Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Control Group Definition and Examples

Control Group in an Experiment

The control group is the set of subjects that does not receive the treatment in a study. In other words, it is the group where the independent variable is held constant. This is important because the control group is a baseline for measuring the effects of a treatment in an experiment or study. A controlled experiment is one which includes one or more control groups.

  • The experimental group experiences a treatment or change in the independent variable. In contrast, the independent variable is constant in the control group.
  • A control group is important because it allows meaningful comparison. The researcher compares the experimental group to it to assess whether or not there is a relationship between the independent and dependent variable and the magnitude of the effect.
  • There are different types of control groups. A controlled experiment has one more control group.

Control Group vs Experimental Group

The only difference between the control group and experimental group is that subjects in the experimental group receive the treatment being studied, while participants in the control group do not. Otherwise, all other variables between the two groups are the same.

Control Group vs Control Variable

A control group is not the same thing as a control variable. A control variable or controlled variable is any factor that is held constant during an experiment. Examples of common control variables include temperature, duration, and sample size. The control variables are the same for both the control and experimental groups.

Types of Control Groups

There are different types of control groups:

  • Placebo group : A placebo group receives a placebo , which is a fake treatment that resembles the treatment in every respect except for the active ingredient. Both the placebo and treatment may contain inactive ingredients that produce side effects. Without a placebo group, these effects might be attributed to the treatment.
  • Positive control group : A positive control group has conditions that guarantee a positive test result. The positive control group demonstrates an experiment is capable of producing a positive result. Positive controls help researchers identify problems with an experiment.
  • Negative control group : A negative control group consists of subjects that are not exposed to a treatment. For example, in an experiment looking at the effect of fertilizer on plant growth, the negative control group receives no fertilizer.
  • Natural control group : A natural control group usually is a set of subjects who naturally differ from the experimental group. For example, if you compare the effects of a treatment on women who have had children, the natural control group includes women who have not had children. Non-smokers are a natural control group in comparison to smokers.
  • Randomized control group : The subjects in a randomized control group are randomly selected from a larger pool of subjects. Often, subjects are randomly assigned to either the control or experimental group. Randomization reduces bias in an experiment. There are different methods of randomly assigning test subjects.

Control Group Examples

Here are some examples of different control groups in action:

Negative Control and Placebo Group

For example, consider a study of a new cancer drug. The experimental group receives the drug. The placebo group receives a placebo, which contains the same ingredients as the drug formulation, minus the active ingredient. The negative control group receives no treatment. The reason for including the negative group is because the placebo group experiences some level of placebo effect, which is a response to experiencing some form of false treatment.

Positive and Negative Controls

For example, consider an experiment looking at whether a new drug kills bacteria. The experimental group exposes bacterial cultures to the drug. If the group survives, the drug is ineffective. If the group dies, the drug is effective.

The positive control group has a culture of bacteria that carry a drug resistance gene. If the bacteria survive drug exposure (as intended), then it shows the growth medium and conditions allow bacterial growth. If the positive control group dies, it indicates a problem with the experimental conditions. A negative control group of bacteria lacking drug resistance should die. If the negative control group survives, something is wrong with the experimental conditions.

  • Bailey, R. A. (2008).  Design of Comparative Experiments . Cambridge University Press. ISBN 978-0-521-68357-9.
  • Chaplin, S. (2006). “The placebo response: an important part of treatment”.  Prescriber . 17 (5): 16–22. doi: 10.1002/psb.344
  • Hinkelmann, Klaus; Kempthorne, Oscar (2008).  Design and Analysis of Experiments, Volume I: Introduction to Experimental Design  (2nd ed.). Wiley. ISBN 978-0-471-72756-9.
  • Pithon, M.M. (2013). “Importance of the control group in scientific research.” Dental Press J Orthod . 18 (6):13-14. doi: 10.1590/s2176-94512013000600003
  • Stigler, Stephen M. (1992). “A Historical View of Statistical Concepts in Psychology and Educational Research”. American Journal of Education . 101 (1): 60–70. doi: 10.1086/444032

Related Posts

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Control Groups and Treatment Groups | Uses & Examples

Control Groups & Treatment Groups | Uses & Examples

Published on 6 May 2022 by Lauren Thomas . Revised on 13 April 2023.

In a scientific study, a control group is used to establish a cause-and-effect relationship by isolating the effect of an independent variable .

Researchers change the independent variable in the treatment group and keep it constant in the control group. Then they compare the results of these groups.

Control groups in research

Using a control group means that any change in the dependent variable can be attributed to the independent variable.

Table of contents

Control groups in experiments, control groups in non-experimental research, importance of control groups, frequently asked questions about control groups.

Control groups are essential to experimental design . When researchers are interested in the impact of a new treatment, they randomly divide their study participants into at least two groups:

  • The treatment group (also called the experimental group ) receives the treatment whose effect the researcher is interested in.
  • The control group receives either no treatment, a standard treatment whose effect is already known, or a placebo (a fake treatment).

The treatment is any independent variable manipulated by the experimenters, and its exact form depends on the type of research being performed. In a medical trial, it might be a new drug or therapy. In public policy studies, it could be a new social policy that some receive and not others.

In a well-designed experiment, all variables apart from the treatment should be kept constant between the two groups. This means researchers can correctly measure the entire effect of the treatment without interference from confounding variables .

  • You pay the students in the treatment group for achieving high grades.
  • Students in the control group do not receive any money.

Studies can also include more than one treatment or control group. Researchers might want to examine the impact of multiple treatments at once, or compare a new treatment to several alternatives currently available.

  • The treatment group gets the new pill.
  • Control group 1 gets an identical-looking sugar pill (a placebo).
  • Control group 2 gets a pill already approved to treat high blood pressure.

Since the only variable that differs between the three groups is the type of pill, any differences in average blood pressure between the three groups can be credited to the type of pill they received.

  • The difference between the treatment group and control group 1 demonstrates the effectiveness of the pill as compared to no treatment.
  • The difference between the treatment group and control group 2 shows whether the new pill improves on treatments already available on the market.

Prevent plagiarism, run a free check.

Although control groups are more common in experimental research, they can be used in other types of research too. Researchers generally rely on non-experimental control groups in two cases: quasi-experimental or matching design.

Control groups in quasi-experimental design

While true experiments rely on random assignment to the treatment or control groups, quasi-experimental design uses some criterion other than randomisation to assign people.

Often, these assignments are not controlled by researchers, but are pre-existing groups that have received different treatments. For example, researchers could study the effects of a new teaching method that was applied in some classes in a school but not others, or study the impact of a new policy that is implemented in one region but not in the neighbouring region.

In these cases, the classes that did not use the new teaching method, or the region that did not implement the new policy, is the control group.

Control groups in matching design

In correlational research , matching represents a potential alternate option when you cannot use either true or quasi-experimental designs.

In matching designs, the researcher matches individuals who received the ‘treatment’, or independent variable under study, to others who did not – the control group.

Each member of the treatment group thus has a counterpart in the control group identical in every way possible outside of the treatment. This ensures that the treatment is the only source of potential differences in outcomes between the two groups.

Control groups help ensure the internal validity of your research. You might see a difference over time in your dependent variable in your treatment group. However, without a control group, it is difficult to know whether the change has arisen from the treatment. It is possible that the change is due to some other variables.

If you use a control group that is identical in every other way to the treatment group, you know that the treatment – the only difference between the two groups – must be what has caused the change.

For example, people often recover from illnesses or injuries over time regardless of whether they’ve received effective treatment or not. Thus, without a control group, it’s difficult to determine whether improvements in medical conditions come from a treatment or just the natural progression of time.

Risks from invalid control groups

If your control group differs from the treatment group in ways that you haven’t accounted for, your results may reflect the interference of confounding variables instead of your independent variable.

Minimising this risk

A few methods can aid you in minimising the risk from invalid control groups.

