitative research topics in human genetics, quantitative research topics in marine biology, what is a common goal of qualitative and quantitative research.

A common goal of both qualitative and quantitative research is to generate knowledge and gain a deeper understanding of a particular phenomenon or topic. However, they approach this goal in different ways:

1. Understanding a Phenomenon

Both types of research aim to understand and explain a specific phenomenon, whether it’s a social issue, a natural process, a human behavior, or a complex event.

2. Testing Hypotheses

Both qualitative and quantitative research can involve hypothesis testing. While qualitative research may not use statistical hypothesis tests in the same way as quantitative research, it often tests hypotheses or research questions by examining patterns and themes in the data.

3. Contributing to Knowledge

Researchers in both approaches seek to contribute to the body of knowledge in their respective fields. They aim to answer important questions, address gaps in existing knowledge, and provide insights that can inform theory, practice, or policy.

4. Informing Decision-Making

Research findings from both qualitative and quantitative studies can be used to inform decision-making in various domains, whether it’s in academia, government, industry, healthcare, or social services.

5. Enhancing Understanding

Both approaches strive to enhance our understanding of complex phenomena by systematically collecting and analyzing data. They aim to provide evidence-based explanations and insights.

6. Application

Research findings from both qualitative and quantitative studies can be applied to practical situations. For example, the results of a quantitative study on the effectiveness of a new drug can inform medical treatment decisions, while qualitative research on customer preferences can guide marketing strategies.

7. Contributing to Theory

In academia, both types of research contribute to the development and refinement of theories in various disciplines. Quantitative research may provide empirical evidence to support or challenge existing theories, while qualitative research may generate new theoretical frameworks or perspectives.

Conclusion – Quantitative Research Topics For STEM Students

So, selecting a quantitative research topic for STEM students is a pivotal decision that can shape the trajectory of your academic and professional journey. The process involves a thoughtful exploration of your interests, a thorough review of the existing literature, consideration of available resources, and the formulation of a clear and specific research question.

Your chosen topic should resonate with your passions, align with your academic or career goals, and offer the potential to contribute to the body of knowledge in your STEM field. Whether you’re delving into physics, biology, engineering, mathematics, or any other STEM discipline, the right research topic can spark curiosity, drive innovation, and lead to valuable insights.

Moreover, quantitative research in STEM not only expands the boundaries of human knowledge but also has the power to address real-world challenges, improve technology, and enhance our understanding of the natural world. It is a journey that demands dedication, intellectual rigor, and an unwavering commitment to scientific inquiry.

What is quantitative research in STEM?

Quantitative research in this context is designed to improve our understanding of the science system’s workings, structural dependencies and dynamics.

What are good examples of quantitative research?

Surveys and questionnaires serve as common examples of quantitative research. They involve collecting data from many respondents and analyzing the results to identify trends, patterns

What are the 4 C’s in STEM?

They became known as the “Four Cs” — critical thinking, communication, collaboration, and creativity.

Similar Articles

Tips To Write An Assignment

13 Best Tips To Write An Assignment

Whenever the new semester starts, you will get a lot of assignment writing tasks. Now you enter the new academic…

How To Do Homework Fast

How To Do Homework Fast – 11 Tips To Do Homework Fast

Homework is one of the most important parts that have to be done by students. It has been around for…

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

STEM as the most preferred strand of Senior High School Student's

Profile image of christian castro

2020, STEM as the most preferred strand of Senior High School Student's

Related Papers

Kieran Bentley

example of research topic in stem strand

Participatory Educational Research

Danilo V . Rogayan Jr. , Clarisse Yimyr De Guzman

This qualitative descriptive research explored the perspectives of STEM (science, technology, engineering, and mathematics) senior high school students in a public secondary school in Zambales, Philippines on their reasons why they enrolled in STEM and their intent to pursue relevant career. A total of 20 Grade 12 students were purposively selected as participants of the research. The participants were interviewed using a validated structured interview guide. The recorded interviews were individually transcribed to arrive at an extended text. The extended texts were reviewed to generate themes and significant statements. The paper found out that senior high school students are generally interested in the field related to biology. The alignment to the preferred course in college is the primary reason of the participants for enrolling in STEM. Almost all the students wanted to pursue STEM-related careers after their university graduation. Further, personal aspiration is the main reason for the participants to pursue STEM-related professions. The study recommends that senior high schools may design various activities during the career week. These activities may include possible career paths in STEM-related courses, students' career and motivation, and their career aptitude. Teachers may also infuse innovative pedagogies for better STEM instruction. For the students to have more interest in science, it is recommended that STEM teachers undergo retooling or pursue advanced studies. Senior high schools may conduct career guidance seminars for the students to guide them on what strands they should take. The Department of Education (DepEd) may support the implementation of different programs regarding students’ career preparation. This program will help the students to be more aware on what career path they wanted to pursue, and to avoid pressures from peers. Schools may advocate a collaborative, authentic and goal-oriented learning environment with respect to the demand of Industrial Revolution 4.0.

Clifford Anderson

This study uses data collected at two National Summer Transportation Institute (NSTI) programs in Connecticut and Mississippi to investigate high school students’ perceptions and preferences about education in science, technology, engineering and mathematics (STEM). Family background has a significant impact on a high school student's interest in STEM, as shown during the student recruitment stage and by the analysis of the students' college education plans prepared upon graduation from the two NSTI programs. The building exercise and competition instrument is the most effective among the few examined, while passive learning is not what young people prefer when briefly introduced in the two NSTI programs.

STEM is a curriculum which is based on the idea of education the students in four specific disciplines -science, technology, engineering and mathematics, in an approach which it is based on real-life applications.

Eurasia journal of mathematics, science and technology education

Hersh C. Waxman

This study was grounded in the social cognitive career theoretical framework (Lent, Brown, & Hackett, 1994). The purpose of this four-year longitudinal study was to examine the factors that may have contributed to students’ motivation to develop STEM interest during secondary school years. The participants in our study were 9th- 11th grade high school students from a large K-12 college preparatory charter school system, Harmony Public Schools (HPS) in Texas. We utilized descriptive statistics and logistic regression analyses to carry out the study. The results revealed that three-year survey takers’ STEM major interest seemed to decrease steadily each year. Although there was a significant gender gap between males and females in STEM selection in 9th and 10th grade, this difference was not significant at the end of 11th grade. White and Asian students were significantly more likely to be interested in STEM careers. We also found that students who were most likely to choose a STEM ma...

Steve Alsop

Paul Canlas

Canadian Public Policy

Mitchell Steffler

Zahra Hazari

Alana Unfried , Latricia Townsend

The national economy is in need of more engineers and skilled workers in science, technology, and mathematics (STEM) fields who also possess competencies in critical-thinking, communication, and collaboration – also known as 21st century skills. In response to this need, educational organizations across the country are implementing innovative STEM education programs designed in part to increase student attitudes toward STEM subjects and careers. This paper describes how a team of researchers at The Friday Institute for Educational Innovation at North Carolina State University developed the Upper Elementary School and Middle/High School Student Attitudes toward STEM (S-STEM) Surveys to measure those attitudes. The surveys each consist of four, validated constructs which use Likert-scale items to measure student attitudes toward science, mathematics, engineering and technology, 21st century skills. The surveys also contain a comprehensive section measuring student interest in STEM car...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

RELATED PAPERS

maeve liston

Jim Morgan , Alpaslan Sahin

Colby Tofel-Grehl

INTED2017 Proceedings

Xenophon Moussas

European Review

Didier Van de Velde

Canadian Journal of Science, Mathematics and Technology Education

Isha Decoito

International Journal For Research In Applied Science & Engineering Technology

IJRASET Publication

Cypriot Journal of Educational Sciences

Ersan Güray

Teachers College Record: The Voice of Scholarship in Education

Roslyn Mickelson

Jill Lindsey

Micah Bruce-Davis

The Journal of Career and Technical Education

Casey George

Journal of Technology Education

Michael Bosse

Laplage em Revista

Roksolyana Shvay

Mark Engberg

Technology, Knowledge, and Learning

Nicol R Howard

2018 ASEE Annual Conference & Exposition Proceedings

Max Longhurst

Contemporary Issues in Technology and Teacher Education

Andrea C Burrows Borowczak

International Journal of Advanced Research

Annie Kavitha

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

edeuphoria

200 Quantitative Research Title for Stem Students

Are you a STEM (Science, Technology, Engineering, and Mathematics) student looking for inspiration for your next research project? You’re in the right place! Quantitative research involves gathering numerical data to answer specific questions, and it’s a fundamental part of STEM fields. To help you get started on your research journey, we’ve compiled a list of 200 quantitative research title for stem students. These titles span various STEM disciplines, from biology to computer science. Whether you’re an undergraduate or graduate student, these titles can serve as a springboard for your research ideas.

Biology and Life Sciences

  • The Impact of pH Levels on Microbial Growth
  • Examining the Impact of Temperature on Enzyme Activity.
  • Investigating the Relationship Between Genetics and Obesity
  • Exploring the Diversity of Microorganisms in Soil Samples
  • Quantifying the Impact of Pesticides on Aquatic Ecosystems
  • Studying the Effect of Light Exposure on Plant Growth
  • Analyzing the Efficiency of Antibiotics on Bacterial Infections
  • Investigating the Relationship Between Blood Type and Disease Susceptibility
  • Evaluating the Effects of Different Diets on Lifespan in Fruit Flies
  • Evaluating the Influence of Air Pollution on Respiratory Health.
  • Determining the Kinetics of Chemical Reactions
  • Investigating the Conductivity of Various Ionic Solutions
  • Analyzing the Effects of Temperature on Gas Solubility
  • Studying the Corrosion Rate of Metals in Different Environments
  • Quantifying the Concentration of Heavy Metals in Water Sources
  • Evaluating the Efficiency of Photocatalytic Materials in Water Purification
  • Examining the Thermodynamics of Electrochemical Cells
  • Investigating the Effect of pH on Acid-Base Titrations
  • Analyzing the Composition of Natural and Synthetic Polymers
  • Assessing the Chemical Properties of Nanoparticles
  • Measuring the Speed of Light Using Interferometry
  • Studying the Behavior of Electromagnetic Waves in Different Media
  • Investigating the Relationship Between Mass and Gravitational Force
  • Analyzing the Efficiency of Solar Cells in Energy Conversion
  • Examining Quantum Entanglement in Photon Pairs
  • Quantifying the Heat Transfer in Different Materials
  • Evaluating the Efficiency of Wind Turbines in Energy Production
  • Studying the Elasticity of Materials Through Stress-Strain Analysis
  • Analyzing the Effects of Magnetic Fields on Particle Motion
  • Investigating the Behavior of Superconductors at Low Temperatures

Mathematics

  • Exploring Patterns in Prime Numbers
  • Analyzing the Distribution of Random Variables
  • Investigating the Properties of Fractals in Geometry
  • Evaluating the Efficiency of Optimization Algorithms
  • Studying the Dynamics of Differential Equations
  • Quantifying the Growth of Cryptocurrency Markets
  • Analyzing Network Theory and its Applications
  • Investigating the Complexity of Sorting Algorithms
  • Assessing the Predictive Power of Machine Learning Models
  • Examining the Distribution of Prime Factors in Large Numbers

Computer Science

  • Evaluating the Performance of Encryption Algorithms
  • Analyzing the Efficiency of Data Compression Techniques
  • Investigating Cybersecurity Threats in IoT Devices
  • Quantifying the Impact of Code Refactoring on Software Quality
  • Studying the Behavior of Neural Networks in Image Recognition
  • Analyzing the Effectiveness of Natural Language Processing Models
  • Investigating the Relationship Between Software Bugs and Development Methods
  • Evaluating the Efficiency of Blockchain Consensus Mechanisms
  • Assessing the Privacy Implications of Social Media Data Mining
  • Studying the Dynamics of Online Social Networks

Engineering

  • Analyzing the Structural Integrity of Bridges Under Load
  • Investigating the Efficiency of Renewable Energy Systems
  • Quantifying the Performance of Water Filtration Systems
  • Evaluating the Durability of 3D-Printed Materials
  • Studying the Aerodynamics of Drone Design
  • Analyzing the Impact of Noise Pollution on Urban Environments
  • Investigating the Efficiency of Heat Exchangers in HVAC Systems
  • Assessing the Safety of Autonomous Vehicles in Real-world Scenarios
  • Exploring the Applications of Artificial Intelligence in Robotics
  • Investigating Material Behavior in Extreme Conditions.

Environmental Science

  • Assessing the Effect of Climate Change on Wildlife Migration.
  • Analyzing the Effect of Deforestation on Carbon Sequestration
  • Investigating the Relationship Between Air Quality and Human Health
  • Quantifying the Rate of Soil Erosion in Different Landscapes
  • Analyzing the Impacts of Ocean Acidification on Coral Reefs.
  • Assessing the Efficiency of Waste-to-Energy Conversion Technologies
  • Analyzing the Impact of Urbanization on Local Microclimates
  • Investigating the Effect of Oil Spills on Aquatic Ecosystems
  • Assessing the Effectiveness of Endangered Species Conservation Initiatives.
  • Studying the Dynamics of Ecological Communities

Astronomy and Space Sciences

  • Measuring the Orbits of Exoplanets Using Transit Photometry
  • Investigating the Formation of Stars in Nebulae
  • Analyzing the Characteristics of Black Holes
  • Exploring the Characteristics of Cosmic Microwave Background Radiation.
  • Quantifying the Distribution of Dark Matter in Galaxies
  • Assessing the Effects of Space Weather on Satellite Communications
  • Evaluating the Potential for Asteroid Mining
  • Investigating the Habitability of Exoplanets in the Goldilocks Zone
  • Analyzing Gravitational Waves from Neutron Star Collisions
  • Investigating the Evolution of Galaxies Across Cosmic Eras.

Health Sciences

  • Evaluating the Impact of Exercise on Cardiovascular Health
  • Analyzing the Relationship Between Diet and Diabetes
  • Investigating the Efficacy of Vaccination Programs
  • Quantifying the Psychological Effects of Social Media Use
  • Studying the Genetics of Neurodegenerative Diseases
  • Analyzing the Effects of Meditation on Stress Reduction
  • Investigating the Correlation Between Sleep Patterns and Mental Health
  • Assessing the Influence of Environmental Factors on Allergies
  • Evaluating the Effectiveness of Telemedicine in Patient Care
  • Studying the Health Disparities Among Different Demographic Groups

Materials Science

  • Analyzing the Properties of Carbon Nanotubes for Nanoelectronics
  • Investigating the Thermal Conductivity of Advanced Ceramics
  • Quantifying the Strength of Composite Materials
  • Studying the Optical Properties of Quantum Dots
  • Evaluating the Biocompatibility of Biomaterials for Implants
  • Investigating the Phase Transitions in Perovskite Materials
  • Analyzing the Mechanical Behavior of Shape Memory Alloys
  • Assessing the Corrosion Resistance of Coatings on Metals
  • Studying the Electrical Conductivity of Polymer Blends
  • Exploring the Superconducting Properties of High-Temperature Superconductors

Earth Sciences

  • Assessing the Influence of Volcanic Eruptions on Climate.
  • Analyzing the Geological Processes Shaping Earth’s Surface
  • Investigating the Seismic Activity in Subduction Zones
  • Quantifying the Rate of Glacial Retreat in Polar Regions
  • Studying the Formation of Earthquakes Along Fault Lines
  • Analyzing the Changes in Ocean Circulation Due to Climate Change
  • Investigating the Effects of Urbanization on Groundwater Quality
  • Assessing the Risk of Landslides in Hilly Terrain
  • Evaluating the Impact of Coastal Erosion on Communities
  • Studying the Behavior of Hurricanes in Different Oceanic Basins