  • Ensure that all potential confounding variables are accounted for , preferably through an experimental design if possible, since it is difficult to control for all the possible confounders outside of an experimental environment.
  • Use double-blinding . This will prevent the members of each group from modifying their behavior based on whether they were placed in the treatment or control group, which could then lead to biased outcomes.
  • Randomly assign your subjects into control and treatment groups. This method will allow you to not only minimise the differences between the two groups on confounding variables that you can directly observe, but also those you cannot.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

A true experiment (aka a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment
  • Random assignment of participants to ensure the groups are equivalent

Depending on your study topic, there are various other methods of controlling variables .

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Thomas, L. (2023, April 13). Control Groups & Treatment Groups | Uses & Examples. Scribbr. Retrieved 19 August 2024, from https://www.scribbr.co.uk/research-methods/control-groups/

Is this article helpful?

Lauren Thomas

Lauren Thomas

Other students also liked, controlled experiments | methods & examples of control, a quick guide to experimental design | 5 steps & examples, correlation vs causation | differences, designs & examples.

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Control Group in an Experiment

By Jim Frost 3 Comments

A control group in an experiment does not receive the treatment. Instead, it serves as a comparison group for the treatments. Researchers compare the results of a treatment group to the control group to determine the effect size, also known as the treatment effect.

Scientist performing an experiment that has a control group.

Imagine that a treatment group receives a vaccine and it has an infection rate of 10%. By itself, you don’t know if that’s an improvement. However, if you also have an unvaccinated control group with an infection rate of 20%, you know the vaccine improved the outcome by 10 percentage points.

By serving as a basis for comparison, the control group reveals the treatment’s effect.

Related post : Effect Sizes in Statistics

Using Control Groups in Experiments

Most experiments include a control group and at least one treatment group. In an ideal experiment, the subjects in all groups start with the same overall characteristics except that those in the treatment groups receive a treatment. When the groups are otherwise equivalent before treatment begins, you can attribute differences after the experiment to the treatments.

Randomized controlled trials (RCTs) assign subjects to the treatment and control groups randomly. This process helps ensure the groups are comparable when treatment begins. Consequently, treatment effects are the most likely cause for differences between groups at the end of the study. Statisticians consider RCTs to be the gold standard. To learn more about this process, read my post, Random Assignment in Experiments .

Observational studies either can’t use randomized groups or don’t use them because they’re too costly or problematic. In these studies, the characteristics of the control group might be different from the treatment groups at the start of the study, making it difficult to estimate the treatment effect accurately at the end. Case-Control studies are a specific type of observational study that uses a control group.

For these types of studies, analytical methods and design choices, such as regression analysis and matching, can help statistically mitigate confounding variables. Matching involves selecting participants with similar characteristics. For each participant in the treatment group, the researchers find a subject with comparable traits to include in the control group. To learn more about this type of study and matching, read my post, Observational Studies Explained .

Control groups are key way to increase the internal validity of an experiment. To learn more, read my post about internal and external validity .

Randomized versus non-randomized control groups are just several of the different types you can have. We’ll look at more kinds later!

Related posts : When to Use Regression Analysis

Example of a Control Group

Suppose we want to determine whether regular vitamin consumption affects the risk of dying. Our experiment has the following two experimental groups:

  • Control group : Does not consume vitamin supplements
  • Treatment group : Regularly consumes vitamin supplements.

In this experiment, we randomly assign subjects to the two groups. Because we use random assignment, the two groups start with similar characteristics, including healthy habits, physical attributes, medical conditions, and other factors affecting the outcome. The intentional introduction of vitamin supplements in the treatment group is the only systematic difference between the groups.

After the experiment is complete, we compare the death risk between the treatment and control groups. Because the groups started roughly equal, we can reasonably attribute differences in death risk at the end of the study to vitamin consumption. By having the control group as the basis of comparison, the effect of vitamin consumption becomes clear!

Types of Control Groups

Researchers can use different types of control groups in their experiments. Earlier, you learned about the random versus non-random kinds, but there are other variations. You can use various types depending on your research goals, constraints, and ethical issues, among other things.

Negative Control Group

The group introduces a condition that the researchers expect won’t have an effect. This group typically receives no treatment. These experiments compare the effectiveness of the experimental treatment to no treatment. For example, in a vaccine study, a negative control group does not get the vaccine.

Positive Control Group

Positive control groups typically receive a standard treatment that science has already proven effective. These groups serve as a benchmark for the performance of a conventional treatment. In this vein, experiments with positive control groups compare the effectiveness of a new treatment to a standard one.

For example, an old blood pressure medicine can be the treatment in a positive control group, while the treatment group receives the new, experimental blood pressure medicine. The researchers want to determine whether the new treatment is better than the previous treatment.

In these studies, subjects can still take the standard medication for their condition, a potentially critical ethics issue.

Placebo Control Group

Placebo control groups introduce a treatment lookalike that will not affect the outcome. Standard examples of placebos are sugar pills and saline solution injections instead of genuine medicine. The key is that the placebo looks like the actual treatment. Researchers use this approach when the recipients’ belief that they’re receiving the treatment might influence their outcomes. By using placebos, the experiment controls for these psychological benefits. The researchers want to determine whether the treatment performs better than the placebo effect.

Learn more about the Placebo Effect .

Blinded Control Groups

If the subject’s awareness of their group assignment might affect their outcomes, the researchers can use a blinded experimental design that does not tell participants their group membership. Typically, blinded control groups will receive placebos, as described above. In a double-blinded control group, both subjects and researchers don’t know group assignments.

Waitlist Control Group

When there is a waitlist to receive a new treatment, those on the waitlist can serve as a control group until they receive treatment. This type of design avoids ethical concerns about withholding a better treatment until the study finishes. This design can be a variation of a positive control group because the subjects might be using conventional medicines while on the waitlist.

Historical Control Group

When historical data for a comparison group exists, it can serve as a control group for an experiment. The group doesn’t exist in the study, but the researchers compare the treatment group to the existing data. For example, the researchers might have infection rate data for unvaccinated individuals to compare to the infection rate among the vaccinated participants in their study. This approach allows everyone in the experiment to receive the new treatment. However, differences in place, time, and other circumstances can reduce the value of these comparisons. In other words, other factors might account for the apparent effects.

Share this:

experiment example control group

Reader Interactions

' src=

December 19, 2021 at 9:17 am

Thank you very much Jim for your quick and comprehensive feedback. Extremely helpful!! Regards, Arthur

' src=

December 17, 2021 at 4:46 pm

Thank you very much Jim, very interesting article.

Can I select a control group at the end of intervention/experiment? Currently I am managing a project in rural Cambodia in five villages, however I did not select any comparison/control site at the beginning. Since I know there are other villages which have not been exposed to any type of intervention, can i select them as a control site during my end-line data collection or it will not be a legitimate control? Thank you very much, Arthur

' src=

December 18, 2021 at 1:51 am

You might be able to use that approach, but it’s not ideal. The ideal is to have control groups defined at the beginning of the study. You can use the untreated villages as a type of historical control groups that I talk about in this article. Or, if they’re awaiting to receive the intervention, it might be akin to a waitlist control group.

If you go that route, you’ll need to consider whether there was some systematic reason why these villages have not received any intervention. For example, are the villages in question more remote? And, if there is a systematic reason, would that affect your outcome variable? More generally, are they systematically different? How well do the untreated villages represent your target population?

If you had selected control villages at the beginning, you’d have been better able to ensure there weren’t any systematic differences between the villages receiving interventions and those that didn’t.

If the villages that didn’t receive any interventions are systematically different, you’ll need to incorporate that into your interpretation of the results. Are they different in ways that affect the outcomes you’re measuring? Can those differences account for the difference in outcomes between the treated and untreated villages? Hopefully, you’d be able to measure those differences between untreated/treated villages.