Social Sciences and Economics

  • Analyzing the Economic Impact of Natural Disasters
  • Investigating the Relationship Between Education and Income
  • Quantifying the Effects of Public Health Policies on Disease Spread
  • Studying the Demographic Changes in Aging Populations
  • Evaluating the Effects of Gender Diversity on Corporate Performance
  • Analyzing the Influence of Social Media on Political Behavior
  • Investigating the Correlation Between Happiness and Economic Growth
  • Assessing the Factors Affecting Consumer Buying Behavior
  • Studying the Dynamics of International Trade Flows
  • Exploring the Effects of Income Inequality on Social Mobility

Robotics and Artificial Intelligence

  • Evaluating the Performance of Reinforcement Learning Algorithms in Robotics
  • Analyzing the Efficiency of Autonomous Navigation Systems
  • Investigating Human-Robot Interaction in Collaborative Environments
  • Quantifying the Accuracy of Object Detection Algorithms
  • Studying the Ethics of Autonomous AI Decision-Making
  • Analyzing the Robustness of Machine Learning Models to Adversarial Attacks
  • Investigating the Use of AI in Healthcare Diagnosis
  • Assessing the Impact of AI on Job Markets
  • Evaluating the Efficiency of Natural Language Processing in Chatbots
  • Studying the Potential for AI to Enhance Education

Energy and Sustainability

  • Examining the Environmental Consequences of Renewable Energy Sources.
  • Investigating the Efficiency of Energy Storage Systems
  • Quantifying the Benefits of Green Building Technologies
  • Studying the Effects of Carbon Pricing on Emissions Reduction
  • Examining the Prospect for Carbon Capture and Storage
  • Assessing the Sustainability of Food Production Systems
  • Investigating the Impact of Electric Vehicles on Urban Air Quality
  • Analyzing the Energy Consumption Patterns in Smart Cities
  • Studying the Feasibility of Hydrogen as a Clean Energy Carrier
  • Exploring Sustainable Agriculture Practices for Crop Yield Improvement

Neuroscience and Psychology

  • Evaluating the Cognitive Effects of Video Game Play
  • Analyzing Brain Activity During Decision-Making Processes
  • Investigating the Neural Correlates of Emotional Regulation
  • Quantifying the Impact of Music on Brain Function
  • Analyzing the Outcomes of Mindfulness Meditation on Anxiety
  • Analyzing Sleep Patterns and Memory Consolidation
  • Investigating the Relationship Between Neurotransmitters and Mood
  • Assessing the Neural Basis of Addiction
  • Evaluating the Effects of Trauma on Brain Structure
  • Studying the Brain’s Response to Virtual Reality Environments

Mechanical Engineering

  • Analyzing the Efficiency of Heat Exchangers in Power Plants
  • Investigating the Wear and Tear of Mechanical Bearings
  • Quantifying the Vibrations in Mechanical Systems
  • Studying the Aerodynamics of Wind Turbine Blades
  • Evaluating the Frictional Properties of Lubricants
  • Assessing the Efficiency of Cooling Systems in Electronics
  • Investigating the Performance of Internal Combustion Engines
  • Analyzing the Impact of Additive Manufacturing on Product Development
  • Studying the Dynamics of Fluid Flow in Pipelines
  • Exploring the Behavior of Composite Materials in Aerospace Structures

Biomedical Engineering

  • Evaluating the Biomechanics of Human Joint Replacements
  • Analyzing the Performance of Wearable Health Monitoring Devices
  • Investigating the Biocompatibility of 3D-Printed Medical Implants
  • Quantifying the Drug Release Rates from Biodegradable Polymers
  • Studying the Efficiency of Drug Delivery Systems
  • Assessing the Use of Nanoparticles in Cancer Therapies
  • Investigating the Biomechanics of Tissue Engineering Constructs
  • Analyzing the Effects of Electrical Stimulation on Nerve Regeneration
  • Evaluating the Mechanical Properties of Artificial Heart Valves
  • Studying the Biomechanics of Human Movement

Civil and Environmental Engineering

  • Analyzing the Structural Behavior of Tall Buildings in Seismic Zones
  • Investigating the Efficiency of Stormwater Management Systems
  • Quantifying the Impact of Green Infrastructure on Urban Flooding
  • Studying the Behavior of Soils in Slope Stability Analysis
  • Evaluating the Performance of Water Treatment Plants
  • Assessing the Sustainability of Transportation Systems
  • Investigating the Effects of Climate Change on Infrastructure Resilience
  • Analyzing the Environmental Impact of Construction Materials
  • Studying the Dynamics of River Sediment Transport
  • Exploring the Use of Smart Materials in Civil Engineering Applications

Chemical Engineering

  • Evaluating the Efficiency of Chemical Reactors in Pharmaceutical Production
  • Analyzing the Mass Transfer Rates in Membrane Separation Processes
  • Investigating the Effects of Catalysis on Chemical Reactions
  • Quantifying the Kinetics of Polymerization Reactions
  • Studying the Thermodynamics of Gas-Liquid Absorption Processes
  • Assessing the Efficiency of Adsorption-Based Carbon Capture
  • Investigating the Rheological Properties of Non-Newtonian Fluids
  • Analyzing the Effects of Surfactants on Foam Stability
  • Studying the Mass Transport in Microfluidic Devices
  • Exploring the Synthesis of Nanomaterials for Energy Applications

Electrical and Electronic Engineering

  • Analyzing the Efficiency of Power Electronics in Electric Vehicles
  • Investigating the Performance of Wireless Communication Systems
  • Quantifying the Power Consumption of IoT Devices
  • Studying the Reliability of Printed Circuit Boards
  • Evaluating the Efficiency of Photovoltaic Inverters
  • Assessing the Electromagnetic Compatibility of Electronic Devices
  • Investigating the Behavior of Antenna Arrays in Beamforming
  • Analyzing the Power Quality in Electrical Grids
  • Studying the Security of IoT Networks
  • Exploring the Use of Machine Learning in Signal Processing

These 200 quantitative research titles offer a diverse array of options to inspire your next STEM research endeavor. Always remember to select a subject that truly captivates your interest and curiosity, as your enthusiasm and curiosity will drive your research to new heights. Good luck with your research journey, STEM student!

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Our websites may use cookies to personalize and enhance your experience. By continuing without changing your cookie settings, you agree to this collection. For more information, please see our University Websites Privacy Notice .

Neag School of Education

STEM Education Portal

Useful references.

Here you will find an annotated bibliography of a small sample of useful papers on STEM education and the related topics of problem-based learning (PBL) and Science-Technology-Society (STS) approaches to curriculum and instruction. These papers are only a small sampling of a vast literature, selected to present important perspectives on the nature of STEM education, benefits and problems of an integrated STEM approach in education, and strategies for integrating the STEM disciplines, including social perspectives. If you are interested in pursuing any of these topics further the references included in each paper provide a wealth of possibilities to guide your research.

STEM, Integrated STEM – Overviews and Analyses

Atkinson, R. D. (2012). Why the current education reform strategy won’t work. Issues in Science and Technology , Spring 2012: 29-36. ( Google Scholar Link )

Over the past 25 years, a consensus has emerged that “the United States needs to do a better job at promoting and supporting STEM education.” But, the author points out, the problem of too few students successfully completing undergraduate and graduate STEM degrees remains. Atkinson, president of the Information Technology and Innovation Foundation, a nonpartisan public policy think tank based in Washington, DC, suggests that perhaps the problem is with the dominant policy strategy of promoting some STEM education for all students, regardless of their interests, rather than focusing on those who do have an interest in the STEM fields. The author suggests that everyone does not need in-depth knowledge of the STEM disciplines. To support this view he points out that currently in the US only about 5% of jobs are STEM jobs, and this figure is not expected to grow significantly. He continues by considering what he calls the myths of STEM education, using the discussion to support his contention that STEM education should focus on a subset of students who are characterized by their interest in STEM, a strategy he calls “All STEM for some” rather than “some STEM for all.” He believes that the “All STEM for some” strategy will accommodate “the central enabler of effective STEM education: motivated and interested students,” and support what the economy needs, “a modest increase in the number of STEM college graduates who have a real increase in their STEM skills…” This paper provides an interesting perspective on the needs of the STEM professions and how those needs affect K-12 education.

Breiner, J. M., S. S. Harkness, C. C. Johnson, and C. M. Koehler. (2012). What is STEM? A discussion about conceptions of STEM education and partnerships. School Science and Mathematics, 112(1): 3-11. ( DOI Link )

The use of the acronym STEM (science, technology, engineering, and mathematics) has grown rapidly since the early 2000s. But, as the authors of this paper point out, ideas of what STEM is often vary. Here, the authors present the results of an investigation carried out at the University of Cincinnati. At the time the research was conducted (2009) the University was engaged in several STEM initiatives. The goal of the study was to clarify how (or whether) university faculty understood the meaning of STEM, and how STEM influenced their lives. This was accomplished using an open-ended survey asking 1) What is STEM?, and 2) How does STEM influence/impact your life? Results of the survey showed that about 73% of respondents knew what STEM was, and 27% who did not. Responses to the second question ranged widely, from no influence on the individual, to various personal and social influences. The authors conclude that even in an institute of higher education with active STEM initiatives in progress, faculty still have no “common operational definition or conceptualization of STEM.” Further, they question whether such a definition would be easily achievable or useful. This is an interesting study that clearly points out the importance of being clear with our ideas about STEM and unambiguously defining the terms that we use in our discussions on the subject.

Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, September, 2010: 30-35. ( Google Scholar Link )

This paper by stating, in reference to STEM, that “…the education community has embraced a slogan without really taking the time to clarify what the term might mean…” He goes on to say that it is important to clarify what STEM means for educational policies, programs, and practices. Some possibilities, all related to one another, include increased emphasis on technology and engineering, the opportunity to stress “21st Century skills,” and the development of “an integrated curricular approach to studying grand challenges of our era,” such as energy efficiency, resource use, and other socio-environmental topics. These areas can all be useful in developing and supporting STEM literacy. Two challenges to STEM education are discussed. The first is the difficulty of truly integrating technology and engineering in STEM. At present the scale at which they are present in schools at all is relatively low. Even when they are present, they are often taught separately, rather than integrated with science and math courses. Second, is the challenge of introducing STEM-related real-world issues that students will need to understand and address as citizens. This requires an approach that places these issues in a central position and uses the STEM fields to understand them and analyze possible ways of addressing them. Such problem-based, integrated approaches are difficult to implement given the traditional, separate structure of the STEM disciplines. The author provides a model to advance STEM education that he suggests may mitigate some of these challenges.

Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, December/January, 2009: 20-26. ( Google Scholar Link )

The meaning of STEM is often ambiguous. The author of this paper, a professor of Technology Education at Virginia Polytechnic Institute and State University, points out that for many years the National Science Foundation has used the acronym to refer simply to the four separate and distinct fields of science, technology, engineering, and mathematics. Although others have suggested that STEM implies some sort of interaction among the disciplinary stakeholders, the author disagrees, stating that the term STEM education, as it is usually used, seems “suspiciously like the status quo educational practices…of disconnected science mathematics, and technology education.” The focus of this paper is to introduce the concept of “integrative STEM education,” an approach that integrates teaching and learning between and among “any two or more of the STEM areas, and/or between a STEM subject and one or more other school subjects.” That is, the STEM subjects are explicitly integrated with each other and with other non-STEM subjects as well. The author believes that such an approach has a greater potential to interest and motivate students than standard teaching practices, resulting in better learning outcomes and increasing the percentage of students who become interested in STEM subjects and STEM fields.

Wang, H., T. J. Moore, G. H. Roehrig, and M. S. Park. (2011). STEM integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research. 1(2): 1-13. ( DOI Link )

Educators and researchers do not consistently agree or understand what STEM education should be about in K-12 education. Though the STEM disciplines are generally taught in silos (as separate subjects), the work of STEM professionals does not stop at disciplinary boundaries. Therefore an integrated approach to STEM education is closer to the true nature of the STEM fields. STEM integration is defined as the merging of the four STEM disciplines to 1) deepen student understanding by contextualizing the concepts; 2) broaden student understanding by integrating socially and culturally relevant STEM contexts; and 3) increasing student interest by increasing the pathways for students to enter STEM fields. Here, the authors present the results of a study they conducted to document the effect of professional development on STEM integration in three middle school teachers. The two questions that guided this case study were, 1) what are the beliefs and perceptions that teachers have about “STEM integration” after a one year professional development training, and 2) what is the connection between these beliefs and perceptions and the teachers’ classroom practices? Data collection consisted of observations, interviews, and the analysis of teacher documents. Findings from the study indicate that 1) a key component to integrating the STEM disciplines is the problem-solving process; 2) teachers from different STEM disciplines have different perceptions about STEM integration and these perceptions lead to different classroom practices; 3) technology is the hardest of the STEM disciplines to integrate; and 4) teachers are aware of the need to add more content knowledge into STEM integration. Case studies such as this often lead to a wealth of information and detailed perspectives but readers should careful not to assume that the results of such a study can be generalized too broadly.

Weber, E., S. Fox, S. B. Levings, and J. Bouwma-Gearhart. (2013). Teachers’ conceptualizations of integrated STEM. Academic Exchange Quarterly, 17(3): 1-9. ( Google Scholar Link )

Improvement in STEM education is often thought to lead to an improved workforce in the STEM fields. Often these improvements are based on the integration of the STEM disciplines, or even abandoning the teaching of specific STEM disciplines in favor of more integrated science courses. In this paper the authors present the results of a study that considers three interrelated questions regarding STEM education. These are, How do secondary school teachers in the STEM disciplines 1) understand the acronym and disciples of STEM; 2) envision a STEM curriculum and enact instruction in the classroom, and 3) recognize and respond to the integrated STEM movement and associated policies and mandates? The study consisted of semistructured interviews with 20 educators in 3 high schools. The students were predominantly “white” but socioeconomic status (SES) of the students varied widely. The results of the study show that teachers were aware of what the STEM acronym means, but that they envisioned STEM as a collection of “siloed” subjects, very much as in traditional education, rather than an integrated consideration of the STEM areas. Closely related to this finding was that few teachers created an environment for integrating the STEM disciplines in their classrooms. Finally, teachers reported that they were not under pressure from state or local education agencies to implement STEM education. Although the demographic composition of the schools might lead one to question the generalizability of the results, this paper presents some interesting perspectives that are worth considering.

Problem-based Learning (PBL) Approach to Integrated Curriculum

Ertmer, P. A. (2006). Jumping the PBL implementation hurdle: Supporting the efforts of K-12 teachers. Interdisciplinary Journal of Problem-Based Learning. 1(1): 40-54. ( DOI Link )

Problem-based learning (PBL) has a long history of use in medical and other professional education programs but has not been widely adopted by K-12 teachers. The goals of PBL include the development of a deep understanding of content while at the same time developing higher order thinking skills in students, and both goals are closely aligned with those of K-12 educators. In this paper the author examines some of the obstacles teachers face when implementing PBL strategies and provides suggestions for supporting teachers who are interested in using this learning approach in their classrooms. Factors that influence a teachers decision to use PBL are reviewed. These include the ability to create a collaborative culture in the classroom where students work with each other to accomplish their problem-solving objectives, and being able to adjust to a very different role as a teacher, one that requires the teacher to be a facilitator in the learning process. This is a different approach to pedagogy than what many are used to and may discourage teachers from using this approach. The ability to scaffold student learning is considered by the author to be of special importance in PBL and is considered in some detail. Problem-based learning has great potential in the context of integrated STEM and NGSS focused approaches to curriculum and instruction. This paper provides important insights on the implementation of PBL from the perspective of K-12 teachers.