So, yes, you can use that approach. It’s not perfect and there will potentially be more things for you to consider and factor into your conclusions. Despite these drawbacks, it’s possible that using a pseudo control group like that is better than not doing that because at least you can make comparisons to something. Otherwise, you won’t know whether the outcomes in the intervention villages represent an improvement! Just be aware of the extra considerations!

Best of luck with your research!

Comments and Questions Cancel reply

experiment example control group

Understanding Control Groups for Research

experiment example control group

Introduction

What are control groups in research, examples of control groups in research, control group vs. experimental group, types of control groups, control groups in non-experimental research.

A control group is typically thought of as the baseline in an experiment. In an experiment, clinical trial, or other sort of controlled study, there are at least two groups whose results are compared against each other.

The experimental group receives some sort of treatment, and their results are compared against those of the control group, which is not given the treatment. This is important to determine whether there is an identifiable causal relationship between the treatment and the resulting effects.

As intuitive as this may sound, there is an entire methodology that is useful to understanding the role of the control group in experimental research and as part of a broader concept in research. This article will examine the particulars of that methodology so you can design your research more rigorously .

experiment example control group

Suppose that a friend or colleague of yours has a headache. You give them some over-the-counter medicine to relieve some of the pain. Shortly after they take the medicine, the pain is gone and they feel better. In casual settings, we can assume that it must be the medicine that was the cause of their headache going away.

In scientific research, however, we don't really know if the medicine made a difference or if the headache would have gone away on its own. Maybe in the time it took for the headache to go away, they ate or drank something that might have had an effect. Perhaps they had a quick nap that helped relieve the tension from the headache. Without rigorously exploring this phenomenon , any number of confounding factors exist that can make us question the actual efficacy of any particular treatment.

Experimental research relies on observing differences between the two groups by "controlling" the independent variable , or in the case of our example above, the medicine that is given or not given depending on the group. The dependent variable in this case is the change in how the person suffering the headache feels, and the difference between taking and not taking the medicine is evidence (or lack thereof) that the treatment is effective.

The catch is that, between the control group and other groups (typically called experimental groups), it's important to ensure that all other factors are the same or at least as similar as possible. Things such as age, fitness level, and even occupation can affect the likelihood someone has a headache and whether a certain medication is effective.

Faced with this dynamic, researchers try to make sure that participants in their control group and experimental group are as similar as possible to each other, with the only difference being the treatment they receive.

Experimental research is often associated with scientists in lab coats holding beakers containing liquids with funny colors. Clinical trials that deal with medical treatments rely primarily, if not exclusively, on experimental research designs involving comparisons between control and experimental groups.

However, many studies in the social sciences also employ some sort of experimental design which calls for the use of control groups. This type of research is useful when researchers are trying to confirm or challenge an existing notion or measure the difference in effects.

Workplace efficiency research

How might a company know if an employee training program is effective? They may decide to pilot the program to a small group of their employees before they implement the training to their entire workforce.

If they adopt an experimental design, they could compare results between an experimental group of workers who participate in the training program against a control group who continues as per usual without any additional training.

experiment example control group

Qualitative data analysis starts with ATLAS.ti

Turn data into rich insights with our powerful data analysis software. Get started with a free trial.

Mental health research

Music certainly has profound effects on psychology, but what kind of music would be most effective for concentration? Here, a researcher might be interested in having participants in a control group perform a series of tasks in an environment with no background music, and participants in multiple experimental groups perform those same tasks with background music of different genres. The subsequent analysis could determine how well people perform with classical music, jazz music, or no music at all in the background.

Educational research

Suppose that you want to improve reading ability among elementary school students, and there is research on a particular teaching method that is associated with facilitating reading comprehension. How do you measure the effects of that teaching method?

A study could be conducted on two groups of otherwise equally proficient students to measure the difference in test scores. The teacher delivers the same instruction to the control group as they have to previous students, but they teach the experimental group using the new technique. A reading test after a certain amount of instruction could determine the extent of effectiveness of the new teaching method.

experiment example control group

As you can see from the three examples above, experimental groups are the counterbalance to control groups. A control group offers an essential point of comparison. For an experimental study to be considered credible, it must establish a baseline against which novel research is conducted.

Researchers can determine the makeup of their experimental and control groups from their literature review . Remember that the objective of a review is to establish what is known about the object of inquiry and what is not known. Where experimental groups explore the unknown aspects of scientific knowledge, a control group is a sort of simulation of what would happen if the treatment or intervention was not administered. As a result, it will benefit researchers to have a foundational knowledge of the existing research to create a credible control group against which experimental results are compared, especially in terms of remaining sensitive to relevant participant characteristics that could confound the effects of your treatment or intervention so that you can appropriately distribute participants between the experimental and control groups.

There are multiple control groups to consider depending on the study you are looking to conduct. All of them are variations of the basic control group used to establish a baseline for experimental conditions.

No-treatment control group

This kind of control group is common when trying to establish the effects of an experimental treatment against the absence of treatment. This is arguably the most straightforward approach to an experimental design as it aims to directly demonstrate how a certain change in conditions produces an effect.

Placebo control group

In this case, the control group receives some sort of treatment under the exact same procedures as those in the experimental group. The only difference in this case is that the treatment in the placebo control group has already been judged to be ineffective, except that the research participants don't know that it is ineffective.

Placebo control groups (or negative control groups) are useful for allowing researchers to account for any psychological or affective factors that might impact the outcomes. The negative control group exists to explicitly eliminate factors other than changes in the independent variable conditions as causes of the effects experienced in the experimental group.

Positive control group

Contrasted with a no-treatment control group, a positive control group employs a treatment against which the treatment in the experimental group is compared. However, unlike in a placebo group, participants in a positive control group receive treatment that is known to have an effect.

If we were to use our first example of headache medicine, a researcher could compare results between medication that is commonly known as effective against the newer medication that the researcher thinks is more effective. Positive control groups are useful for validating experimental results when compared against familiar results.

Historical control group

Rather than study participants in control group conditions, researchers may employ existing data to create historical control groups. This form of control group is useful for examining changing conditions over time, particularly when incorporating past conditions that can't be replicated in the analysis.

Qualitative research more often relies on non-experimental research such as observations and interviews to examine phenomena in their natural environments. This sort of research is more suited for inductive and exploratory inquiries, not confirmatory studies meant to test or measure a phenomenon.

That said, the broader concept of a control group is still present in observational and interview research in the form of a comparison group. Comparison groups are used in qualitative research designs to show differences between phenomena, with the exception being that there is no baseline against which data is analyzed.

Comparison groups are useful when an experimental environment cannot produce results that would be applicable to real-world conditions. Research inquiries examining the social world face challenges of having too many variables to control, making observations and interviews across comparable groups more appropriate for data collection than clinical or sterile environments.

experiment example control group

Analyze data and generate rich results with ATLAS.ti

Try out a free trial of ATLAS.ti to see how you can make the most of your qualitative data.

experiment example control group

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • When did science begin?
  • Where was science invented?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

control group

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Verywell Mind - What Is a Control Group?
  • National Center for Biotechnology Information - PubMed Central - Control Group Design: Enhancing Rigor in Research of Mind-Body Therapies for Depression

control group , the standard to which comparisons are made in an experiment. Many experiments are designed to include a control group and one or more experimental groups; in fact, some scholars reserve the term experiment for study designs that include a control group. Ideally, the control group and the experimental groups are identical in every way except that the experimental groups are subjected to treatments or interventions believed to have an effect on the outcome of interest while the control group is not. Inclusion of a control group greatly strengthens researchers’ ability to draw conclusions from a study. Indeed, only in the presence of a control group can a researcher determine whether a treatment under investigation truly has a significant effect on an experimental group, and the possibility of making an erroneous conclusion is reduced. See also scientific method .

A typical use of a control group is in an experiment in which the effect of a treatment is unknown and comparisons between the control group and the experimental group are used to measure the effect of the treatment. For instance, in a pharmaceutical study to determine the effectiveness of a new drug on the treatment of migraines , the experimental group will be administered the new drug and the control group will be administered a placebo (a drug that is inert, or assumed to have no effect). Each group is then given the same questionnaire and asked to rate the effectiveness of the drug in relieving symptoms . If the new drug is effective, the experimental group is expected to have a significantly better response to it than the control group. Another possible design is to include several experimental groups, each of which is given a different dosage of the new drug, plus one control group. In this design, the analyst will compare results from each of the experimental groups to the control group. This type of experiment allows the researcher to determine not only if the drug is effective but also the effectiveness of different dosages. In the absence of a control group, the researcher’s ability to draw conclusions about the new drug is greatly weakened, due to the placebo effect and other threats to validity. Comparisons between the experimental groups with different dosages can be made without including a control group, but there is no way to know if any of the dosages of the new drug are more or less effective than the placebo.

It is important that every aspect of the experimental environment be as alike as possible for all subjects in the experiment. If conditions are different for the experimental and control groups, it is impossible to know whether differences between groups are actually due to the difference in treatments or to the difference in environment. For example, in the new migraine drug study, it would be a poor study design to administer the questionnaire to the experimental group in a hospital setting while asking the control group to complete it at home. Such a study could lead to a misleading conclusion, because differences in responses between the experimental and control groups could have been due to the effect of the drug or could have been due to the conditions under which the data were collected. For instance, perhaps the experimental group received better instructions or was more motivated by being in the hospital setting to give accurate responses than the control group.

In non-laboratory and nonclinical experiments, such as field experiments in ecology or economics , even well-designed experiments are subject to numerous and complex variables that cannot always be managed across the control group and experimental groups. Randomization, in which individuals or groups of individuals are randomly assigned to the treatment and control groups, is an important tool to eliminate selection bias and can aid in disentangling the effects of the experimental treatment from other confounding factors. Appropriate sample sizes are also important.

A control group study can be managed in two different ways. In a single-blind study, the researcher will know whether a particular subject is in the control group, but the subject will not know. In a double-blind study , neither the subject nor the researcher will know which treatment the subject is receiving. In many cases, a double-blind study is preferable to a single-blind study, since the researcher cannot inadvertently affect the results or their interpretation by treating a control subject differently from an experimental subject.

  • COVID-19 Tracker
  • Biochemistry
  • Anatomy & Physiology
  • Microbiology
  • Neuroscience
  • Animal Kingdom
  • NGSS High School
  • Latest News
  • Editors’ Picks
  • Weekly Digest
  • Quotes about Biology

Biology Dictionary

Control Group

BD Editors

Reviewed by: BD Editors

Control Group Definition

In scientific experiments, the control group is the group of subject that receive no treatment or a standardized treatment. Without the control group, there would be nothing to compare the treatment group to. When statistics refer to something being “X times more likely to happen” they are referring to the difference in the measurement between the treatment and control group. The control group provides a baseline in the experiment. The variable that is being studied in the experiment is not changed or is limited to zero in the control group. This insures that the effects of the variable are being studied. Most experiments try to add the variable back in increments to different treatment groups, to really begin to discern the effects of the variable in the system.

Ideally, the control group is subject to the same exact conditions as the treatment groups. This insures that only the effects produced by the variable are being measured. In a study of plants, for instance, all the plants would ideally be in the same room, with the same light and air conditions. In biological studies, it is also important that the organisms in the treatment and control groups come from the same population. Ideally, the organisms would all be clones of each other, to reduce genetic differences. This is the case in many artificially selected lab species, which have been selected to be very similar to each other. This ensures that the results obtained are valid.

Examples of Control Group

Testing enzyme strength.

In a simple biological lab experiment, students can test the effects of different concentrations of enzyme. The student can prepare a stock solution of enzyme by spitting into a beaker. Human spit contains the enzyme amylase, which breaks down starches. The concentration of enzyme can be varied by dividing the stock solution and adding in various amounts of water. Once various solutions of different strength enzyme have been produced, the experiment can begin.

In several treatment beakers are placed the following ingredients: starch, iodine, and the different solutions of enzyme. In the control group, a beaker is filled with starch and iodine, but no enzyme. When iodine is in the presence of starch, it turns black. As the enzyme depletes the starch in each beaker, the solution clears up and is a lighter yellow or brown color. In this way, the student can tell how long the enzymes in each beaker take to completely process the same amount of substrate. The control group is important because it will tell the student if the starch breaks down without the enzyme, which it will, given enough time.

Testing Drugs and the Placebo Effect

When drugs are tested on humans, control groups are also used. Although control groups were just considered good science, they have found an interesting phenomena in drug trials. Oftentimes, control groups in drug trials consist of people who also have the disease or ailment, but who don’t receive the medicine being tested. Instead, to keep the control group the same as the treatment groups, the patients in the control group are also given a pill. This is a sugar pill usually and contains no medicine. This practice of having a control group is important for drug trial, because it validates the results obtained. However, the control groups have also demonstrated an interesting effect, known as the placebo effect

In some drug trials, where the control group is given a fake medicine, patients start to see results. Scientists call this the placebo effect, and as of yet it is mostly unexplained. Some scientists have suggested that people get better simply because they believed they were going to get better, but this theory remains untested. Other scientists claim that unknown variables in the experiment caused the patients to get better. This theory remains unproven, as well.

Related Biology Terms

  • Treatment Group – The group that receives the variable, or altered amounts of the variable.
  • Variable – The part of the experiment being studied which is changed, or altered, throughout the experiment.
  • Scientific Method – The steps scientist follow to ensure their results are valid and reproducible.
  • Placebo Effect – A phenomenon when patients in the control group experience the same effects as those in the treatment group, though no treatment was given.

Cite This Article

Subscribe to our newsletter, privacy policy, terms of service, scholarship, latest posts, white blood cell, t cell immunity, satellite cells, embryonic stem cells, popular topics, animal cell, mitochondria, horticulture, natural selection, translation, adenosine triphosphate (atp), water cycle.

Experimental Design: Types, Examples & Methods

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Experimental design refers to how participants are allocated to different groups in an experiment. Types of design include repeated measures, independent groups, and matched pairs designs.

Probably the most common way to design an experiment in psychology is to divide the participants into two groups, the experimental group and the control group, and then introduce a change to the experimental group, not the control group.

The researcher must decide how he/she will allocate their sample to the different experimental groups.  For example, if there are 10 participants, will all 10 participants participate in both groups (e.g., repeated measures), or will the participants be split in half and take part in only one group each?

Three types of experimental designs are commonly used:

1. Independent Measures

Independent measures design, also known as between-groups , is an experimental design where different participants are used in each condition of the independent variable.  This means that each condition of the experiment includes a different group of participants.

This should be done by random allocation, ensuring that each participant has an equal chance of being assigned to one group.

Independent measures involve using two separate groups of participants, one in each condition. For example:

Independent Measures Design 2

  • Con : More people are needed than with the repeated measures design (i.e., more time-consuming).
  • Pro : Avoids order effects (such as practice or fatigue) as people participate in one condition only.  If a person is involved in several conditions, they may become bored, tired, and fed up by the time they come to the second condition or become wise to the requirements of the experiment!
  • Con : Differences between participants in the groups may affect results, for example, variations in age, gender, or social background.  These differences are known as participant variables (i.e., a type of extraneous variable ).
  • Control : After the participants have been recruited, they should be randomly assigned to their groups. This should ensure the groups are similar, on average (reducing participant variables).

2. Repeated Measures Design

Repeated Measures design is an experimental design where the same participants participate in each independent variable condition.  This means that each experiment condition includes the same group of participants.

Repeated Measures design is also known as within-groups or within-subjects design .