Savery, J. R. (2006). Overview of problem-based learning: Definitions and distinctions.  Interdisciplinary Journal of Problem-Based Learning. 1(1): 9-20. ( DOI Link )

Problem-based learning (PBL) is both an instructional and a curricular approach to learning. It is learner-centered focused on empowering learners to “conduct research, integrate theory and practice, and apply knowledge and skills to develop a viable solution to a defined problem,” (p. 9). In this paper the author provides an overview of the historical origins of PBL in the health sciences followed by widespread adoption of the approach by many different disciplines and age groups. Characteristics of PBL that are essential to the success of the approach are reviewed and include the selection of an ill-defined problem that allows students to collaboratively explore possible solutions and a role of the teacher as a facilitator who guides the learning process and provides a debriefing with the students at the end of the process. Briefly, students work in collaborative groups to first identify what they need to know (learn) in order to solve the problem, engage in self-directed learning to generate the information and perspectives needed, apply this knowledge to the problem to attempt to solve it, and then reflect on what they learned and how effective their problem-solving strategies were. The author then compares and contrasts PBL with similar learning strategies such as project- and case-based learning and an inquiry-based approach to learning. PBL is highly relevant to both integrated STEM and the NGSS focused approaches to curriculum and instruction and this paper provides an excellent overview of the topic.

Science, Technology, and Society (STS) Approach to Integrated Curriculum

Mansour, N. (1999). Science-technology-society (STS): A new paradigm in science education. Bulletin of Science, Technology, and Society, 29(4): 287-297. ( DOI Link )

Science, Technology, and Society (STS) is a curriculum approach designed to make science and the related field of technology relevant to students by integrating science concepts and their technological applications to real-world issues. The author points out that the STS movement has been closely identified with the goal of developing knowledgeable citizens who understand the relationships that exist between science, technology, and society, but that putting this goal into practice has been difficult. This paper includes an overview of the historical context in which the STS approach evolved as well as a consideration of important barriers to its effective implementation. These barriers include teacher’s understandings of science and science teaching that are, at least partly, based on the way in which they have been trained. Although focused on STS, this paper provides interesting perspectives on the nature of science education, the attempts to reform science education during the latter half of the 20th century, and on teachers views of science and science teaching. The value of this paper in the context of STEM education is that STS represents an effort to integrate different disciplines to provide a more complete understanding of the STEM disciplines by highlighting the relationship between them and the social context in which they exist. These perspectives are highly relevant to both integrated STEM education and approaches found in the Next Generation Science Standards (NGSS).

Yager, R. E., and M. V. Lutz. (1995). STS to enhance total curriculum. School Science and Mathematics, 95(1): 28-35. ( DOI Link )

This paper provides important perspectives on integrated STEM education and the Next Generation Science Standards (NGSS) through its consideration of an approach to integrated science education called Science, Technology, and Society (STS). The author points out that the way science is usually taught in K-12 education is with a focus on content, information that is to be learned. This approach is limiting to a clear understanding of the nature of science and a more comprehensive view would consider science to be a process of exploration, explanation, and testing the explanations. Issue-based approaches to school science are exemplified by STS. This approach focuses the teaching and learning of science in the context of human society and human experiences, including the application of technology. Such an issue-based approach makes information (content) relevant by presenting it in the context of an issue or problem to be resolved by the student(s). Such an approach also involves multiple activities that develop relevant skills such as questioning, analyzing, debate, and decision making, and are more likely to elicit student interest than decontextualized, text and memorization focused activities. The ideas and perspectives presented here are very relevant to integrating the various STEM disciplines using issue-based or problem-based learning. They also reflect the objectives of the NGSS with its emphasis on practices, cross-cutting concepts, and disciplinary core ideas. Last, but certainly not least, the incorporation of an STS approach makes education relevant beyond the classroom, connecting student learning to issues in the real world.

IRSC Libraries Home

STEM Camp: STEM Research Topics

  • Starting Research
  • Evaluating Information
  • Interactive
  • DNA Fingerprinting
  • Ethics & Genetics
  • Humans & Wildlife
  • Malnutrition
  • Psychology of Plastic Surgery
  • Lying with Numbers
  • << Previous: Interactive
  • Next: DNA Fingerprinting >>
  • Last Updated: Apr 18, 2024 12:04 PM
  • URL: https://irsc.libguides.com/STEMCamp

example of research topic in stem strand

  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

105 Original Capstone Project Ideas for STEM Students

capstone project ideas

What is a Capstone Project? A capstone project refers to a final or culminating project high school or college seniors need to earn their degrees. It’s usually a project that takes several months to complete and should demonstrate students’ command over particular subjects within an area of study. It may be similar to master’s thesis writing. There are endless capstone project ideas to choose from, but sometimes students struggle to come up with research topic ideas, so we’ve explored several fresh capstone project topics for consideration.

Business Capstone Project Ideas

Nursing capstone project ideas, ideas for high school, computer science capstone project ideas, cybersecurity capstone project ideas, it project ideas, capstone project ideas for nursing, senior capstone project ideas, high school senior project ideas, capstone project ideas for information technology, more information technology ideas, data science capstone project ideas, creative project ideas, interesting science topics, mba capstone project ideas.