  • Pro : As the same participants are used in each condition, participant variables (i.e., individual differences) are reduced.
  • Con : There may be order effects. Order effects refer to the order of the conditions affecting the participants’ behavior.  Performance in the second condition may be better because the participants know what to do (i.e., practice effect).  Or their performance might be worse in the second condition because they are tired (i.e., fatigue effect). This limitation can be controlled using counterbalancing.
  • Pro : Fewer people are needed as they participate in all conditions (i.e., saves time).
  • Control : To combat order effects, the researcher counter-balances the order of the conditions for the participants.  Alternating the order in which participants perform in different conditions of an experiment.

Counterbalancing

Suppose we used a repeated measures design in which all of the participants first learned words in “loud noise” and then learned them in “no noise.”

We expect the participants to learn better in “no noise” because of order effects, such as practice. However, a researcher can control for order effects using counterbalancing.

The sample would be split into two groups: experimental (A) and control (B).  For example, group 1 does ‘A’ then ‘B,’ and group 2 does ‘B’ then ‘A.’ This is to eliminate order effects.

Although order effects occur for each participant, they balance each other out in the results because they occur equally in both groups.

counter balancing

3. Matched Pairs Design

A matched pairs design is an experimental design where pairs of participants are matched in terms of key variables, such as age or socioeconomic status. One member of each pair is then placed into the experimental group and the other member into the control group .

One member of each matched pair must be randomly assigned to the experimental group and the other to the control group.

matched pairs design

  • Con : If one participant drops out, you lose 2 PPs’ data.
  • Pro : Reduces participant variables because the researcher has tried to pair up the participants so that each condition has people with similar abilities and characteristics.
  • Con : Very time-consuming trying to find closely matched pairs.
  • Pro : It avoids order effects, so counterbalancing is not necessary.
  • Con : Impossible to match people exactly unless they are identical twins!
  • Control : Members of each pair should be randomly assigned to conditions. However, this does not solve all these problems.

Experimental design refers to how participants are allocated to an experiment’s different conditions (or IV levels). There are three types:

1. Independent measures / between-groups : Different participants are used in each condition of the independent variable.

2. Repeated measures /within groups : The same participants take part in each condition of the independent variable.

3. Matched pairs : Each condition uses different participants, but they are matched in terms of important characteristics, e.g., gender, age, intelligence, etc.

Learning Check

Read about each of the experiments below. For each experiment, identify (1) which experimental design was used; and (2) why the researcher might have used that design.

1 . To compare the effectiveness of two different types of therapy for depression, depressed patients were assigned to receive either cognitive therapy or behavior therapy for a 12-week period.

The researchers attempted to ensure that the patients in the two groups had similar severity of depressed symptoms by administering a standardized test of depression to each participant, then pairing them according to the severity of their symptoms.

2 . To assess the difference in reading comprehension between 7 and 9-year-olds, a researcher recruited each group from a local primary school. They were given the same passage of text to read and then asked a series of questions to assess their understanding.

3 . To assess the effectiveness of two different ways of teaching reading, a group of 5-year-olds was recruited from a primary school. Their level of reading ability was assessed, and then they were taught using scheme one for 20 weeks.

At the end of this period, their reading was reassessed, and a reading improvement score was calculated. They were then taught using scheme two for a further 20 weeks, and another reading improvement score for this period was calculated. The reading improvement scores for each child were then compared.

4 . To assess the effect of the organization on recall, a researcher randomly assigned student volunteers to two conditions.

Condition one attempted to recall a list of words that were organized into meaningful categories; condition two attempted to recall the same words, randomly grouped on the page.

Experiment Terminology

Ecological validity.

The degree to which an investigation represents real-life experiences.

Experimenter effects

These are the ways that the experimenter can accidentally influence the participant through their appearance or behavior.

Demand characteristics

The clues in an experiment lead the participants to think they know what the researcher is looking for (e.g., the experimenter’s body language).

Independent variable (IV)

The variable the experimenter manipulates (i.e., changes) is assumed to have a direct effect on the dependent variable.

Dependent variable (DV)

Variable the experimenter measures. This is the outcome (i.e., the result) of a study.

Extraneous variables (EV)

All variables which are not independent variables but could affect the results (DV) of the experiment. Extraneous variables should be controlled where possible.

Confounding variables

Variable(s) that have affected the results (DV), apart from the IV. A confounding variable could be an extraneous variable that has not been controlled.

Random Allocation

Randomly allocating participants to independent variable conditions means that all participants should have an equal chance of taking part in each condition.

The principle of random allocation is to avoid bias in how the experiment is carried out and limit the effects of participant variables.

Order effects

Changes in participants’ performance due to their repeating the same or similar test more than once. Examples of order effects include:

(i) practice effect: an improvement in performance on a task due to repetition, for example, because of familiarity with the task;

(ii) fatigue effect: a decrease in performance of a task due to repetition, for example, because of boredom or tiredness.

Print Friendly, PDF & Email

What is a control group?

Last updated

6 February 2023

Reviewed by

The independent variable is the thing the researchers are testing. They are trying to determine whether it’s responsible for any change that occurs in the experiment. The research control group is key for this as it allows them to isolate the independent variable’s effect on the experiment.

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • What is a control group in simple terms?

Splitting the audience you’re testing into two identical groups will give you a control group and an experimental group.

Nothing will change for the control group during the research. For example, this group would receive a placebo in pharmaceutical research.

In contrast, one key variable changes for the experimental group. In a pharmaceutical experiment, researchers might administer a different drug. In advertising research, this might involve increasing the experimental group’s exposure to ads.

When evaluating the results, researchers will compare those obtained from the experimental group against the control group. The control group is the baseline.

In research where the two groups are truly identical, seeing different results between the groups suggests they were caused by the independent variable—the only thing that changed.

Control gr oup examples

Examples of control groups in research exist in a wide range of business contexts. For example:

You want to test whether a 15% loyalty discount for repeat purchases would positively impact retention and revenue. So, you send a discount email to 50% of your customers who were randomly selected. The other 50% of customers are your control group.

You want to test whether a personal sales call will increase your chance of a sales conversion. You add this step to your existing nurturing campaign for a randomly selected portion of leads. Those who don’t receive a phone call are your control group.

You want to test whether different product packaging can change brand perceptions. To do this, you change the packaging for a randomly selected portion of customers. Customers who receive the same packaging as before are your control group. Sending a survey to all customers about their brand perceptions before and after the experiment will reveal the impact of the new packaging.

These are just some of the countless examples of control groups. Perhaps the most well-known example is in the medical field, where placebos treatments are used. Control groups receive placebo treatments under the exact same conditions as the experimental group to determine the treatment’s effects.

  • The importance of control groups

Control groups matter in research because they act as the benchmark to establish your results’ validity . They enable you to compare the results you see in your experimental group and determine if the variable you changed caused a different outcome. 

Control groups and experimental groups should be identical in their makeup and environment in every possible way. You’ll be able to draw more definitive conclusions as long as the research process is identical for both groups. In other words, working with control groups improves your research’s internal validity .

  • Control groups in experiments

Control groups are most common in experimental research, where you’re trying to determine the impact of a variable you’re changing. You split your research group into two groups that are as identical as possible. One receives a placebo, for example, while the other receives a treatment.

In this environment, the identical makeup of the group is essential. The most common way to accomplish this is by randomly splitting the group in two and ensuring that any variables you’re not testing remain the same throughout the research process.

You can also conduct experiments with multiple control groups. For example, when testing new ad messaging, the split between two control groups and one experimental group may be as follows:

Control group 1 receives no advertising

Control group 2 receives the existing advertising

Control group 3 receives the new ad messaging

This more complex type of experiment can test both the overall impact of ads and how much of that impact you could attribute to the new messaging.

  • Control groups in non-experimental research

Control groups are less common in non-experimental research but can still be useful. They most commonly occur in the following process designs:

Matching design

In this research process, every person in the experimental group is matched to one other person based on their environmental and demographic similarities.

This is most common when randomly selecting two groups on a broader scale would not result in them being equal. It can help you ensure that the control group or individual continues to act as the baseline for the variable you are studying.

Quasi-experimental design

This is where multiple groups are part of the research, but they are not randomly assigned to test and control conditions.

Quasi-experimental design is most common when the groups you are studying already exist, like customers being shown new ad messaging versus non-customers. The control group in this example is made up of your non-customers, as the variable did not change for them.

  • Two common types of control groups

While control groups tend to be similar across research contexts, they generally fall into two categories: negative and positive control groups.

Negative control groups

The independent variable does not change in a negative control group. This group represents the true status quo, and you would test the experimental group against it.

Examples of negative control groups include many of the experiments listed above, like only changing product packaging or only offering a discount for one group of customers.

Positive control groups

In positive control groups, the independent variable is changed where it is already known to have an effect. You would compare this group’s results against those from the experimental group receiving a variation of the same independent variable. This would enable you to determine if the effect changes.

In the example of a multi-control group experiment seen above, control group 1 (receiving no advertising) is a negative control group, while control group 2 (receiving the current level of advertising) is a positive control group.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 5 February 2023

Last updated: 16 April 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Controlled Experiment? | Definitions & Examples

What Is a Controlled Experiment? | Definitions & Examples

Published on April 19, 2021 by Pritha Bhandari . Revised on June 22, 2023.

In experiments , researchers manipulate independent variables to test their effects on dependent variables. In a controlled experiment , all variables other than the independent variable are controlled or held constant so they don’t influence the dependent variable.

Controlling variables can involve:

  • holding variables at a constant or restricted level (e.g., keeping room temperature fixed).
  • measuring variables to statistically control for them in your analyses.
  • balancing variables across your experiment through randomization (e.g., using a random order of tasks).

Table of contents

Why does control matter in experiments, methods of control, problems with controlled experiments, other interesting articles, frequently asked questions about controlled experiments.

Control in experiments is critical for internal validity , which allows you to establish a cause-and-effect relationship between variables. Strong validity also helps you avoid research biases , particularly ones related to issues with generalizability (like sampling bias and selection bias .)

  • Your independent variable is the color used in advertising.
  • Your dependent variable is the price that participants are willing to pay for a standard fast food meal.

Extraneous variables are factors that you’re not interested in studying, but that can still influence the dependent variable. For strong internal validity, you need to remove their effects from your experiment.

  • Design and description of the meal,
  • Study environment (e.g., temperature or lighting),
  • Participant’s frequency of buying fast food,
  • Participant’s familiarity with the specific fast food brand,
  • Participant’s socioeconomic status.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

experiment example control group

You can control some variables by standardizing your data collection procedures. All participants should be tested in the same environment with identical materials. Only the independent variable (e.g., ad color) should be systematically changed between groups.

Other extraneous variables can be controlled through your sampling procedures . Ideally, you’ll select a sample that’s representative of your target population by using relevant inclusion and exclusion criteria (e.g., including participants from a specific income bracket, and not including participants with color blindness).

By measuring extraneous participant variables (e.g., age or gender) that may affect your experimental results, you can also include them in later analyses.

After gathering your participants, you’ll need to place them into groups to test different independent variable treatments. The types of groups and method of assigning participants to groups will help you implement control in your experiment.

Control groups

Controlled experiments require control groups . Control groups allow you to test a comparable treatment, no treatment, or a fake treatment (e.g., a placebo to control for a placebo effect ), and compare the outcome with your experimental treatment.

You can assess whether it’s your treatment specifically that caused the outcomes, or whether time or any other treatment might have resulted in the same effects.

To test the effect of colors in advertising, each participant is placed in one of two groups:

  • A control group that’s presented with red advertisements for a fast food meal.
  • An experimental group that’s presented with green advertisements for the same fast food meal.

Random assignment

To avoid systematic differences and selection bias between the participants in your control and treatment groups, you should use random assignment .

This helps ensure that any extraneous participant variables are evenly distributed, allowing for a valid comparison between groups .

Random assignment is a hallmark of a “true experiment”—it differentiates true experiments from quasi-experiments .

Masking (blinding)

Masking in experiments means hiding condition assignment from participants or researchers—or, in a double-blind study , from both. It’s often used in clinical studies that test new treatments or drugs and is critical for avoiding several types of research bias .

Sometimes, researchers may unintentionally encourage participants to behave in ways that support their hypotheses , leading to observer bias . In other cases, cues in the study environment may signal the goal of the experiment to participants and influence their responses. These are called demand characteristics . If participants behave a particular way due to awareness of being observed (called a Hawthorne effect ), your results could be invalidated.

Using masking means that participants don’t know whether they’re in the control group or the experimental group. This helps you control biases from participants or researchers that could influence your study results.

You use an online survey form to present the advertisements to participants, and you leave the room while each participant completes the survey on the computer so that you can’t tell which condition each participant was in.

Although controlled experiments are the strongest way to test causal relationships, they also involve some challenges.

Difficult to control all variables

Especially in research with human participants, it’s impossible to hold all extraneous variables constant, because every individual has different experiences that may influence their perception, attitudes, or behaviors.

But measuring or restricting extraneous variables allows you to limit their influence or statistically control for them in your study.

Risk of low external validity

Controlled experiments have disadvantages when it comes to external validity —the extent to which your results can be generalized to broad populations and settings.

The more controlled your experiment is, the less it resembles real world contexts. That makes it harder to apply your findings outside of a controlled setting.

There’s always a tradeoff between internal and external validity . It’s important to consider your research aims when deciding whether to prioritize control or generalizability in your experiment.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

Prevent plagiarism. Run a free check.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment.
  • Random assignment of participants to ensure the groups are equivalent.

Depending on your study topic, there are various other methods of controlling variables .

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). What Is a Controlled Experiment? | Definitions & Examples. Scribbr. Retrieved August 19, 2024, from https://www.scribbr.com/methodology/controlled-experiment/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, extraneous variables | examples, types & controls, guide to experimental design | overview, steps, & examples, how to write a lab report, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is a Control Group?

Control Groups vs. Experimental Groups in Psychology Research

Doug Corrance/The Image Bank/Getty Images

Control Group vs. Experimental Group

Types of control groups.

In simple terms, the control group comprises participants who do not receive the experimental treatment. When conducting an experiment, these people are randomly assigned to this group. They also closely resemble the participants who are in the experimental group or the individuals who receive the treatment.

Experimenters utilize variables to make comparisons between an experimental group and a control group. A variable is something that researchers can manipulate, measure, and control in an experiment. The independent variable is the aspect of the experiment that the researchers manipulate (or the treatment). The dependent variable is what the researchers measure to see if the independent variable had an effect.

While they do not receive the treatment, the control group does play a vital role in the research process. Experimenters compare the experimental group to the control group to determine if the treatment had an effect.

By serving as a comparison group, researchers can isolate the independent variable and look at the impact it had.

The simplest way to determine the difference between a control group and an experimental group is to determine which group receives the treatment and which does not. To ensure that the results can then be compared accurately, the two groups should be otherwise identical.

Not exposed to the treatment (the independent variable)

Used to provide a baseline to compare results against

May receive a placebo treatment

Exposed to the treatment

Used to measure the effects of the independent variable

Identical to the control group aside from their exposure to the treatment

Why a Control Group Is Important

While the control group does not receive treatment, it does play a critical role in the experimental process. This group serves as a benchmark, allowing researchers to compare the experimental group to the control group to see what sort of impact changes to the independent variable produced.  

Because participants have been randomly assigned to either the control group or the experimental group, it can be assumed that the groups are comparable.

Any differences between the two groups are, therefore, the result of the manipulations of the independent variable. The experimenters carry out the exact same procedures with both groups with the exception of the manipulation of the independent variable in the experimental group.