  • How important are small businesses and startups to the United States’ economy?
  • Is diversity in the workplace an important quality of how successful a business is?
  • Is a free market truly achievable or this is just an outdated utopian idea from the past?
  • How difficult is it for entrepreneurs to gain funding support to open up a business?
  • How are advances in crisis management changing the ways that businesses find success?
  • Is it important to have a social media presence when starting a new small business?
  • What business or industries do the best during times of extended international conflict?
  • What are the healthiest diets and how do nurses help promote them for in-patients?
  • What are some of the psychological conditions affecting healing in patients with cancer?
  • What are the most effective nursing techniques for dealing with cancer patients?
  • Should nurses take a more proactive role in investigating instances of patient abuse?
  • Should nurses be required to learn how to use technological tools for better care?
  • How do nurses manage anxiety and fear in their patients who are dealing with illness?
  • Should nurses take a greater role in providing recommendations for patients in care?
  • Should physical education courses be a mandatory subject throughout high school?
  • How effective are standardized tests in determining students’ skill level and knowledge?
  • What is the evidence suggesting that video game violence is connected to real violence?
  • Are mobile phones tools that should be allowed in classes to enhance the school experience?
  • What is the most effective way of dealing with bullies at school? What is the evidence?
  • Should students earning good grades receive monetary incentives or other rewards?
  • Will the legalization of sports betting help raise more money for public schools?
  • Are SCRUM methodologies still an effective way of dealing the product development?
  • Is software engineering still a sought-after technical skill or is the subject outdated?
  • In what ways are search algorithms being advanced to help the use of data mining?
  • What are the most versatile programming languages in the field of computer science?
  • How has computer science helped further the study of biomedicine and biology?
  • What kind of impact has computer science and engineering had on human learning?
  • Will computer science play a role in developing food science to end hunger?
  • How has encryption and decryption technology changed in the last two decades?
  • Is bank security at risk from international hackers or has security up-to-date?
  • How is the internet affecting the way our private information is communicated?
  • Should governments have the right to monitor citizens’ electronic activities?
  • Does a federal judge need to issue warrants before people’s tech activities are checked?
  • Does open source software put users at risk of having their information stolen?
  • How safe are mobile phones in keeping our information safe from hackers?
  • How important is it for companies to test their software updates for quality assurance?
  • What are some of the more serious challenges government agencies experience daily?
  • How important is the user of CMS technology in e-commerce for small businesses?
  • Are our IT skills still relevant in a world where AI is increasingly becoming more cost-effective?
  • In what ways is information technology important for improving standardized testing?
  • What are the most important economic models in current use in developing IT?
  • What benefits do human-computer interfaces systems have for today’s small businesses?
  • What are the best critical care methods currently in practice in medical emergencies?
  • What effects has the growing shortage of qualified nurses had on the United States?
  • Are the growing cost of nursing school and training leading to a shortage of professionals?
  • How important is point-of-care testing and why are health care facilities ending programs?
  • Are nurses appropriately trained to deal with patients that suffer from breathing issues?
  • What are the skills needed for nurses to work in high-stress stations such as the ER or trauma?
  • How important is patient communication when it comes to proper diagnoses of illnesses?
  • Which is the United States’ favorite sports pastime and how has this changed over time?
  • Do you believe that students who participate in hazing should be punished for negligence?
  • How important is it for schools to prevent hazing rituals conducted by their students?
  • What evidence is there in support of alien life? Do governments know of alien life?
  • Is damage to religious property considered a hate crime despite the actual intention?
  • How influential is the United States’ political system towards its international allies?
  • In what ways did the Cold War affect the U.S.’s international relationships with allies?
  • How effective will revenue generation from legalized gambling be for the economy?
  • Is it possible for gamblers to use tech to gain advantages over hotel sportsbooks?
  • Is it important for major coffee companies to be socially and environmentally responsible?
  • Why is it so important to protect victims’ rights in instances of domestic violence?
  • Do you believe it is ethical for people to clone their beloved pets so they live on?
  • Should communities be responsible for ensuring students are adequately fed at school?
  • What kind of animal makes for a better childhood pet? Dogs, cats, or something else?
  • What are some of the benefits and negatives of living in a tech-driven modern society?
  • How does your experience in dealing with people affect the way you deal with tech?
  • What is the most important information technology advancement to affect the world?
  • Do you think the internet needs better censorship of certain negative material?
  • Are children better off today because of the access to IT in comparison to prior gens?
  • Do you believe that China will be the world’s technological leader in the next decade?
  • How has technology changed the countries engage in modern warfare and conflict?
  • How important is it to further develop mobile technologies for social media use?
  • Is social media becoming obsolete and in what ways are consumers using the tech?
  • Does web-based training improve one’s ability to learn new skills at a fraction of the cost?
  • Should internet providers take better care of keeping consumers’ privacy secure?
  • How important is it to monitor how social media uses consumers’ browsing histories?
  • In what ways does IT play a role in how engineers develop transportation routes?
  • How has IT changed the way companies conduct their business around the world?
  • How are gun laws being affected by the kind of information provided by data science?
  • Gathering information for disease control has changed how in the last 20 years?
  • In what ways is the information gathered from big data a company’s biggest asset?
  • How did Trump benefit from the use of data science leading up to the election?
  • How effective are sports franchises in making decisions based on big data science?
  • Is it possible to avoid over-saturation of information in the age of data science?
  • How is big data working to make artificial intelligence in business a real possibility?
  • How are infographics affecting the way people consume information in today’s world?
  • Is it possible for another major election to be tampered with by foreign governments?
  • Are people becoming less educated as a result of the amount of information consumed?
  • Will video games play a role in removing soldiers from harmful front-line combat zones?
  • Do you think public colleges and universities should move towards faith-based teaching?
  • Is it still sufficient to have a college-level education to succeed in today’s economy?
  • Should the United States invest in and provide longer paid leave for new parents?
  • Does economics or science play a bigger role in Europe’s decision to ban modified crops?
  • What are the most optimal diets safe for human consumption in the long term?
  • Is it possible to incorporate physical exercise as a way to modify DNA coding in humans?
  • Do you believe that personal medication that is designed specifically for genomes is possible?
  • Is it scientifically ethical to alter the DNA of a fetus for reasons related to genetic preference?
  • Is science an effective discipline in the way people are being tried for violent crimes?
  • How effective is stem cell science and its use in treatments for diseases such as cancer?
  • How important is business diplomacy in successful negotiations for small companies?
  • What role does a positive and healthy workplace have in retaining high-quality staff?
  • What sort of challenges does small business face that large corporations don’t experience?
  • Should workplace diversity rules and standards be regulated by state or federal law?
  • How important is it to be competitive in advertising to open a small business?
  • Are large corporations making the right kinds of innovative investments to stay relevant?
  • How important is the word of mouth marketing in today’s age of digital communications?

The above capstone project ideas are available to use or modify at no cost. For even more capstone project topics or to get capstone project examples, contact a professional writing service for affordable assistance. A reliable service can help you understand what is a capstone project even more so by providing clear instructions on the capstone project meaning as well as the most common requirements you can expect from today’s academic institutions.

Leave a Reply Cancel reply

Rethinking Graduate Advising

Genia M. Bettencourt and Rachel E. Friedensen argue for systemic change in STEM doctoral programs.

By  Genia M. Bettencourt and Rachel E. Friedensen

You have / 5 articles left. Sign up for a free account or log in.

A stock photo of a Black woman professor speaking to an engaged student holding a laptop. The professor is smiling and the two appear to be in a good conversation in front of a wall of windows.

ferrantraite/E+/Getty Images

As fall rapidly approaches, incoming doctoral students are preparing to begin new graduate programs by embarking on coursework, engaging in research and connecting with peers and faculty. Selecting and establishing a relationship with an adviser is an essential part of this early transition, driven by factors such as compatibility, research interests and funding . Many students have heard horror stories from other students and social media about doctoral advisers who are variously noncommunicative or demanding, either entirely checked out or guilty of overworking students to support their grant and publication records. The ubiquity of these narratives can make it seem as though these horror stories are an inevitable part of graduate studies, a gauntlet that students must resign themselves to in order to succeed.

While issues related to graduate advising are not concentrated in science, technology, engineering and mathematics fields, the well-developed body of literature on issues of attrition , bias and structural inequities makes these environments particularly ripe for exploration. A prior research study on more than 3,800 underrepresented minority STEM doctoral students found that 36 percent of students withdrew from their graduate programs within seven years of starting, while 44 percent earned doctorates in that time (another 20 percent remained enrolled in their doctoral programs at the seven-year mark). Relationships with advisers can help STEM graduate students manage the stress and multiple demands of their education , but when those relationships are fraught with tension, they can also exacerbate other stressors. Yet, despite their importance, academia provides very few resources or support structures related to developing good advisers.

In 2019, we began exploring how power shapes doctoral education, specifically advising and mentoring. As early-career scholars, our doctoral journeys had largely been exceptions to those we often encountered—supportive advising experiences with mentors who encouraged us to prioritize our well-being. However, even within those positive relationships, we still experienced the power imbalances rife in graduate education and struggled to avoid enacting them as we both became faculty. Our research has sought to push faculty, programs and departments to take ownership for promoting student success rather than placing the onus solely on students.

Most Popular

  • New College of Florida dumping books—and losing professors
  • Wisconsin regents vote to lay off dozens of tenured faculty
  • Library faculty eliminated at Western Illinois University

To date, we have examined how power manifests in STEM advising relationships and how power in STEM advising impacts student development . Our participants are all students who switched—or were forced to switch—advisers, a unique context that often helped to create clear illustrations of power and comparative examples to illuminate our understandings. Here, we build on prior advice regarding things like chairing dissertations and establishing mentoring models to offer suggestions for STEM faculty, programs and departments to better facilitate graduate advising. Our advice is specifically targeted at systemic change that can alter strict hierarchies and power inequities to holistically support students as they develop into independent scholars.

Establish transparency and shared expectations where possible. Doctoral education is often shaped by entrenched rules of success that doctoral students are expected to follow . Many of our research participants regularly received messages that they should be working all the time, prioritize their adviser’s work above all else and accomplish tasks with little supervision or support. Without broader, explicit policies about things like working conditions or the role of a research assistant, our participants were left on their own to gauge what the normal expectations were; often, they internalized problematic expectations for themselves. For example, several of our participants told us they felt like failures when they couldn’t work all the time or when they needed more explicit instruction to accomplish tasks.