There are a number of different types of control groups that might be utilized in psychology research. Some of these include:

  • Positive control groups : In this case, researchers already know that a treatment is effective but want to learn more about the impact of variations of the treatment. In this case, the control group receives the treatment that is known to work, while the experimental group receives the variation so that researchers can learn more about how it performs and compares to the control.
  • Negative control group : In this type of control group, the participants are not given a treatment. The experimental group can then be compared to the group that did not experience any change or results.
  • Placebo control group : This type of control group receives a placebo treatment that they believe will have an effect. This control group allows researchers to examine the impact of the placebo effect and how the experimental treatment compared to the placebo treatment.
  • Randomized control group : This type of control group involves using random selection to help ensure that the participants in the control group accurately reflect the demographics of the larger population.
  • Natural control group : This type of control group is naturally selected, often by situational factors. For example, researchers might compare people who have experienced trauma due to war to people who have not experienced war. The people who have not experienced war-related trauma would be the control group.

Examples of Control Groups

Control groups can be used in a variety of situations. For example, imagine a study in which researchers example how distractions during an exam influence test results. The control group would take an exam in a setting with no distractions, while the experimental groups would be exposed to different distractions. The results of the exam would then be compared to see the effects that distractions had on test scores.

Experiments that look at the effects of medications on certain conditions are also examples of how a control group can be used in research. For example, researchers looking at the effectiveness of a new antidepressant might use a control group that receives a placebo and an experimental group that receives the new medication. At the end of the study, researchers would compare measures of depression for both groups to determine what impact the new medication had.

After the experiment is complete, researchers can then look at the test results and start making comparisons between the control group and the experimental group.

Uses for Control Groups

Researchers utilize control groups to conduct research in a range of different fields. Some common uses include:

  • Psychology : Researchers utilize control groups to learn more about mental health, behaviors, and treatments.
  • Medicine : Control groups can be used to learn more about certain health conditions, assess how well medications work to treat these conditions, and assess potential side effects that may result.
  • Education : Educational researchers utilize control groups to learn more about how different curriculums, programs, or instructional methods impact student outcomes.
  • Marketing : Researchers utilize control groups to learn more about how consumers respond to advertising and marketing efforts.

Malay S, Chung KC. The choice of controls for providing validity and evidence in clinical research . Plast Reconstr Surg. 2012 Oct;130(4):959-965. doi:10.1097/PRS.0b013e318262f4c8

National Cancer Institute. Control group.

Pithon MM. Importance of the control group in scientific research . Dental Press J Orthod. 2013;18(6):13-14. doi:10.1590/s2176-94512013000600003

Karlsson P, Bergmark A. Compared with what? An analysis of control-group types in Cochrane and Campbell reviews of psychosocial treatment efficacy with substance use disorders . Addiction . 2015;110(3):420-8. doi:10.1111/add.12799

Myers A, Hansen C. Experimental Psychology . Belmont, CA: Cengage Learning; 2012.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

What are Controlled Experiments?

Determining Cause and Effect

skynesher / Getty Images

  • Research, Samples, and Statistics
  • Key Concepts
  • Major Sociologists
  • News & Issues
  • Recommended Reading
  • Archaeology

A controlled experiment is a highly focused way of collecting data and is especially useful for determining patterns of cause and effect. This type of experiment is used in a wide variety of fields, including medical, psychological, and sociological research. Below, we’ll define what controlled experiments are and provide some examples.

Key Takeaways: Controlled Experiments

  • A controlled experiment is a research study in which participants are randomly assigned to experimental and control groups.
  • A controlled experiment allows researchers to determine cause and effect between variables.
  • One drawback of controlled experiments is that they lack external validity (which means their results may not generalize to real-world settings).

Experimental and Control Groups

To conduct a controlled experiment , two groups are needed: an experimental group and a control group . The experimental group is a group of individuals that are exposed to the factor being examined. The control group, on the other hand, is not exposed to the factor. It is imperative that all other external influences are held constant . That is, every other factor or influence in the situation needs to remain exactly the same between the experimental group and the control group. The only thing that is different between the two groups is the factor being researched.

For example, if you were studying the effects of taking naps on test performance, you could assign participants to two groups: participants in one group would be asked to take a nap before their test, and those in the other group would be asked to stay awake. You would want to ensure that everything else about the groups (the demeanor of the study staff, the environment of the testing room, etc.) would be equivalent for each group. Researchers can also develop more complex study designs with more than two groups. For example, they might compare test performance among participants who had a 2-hour nap, participants who had a 20-minute nap, and participants who didn’t nap.

Assigning Participants to Groups

In controlled experiments, researchers use  random assignment (i.e. participants are randomly assigned to be in the experimental group or the control group) in order to minimize potential confounding variables in the study. For example, imagine a study of a new drug in which all of the female participants were assigned to the experimental group and all of the male participants were assigned to the control group. In this case, the researchers couldn’t be sure if the study results were due to the drug being effective or due to gender—in this case, gender would be a confounding variable.

Random assignment is done in order to ensure that participants are not assigned to experimental groups in a way that could bias the study results. A study that compares two groups but does not randomly assign participants to the groups is referred to as quasi-experimental, rather than a true experiment.

Blind and Double-Blind Studies

In a blind experiment, participants don’t know whether they are in the experimental or control group. For example, in a study of a new experimental drug, participants in the control group may be given a pill (known as a placebo ) that has no active ingredients but looks just like the experimental drug. In a double-blind study , neither the participants nor the experimenter knows which group the participant is in (instead, someone else on the research staff is responsible for keeping track of group assignments). Double-blind studies prevent the researcher from inadvertently introducing sources of bias into the data collected.

Example of a Controlled Experiment

If you were interested in studying whether or not violent television programming causes aggressive behavior in children, you could conduct a controlled experiment to investigate. In such a study, the dependent variable would be the children’s behavior, while the independent variable would be exposure to violent programming. To conduct the experiment, you would expose an experimental group of children to a movie containing a lot of violence, such as martial arts or gun fighting. The control group, on the other hand, would watch a movie that contained no violence.

To test the aggressiveness of the children, you would take two measurements : one pre-test measurement made before the movies are shown, and one post-test measurement made after the movies are watched. Pre-test and post-test measurements should be taken of both the control group and the experimental group. You would then use statistical techniques to determine whether the experimental group showed a significantly greater increase in aggression, compared to participants in the control group.

Studies of this sort have been done many times and they usually find that children who watch a violent movie are more aggressive afterward than those who watch a movie containing no violence.

Strengths and Weaknesses

Controlled experiments have both strengths and weaknesses. Among the strengths is the fact that results can establish causation. That is, they can determine cause and effect between variables. In the above example, one could conclude that being exposed to representations of violence causes an increase in aggressive behavior. This kind of experiment can also zero-in on a single independent variable, since all other factors in the experiment are held constant.

On the downside, controlled experiments can be artificial. That is, they are done, for the most part, in a manufactured laboratory setting and therefore tend to eliminate many real-life effects. As a result, analysis of a controlled experiment must include judgments about how much the artificial setting has affected the results. Results from the example given might be different if, say, the children studied had a conversation about the violence they watched with a respected adult authority figure, like a parent or teacher, before their behavior was measured. Because of this, controlled experiments can sometimes have lower external validity (that is, their results might not generalize to real-world settings).

Updated  by Nicki Lisa Cole, Ph.D.

  • An Overview of Qualitative Research Methods
  • Using Ethnomethodology to Understand Social Order
  • Pros and Cons of Secondary Data Analysis
  • Immersion Definition: Cultural, Language, and Virtual
  • Sociology Explains Why Some People Cheat on Their Spouses
  • What Is Participant Observation Research?
  • The Differences Between Indexes and Scales
  • Definition and Overview of Grounded Theory
  • Deductive Versus Inductive Reasoning
  • The Study of Cultural Artifacts via Content Analysis
  • Units of Analysis as Related to Sociology
  • Data Sources For Sociological Research
  • Full-Text Sociology Journals Online
  • How Race and Gender Biases Impact Students in Higher Ed
  • The Racial Wealth Gap
  • A Review of Software Tools for Quantitative Data Analysis

Logo for The University of Regina OEP Program

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

30 8.1 Experimental design: What is it and when should it be used?