Resultantly, our first suggestion is for departments to develop publicly available expectations around advising processes (e.g., frequency of meetings) and research (e.g., field norms about authorship, expectations for hours). Such content could easily be incorporated into existing student handbooks or program websites to provide some basic shared understandings between students and advisers. Not only would this information illuminate hidden expectations, but it would also provide departments with a chance to revisit areas of confusion and to encourage engagement across faculty and students. Moreover, these guidelines would provide students with a mechanism to gauge their situation and to seek redress if needed.

Develop and integrate training on how to advise students as part of faculty development. Most faculty receive little to no training on how to advise graduate students, instead relying on their own doctoral experiences or trial and error to develop strategies. While training on processes and logistics would be undoubtedly beneficial, we also encourage broader training to help doctoral advisers understand their disciplines, graduate education and the power structures therein. Intentionally encouraging faculty to reflect on how power shapes doctoral education and one’s own advising style can help advisers rethink existing systems rather than reproducing the same environment they experienced. Rather than having these trainings be a single session, we encourage institutions to think about how they might leverage vehicles such as communities of practice to create ongoing learning .

Provide feedback—and accountability—for advisers on advising. Teaching evaluations and even peer audits of one’s teaching are standard parts of faculty feedback and tenure processes; similar feedback on faculty performance related to student advising is not. Our participants shared how the lack of infrastructure regarding feedback for advisers often meant that the students themselves had to create processes through which to voice their concerns. Several students noted that by voicing their feedback, they were often seen as creating a problem and placing themselves in tenuous situations. Alternatively, participants also noted the lack of mechanisms to share positive feedback that could reward faculty for their advising work.

Here, we argue that feedback and accountability are crucial to fostering successful advising relationships. Furthermore, this feedback should be incorporated as part of annual reviews, tenure and promotion with real mechanisms for accountability when advisers exhibit problematic behavior. Many of our participants highlight the void in accountability in their current system, sharing that bad advisers often were merely distanced from working with students—a dynamic that often concentrates work on others, particularly advisers with marginalized identities .

Rethink traditional advising dyads. While all doctoral advising contains power inequities, the specific nature of STEM disciplines allows for power to be uniquely concentrated through the lab component. In general, each faculty member has a lab that they sustain through grants; these labs fund students and ultimately provide equipment for students to complete their dissertation research. As a result, STEM faculty wield an enormous amount of power over their advisees’ experiences. Our participants frequently described how quickly an issue in one facet of their doctoral experience, such as an inability to get results in one experiment, impacted all aspects of their relationship with their adviser and their doctoral education. In contrast, other disciplines may have greater separation across the different elements of doctoral study. Students in humanities and social sciences, for example, may utilize a greater range of funding sources (e.g., teaching assistantships, student life assistantships) and complete dissertations on topics distinct from their adviser’s research.

Rethinking traditional advising dyads offers the opportunity to distribute power beyond one individual and to provide students with multiple points of support. For example, programs could consider having students select a research adviser who would help them develop methodological expertise and whom they might work with in labs. They may complement that choice with a program adviser who can then oversee their coursework, program milestones and dissertation. These different configurations would decouple funding from academic progress and provide students with multiple opportunities to find mentors who could support them through shared values or cultural awareness .

Editors’ Picks

  • MIT’s Incoming Freshman Class Is Less Diverse, Data Shows
  • Borrowers Reeling After Appeals Court Declines to Clarify Order
  • Library Faculty Eliminated Amid ‘Fiscal Insanity’ at Western Illinois

Our present line of inquiry explores the tolls that power imbalances in advising relationships have on STEM doctoral students. Participants in our research have described numerous detrimental impacts resulting from negative advising relationships, including delayed academic timelines, financial uncertainty, stress, somatic symptoms (e.g., hair falling out, sleeplessness, physical pain), diverted career pathways and diminished relationships with others. Our emerging findings align with other research showing that many graduate students are experiencing mental health issues and impacts on their well-being. At the same time, slowing enrollment growth will soon mean that fewer graduate students may be available to replace those students who depart or are pushed out by their programs. It is past time to rethink doctoral advising in STEM specifically, but across academia as well. Institutions may not be able to fully implement our suggestions before onboarding new faculty and students this fall, but moving toward these aims can ensure that incoming doctoral students have different advising experiences to better support their journeys.

Genia M. Bettencourt is an assistant professor of higher education and student affairs at the University of Memphis. Her research focuses on college access, equity and student success, particularly as shaped by systems of power. Rachel E. Friedensen is an associate professor of higher education and student affairs at St. Cloud State University. Her research focuses on STEM field experiences, particularly for disabled students, LGBTQIA+ students and graduate students.

Students walk on Ohio State University's campus in Columbus, Ohio.

Student Wellness Tip: Investing in Graduate Student Mental Health

Campus leaders at Ohio State University are using state funding to bolster resources and services for graduate

Share This Article

More from views.

An icon that says "AI" can be seen from above in the middle of an expanse of otherwise intact rainforest.

In Teaching With Gen AI, Consider Sustainability

Faculty lack information about generative AI’s environmental impacts, and universities should prioritize sustainable

An image of a rating, or rubric, with the categories "exceptional," "exceeds requirements," "meets requirements," etc. "Exceptional" is checked.

A Case Against Rubrics

Rubrics are not the path to intellectual liberation, Jeffrey Herlihy-Mera writes.

Two flagpoles, one with an Israeli flag and one with a Palestinian flag, stand next to one another.

An Awkward False Neutrality

Abiya Ahmed and Alexander Key argue that false binaries and assumptions contribute to distortions of campus discourse

  • Become a Member
  • Sign up for Newsletters
  • Learning & Assessment
  • Diversity & Equity
  • Career Development
  • Labor & Unionization
  • Shared Governance
  • Academic Freedom
  • Books & Publishing
  • Financial Aid
  • Residential Life
  • Free Speech
  • Physical & Mental Health
  • Race & Ethnicity
  • Sex & Gender
  • Socioeconomics
  • Traditional-Age
  • Adult & Post-Traditional
  • Teaching & Learning
  • Artificial Intelligence
  • Digital Publishing
  • Data Analytics
  • Administrative Tech
  • Alternative Credentials
  • Financial Health
  • Cost-Cutting
  • Revenue Strategies
  • Academic Programs
  • Physical Campuses
  • Mergers & Collaboration
  • Fundraising
  • Research Universities
  • Regional Public Universities
  • Community Colleges
  • Private Nonprofit Colleges
  • Minority-Serving Institutions
  • Religious Colleges
  • Women's Colleges
  • Specialized Colleges
  • For-Profit Colleges
  • Executive Leadership
  • Trustees & Regents
  • State Oversight
  • Accreditation
  • Politics & Elections
  • Supreme Court
  • Student Aid Policy
  • Science & Research Policy
  • State Policy
  • Colleges & Localities
  • Employee Satisfaction
  • Remote & Flexible Work
  • Staff Issues
  • Study Abroad
  • International Students in U.S.
  • U.S. Colleges in the World
  • Intellectual Affairs
  • Seeking a Faculty Job
  • Advancing in the Faculty
  • Seeking an Administrative Job
  • Advancing as an Administrator
  • Beyond Transfer
  • Call to Action
  • Confessions of a Community College Dean
  • Higher Ed Gamma
  • Higher Ed Policy
  • Just Explain It to Me!
  • Just Visiting
  • Law, Policy—and IT?
  • Leadership & StratEDgy
  • Leadership in Higher Education
  • Learning Innovation
  • Online: Trending Now
  • Resident Scholar
  • University of Venus
  • Student Voice
  • Academic Life
  • Health & Wellness
  • The College Experience
  • Life After College
  • Academic Minute
  • Weekly Wisdom
  • Reports & Data
  • Quick Takes
  • Advertising & Marketing
  • Consulting Services
  • Data & Insights
  • Hiring & Jobs
  • Event Partnerships

4 /5 Articles remaining this month.

Sign up for a free account or log in.

  • Sign Up, It’s FREE

IMAGES

  1. research topic under stem strand

    example of research topic in stem strand

  2. Research Titles for STEM Strand Student

    example of research topic in stem strand

  3. 55 Brilliant Research Topics For STEM Students

    example of research topic in stem strand

  4. SOLUTION: Persuasive Essay on taking the STEM Strand

    example of research topic in stem strand

  5. Possible Research Topics Under STEM Strand

    example of research topic in stem strand

  6. Choosing STEM strand

    example of research topic in stem strand

COMMENTS

  1. 55 Brilliant Research Topics For STEM Students

    There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students. A study of protease inhibitor and how it operates. A study of how men's exercise impacts DNA traits passed to children. A study of the future of commercial space flight.

  2. 189+ Innovative Qualitative Research Topics for STEM Students

    Theory: Building or refining theories. Innovation: Finding research gaps. Collaboration: Enhancing findings through teamwork. Impact: Influencing policy and practice. These points highlight the key challenges and opportunities in STEM qualitative research. Must Read: 79+ Best Research Topics in Psychology for College Students.

  3. 200+ Experimental Quantitative Research Topics For Stem Students

    Here are 10 qualitative research topics for STEM students: Exploring the experiences of female STEM students in overcoming gender bias in academia. Understanding the perceptions of teachers regarding the integration of technology in STEM education. Investigating the motivations and challenges of STEM educators in underprivileged schools.

  4. 11 STEM Research Topics for High School Students

    Topic 1: Artificial Intelligence (AI) AI stands at the forefront of technological innovation. Students can engage in research on AI applications in various sectors and the ethical implications of AI. This field is suitable for students with interests in computer science, AI, data analytics, and related areas. Topic 2: Applied Math and AI.

  5. STEM Research Topics: 200+ Great Choices

    July 17, 2024. 10 minutes. Table of Contents. STEM stands for Science, Technology, Engineering, and Math. It is essential for learning and discovery, helping us understand the world, solve problems, and think critically. STEM research goes beyond classroom learning, allowing us to explore specific areas in greater detail.

  6. Research Titles for STEM Strand Student

    Here are some Research Titles and Topics for S.T.E.M. (STEM) Strand Students. Please take note that some of these titles are subject for revision if your tea...

  7. PDF Qualitative Research Topics for STEM Students

    Here's a list of over 200 qualitative research topics for STEM students: The Ethical Implications of CRISPR Technology in Genetic Engineering. Exploring the Societal Impact of Artificial Intelligence in Healthcare. User Experience and Human-Centered Design in Software Development.

  8. Research and trends in STEM education: a systematic review of journal

    With the rapid increase in the number of scholarly publications on STEM education in recent years, reviews of the status and trends in STEM education research internationally support the development of the field. For this review, we conducted a systematic analysis of 798 articles in STEM education published between 2000 and the end of 2018 in 36 journals to get an overview about developments ...

  9. Research by Topics

    Educational experiences in formal settings are shaped by curricular decisions. The Center's research in curriculum studies explores the questions of why STEM should be addressed as part of schooling, what ideas should be addressed, and how might they best be organized to engage young people in the core ideas and practices of the disciplines ...

  10. Q: Can you give a research title for the STEM strand?

    3 Basic tips on writing a good research paper title. How to write an effective title and abstract and choose appropriate keywords. One tip we can give right away is that you should first have a working (rough) title when you start the paper and then refine/finalize it once you've completed the paper (or the first draft). Hope that helps.

  11. Trending Topic Research: STEM

    Trending Topic Research File. Science, Technology Engineering, and Mathematics (STEM) is one of the most talked about topics in education, emphasizing research, problem solving, critical thinking, and creativity. The following compendium of open-access articles are inclusive of all substantive AERA journal content regarding STEM published since ...

  12. Trends and Hot Topics of STEM and STEM Education: a Co-word ...

    This study explored research trends in science, technology, engineering, and mathematics (STEM) education. Descriptive analysis and co-word analysis were used to examine articles published in Social Science Citation Index journals from 2011 to 2020. From a search of the Web of Science database, a total of 761 articles were selected as target samples for analysis. A growing number of STEM ...

  13. 189+ Good Quantitative Research Topics For STEM Students

    Following are the best Quantitative Research Topics For STEM Students in mathematics and statistics. Prime Number Distribution: Investigate the distribution of prime numbers. Graph Theory Algorithms: Develop algorithms for solving graph theory problems. Statistical Analysis of Financial Markets: Analyze financial data and market trends.

  14. 55 Brilliant Research Topics For STEM Students (2024)

    There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students. A study of protease inhibitor and how it operates. A study of how men's exercise impacts DNA traits passed to children. A study of the future of commercial space flight.

  15. 260+ Experimental Research Topics for STEM Students

    Environmental Science Experimental Research Topics for STEM Students. Studying the Impact of Deforestation on Local Climate Patterns. Investigating the Role of Ocean Acidification on Coral Reefs. Analyzing the Efficiency of Different Waste Management Strategies. Exploring the Effect of Air Pollution on Human Health.

  16. STEM as the most preferred strand of Senior High School Student's

    The Study is only about the topic about why students chose this strand over the many offers of the Philippine's K-12 program and only focuses on the STEM students. LIMITATIONS The study does not cover ideas about the other strands like ABM, HUMMS, GAS etc. and does not include anything not related or are not close to our main topic.

  17. (PDF) Challenges in STEM Learning: A Case of Filipino ...

    This qualitative study employed a case research design which sought to investigate nature of the challenges in STEM learning among senior high school students in the Philippines. Semi-structured ...

  18. Top 200 Quantitative Research Title for Stem Students

    To help you get started on your research journey, we've compiled a list of 200 quantitative research title for stem students. These titles span various STEM disciplines, from biology to computer science. Whether you're an undergraduate or graduate student, these titles can serve as a springboard for your research ideas.

  19. Useful References

    Here you will find an annotated bibliography of a small sample of useful papers on STEM education and the related topics of problem-based learning (PBL) and Science-Technology-Society (STS) approaches to curriculum and instruction. These papers are only a small sampling of a vast literature, selected to present important perspectives on the ...

  20. 210 Best Quantitative Research Topics For STEM Students

    Here are the key characteristics of quantitative research topics for STEM Students: Measurable Data: Quantitative topics examine things that can be measured and quantified with numbers, allowing statistical analysis of the data. Statistical Analysis: Quantitative topics use mathematical statistics to analyze numerical data and spot patterns ...

  21. Pursuing STEM Careers: Perspectives of Senior High School Students

    Abstract and Figures. This qualitative descriptive research explored the perspectives of STEM (science, technology, engineering, and mathematics) senior high school students in a public secondary ...

  22. STEM Camp: STEM Research Topics

    Resources for participants at IRSC's 2013 STEM camp. Ideas for a research paper using a science, technology, engineering, or math topic.

  23. 105 Original Capstone Project Ideas for STEM Students

    A capstone project refers to a final or culminating project high school or college seniors need to earn their degrees. It's usually a project that takes several months to complete and should demonstrate students' command over particular subjects within an area of study. It may be similar to master's thesis writing.

  24. How STEM programs can rethink graduate advising (opinion)

    Genia M. Bettencourt and Rachel E. Friedensen argue for systemic change in STEM doctoral programs. As fall rapidly approaches, incoming doctoral students are preparing to begin new graduate programs by embarking on coursework, engaging in research and connecting with peers and faculty. Selecting and establishing a relationship with an adviser is an essential part of this early transition ...

  25. Potential new approach to enhancing stem-cell transplants

    The study originated in the laboratory of the late Paul S. Frenette, M.D., a pioneer in hematopoietic stem cell research and founding director of the Ruth L. and David S. Gottesman Institute for ...