Learning objectives.

  • Define experiment
  • Identify the core features of true experimental designs
  • Describe the difference between an experimental group and a control group
  • Identify and describe the various types of true experimental designs

Experiments are an excellent data collection strategy for social workers wishing to observe the effects of a clinical intervention or social welfare program. Understanding what experiments are and how they are conducted is useful for all social scientists, whether they actually plan to use this methodology or simply aim to understand findings from experimental studies. An experiment is a method of data collection designed to test hypotheses under controlled conditions. In social scientific research, the term experiment has a precise meaning and should not be used to describe all research methodologies.

experiment example control group

Experiments have a long and important history in social science. Behaviorists such as John Watson, B. F. Skinner, Ivan Pavlov, and Albert Bandura used experimental design to demonstrate the various types of conditioning. Using strictly controlled environments, behaviorists were able to isolate a single stimulus as the cause of measurable differences in behavior or physiological responses. The foundations of social learning theory and behavior modification are found in experimental research projects. Moreover, behaviorist experiments brought psychology and social science away from the abstract world of Freudian analysis and towards empirical inquiry, grounded in real-world observations and objectively-defined variables. Experiments are used at all levels of social work inquiry, including agency-based experiments that test therapeutic interventions and policy experiments that test new programs.

Several kinds of experimental designs exist. In general, designs considered to be true experiments contain three basic key features:

  • random assignment of participants into experimental and control groups
  • a “treatment” (or intervention) provided to the experimental group
  • measurement of the effects of the treatment in a post-test administered to both groups

Some true experiments are more complex.  Their designs can also include a pre-test and can have more than two groups, but these are the minimum requirements for a design to be a true experiment.

Experimental and control groups

In a true experiment, the effect of an intervention is tested by comparing two groups: one that is exposed to the intervention (the experimental group , also known as the treatment group) and another that does not receive the intervention (the control group ). Importantly, participants in a true experiment need to be randomly assigned to either the control or experimental groups. Random assignment uses a random number generator or some other random process to assign people into experimental and control groups. Random assignment is important in experimental research because it helps to ensure that the experimental group and control group are comparable and that any differences between the experimental and control groups are due to random chance. We will address more of the logic behind random assignment in the next section.

Treatment or intervention

In an experiment, the independent variable is receiving the intervention being tested—for example, a therapeutic technique, prevention program, or access to some service or support. It is less common in of social work research, but social science research may also have a stimulus, rather than an intervention as the independent variable. For example, an electric shock or a reading about death might be used as a stimulus to provoke a response.

In some cases, it may be immoral to withhold treatment completely from a control group within an experiment. If you recruited two groups of people with severe addiction and only provided treatment to one group, the other group would likely suffer. For these cases, researchers use a control group that receives “treatment as usual.” Experimenters must clearly define what treatment as usual means. For example, a standard treatment in substance abuse recovery is attending Alcoholics Anonymous or Narcotics Anonymous meetings. A substance abuse researcher conducting an experiment may use twelve-step programs in their control group and use their experimental intervention in the experimental group. The results would show whether the experimental intervention worked better than normal treatment, which is useful information.

The dependent variable is usually the intended effect the researcher wants the intervention to have. If the researcher is testing a new therapy for individuals with binge eating disorder, their dependent variable may be the number of binge eating episodes a participant reports. The researcher likely expects her intervention to decrease the number of binge eating episodes reported by participants. Thus, she must, at a minimum, measure the number of episodes that occur after the intervention, which is the post-test .  In a classic experimental design, participants are also given a pretest to measure the dependent variable before the experimental treatment begins.

Types of experimental design

Let’s put these concepts in chronological order so we can better understand how an experiment runs from start to finish. Once you’ve collected your sample, you’ll need to randomly assign your participants to the experimental group and control group. In a common type of experimental design, you will then give both groups your pretest, which measures your dependent variable, to see what your participants are like before you start your intervention. Next, you will provide your intervention, or independent variable, to your experimental group, but not to your control group. Many interventions last a few weeks or months to complete, particularly therapeutic treatments. Finally, you will administer your post-test to both groups to observe any changes in your dependent variable. What we’ve just described is known as the classical experimental design and is the simplest type of true experimental design. All of the designs we review in this section are variations on this approach. Figure 8.1 visually represents these steps.

Steps in classic experimental design: Sampling to Assignment to Pretest to intervention to Posttest

An interesting example of experimental research can be found in Shannon K. McCoy and Brenda Major’s (2003) study of people’s perceptions of prejudice. In one portion of this multifaceted study, all participants were given a pretest to assess their levels of depression. No significant differences in depression were found between the experimental and control groups during the pretest. Participants in the experimental group were then asked to read an article suggesting that prejudice against their own racial group is severe and pervasive, while participants in the control group were asked to read an article suggesting that prejudice against a racial group other than their own is severe and pervasive. Clearly, these were not meant to be interventions or treatments to help depression, but were stimuli designed to elicit changes in people’s depression levels. Upon measuring depression scores during the post-test period, the researchers discovered that those who had received the experimental stimulus (the article citing prejudice against their same racial group) reported greater depression than those in the control group. This is just one of many examples of social scientific experimental research.

In addition to classic experimental design, there are two other ways of designing experiments that are considered to fall within the purview of “true” experiments (Babbie, 2010; Campbell & Stanley, 1963).  The posttest-only control group design is almost the same as classic experimental design, except it does not use a pretest. Researchers who use posttest-only designs want to eliminate testing effects , in which participants’ scores on a measure change because they have already been exposed to it. If you took multiple SAT or ACT practice exams before you took the real one you sent to colleges, you’ve taken advantage of testing effects to get a better score. Considering the previous example on racism and depression, participants who are given a pretest about depression before being exposed to the stimulus would likely assume that the intervention is designed to address depression. That knowledge could cause them to answer differently on the post-test than they otherwise would. In theory, as long as the control and experimental groups have been determined randomly and are therefore comparable, no pretest is needed. However, most researchers prefer to use pretests in case randomization did not result in equivalent groups and to help assess change over time within both the experimental and control groups.

Researchers wishing to account for testing effects but also gather pretest data can use a Solomon four-group design. In the Solomon four-group design , the researcher uses four groups. Two groups are treated as they would be in a classic experiment—pretest, experimental group intervention, and post-test. The other two groups do not receive the pretest, though one receives the intervention. All groups are given the post-test. Table 8.1 illustrates the features of each of the four groups in the Solomon four-group design. By having one set of experimental and control groups that complete the pretest (Groups 1 and 2) and another set that does not complete the pretest (Groups 3 and 4), researchers using the Solomon four-group design can account for testing effects in their analysis.

Table 8.1 Solomon four-group design
Group 1 X X X
Group 2 X X
Group 3 X X
Group 4 X

Solomon four-group designs are challenging to implement in the real world because they are time- and resource-intensive. Researchers must recruit enough participants to create four groups and implement interventions in two of them.

Overall, true experimental designs are sometimes difficult to implement in a real-world practice environment. It may be impossible to withhold treatment from a control group or randomly assign participants in a study. In these cases, pre-experimental and quasi-experimental designs–which we  will discuss in the next section–can be used.  However, the differences in rigor from true experimental designs leave their conclusions more open to critique.

Experimental design in macro-level research

You can imagine that social work researchers may be limited in their ability to use random assignment when examining the effects of governmental policy on individuals.  For example, it is unlikely that a researcher could randomly assign some states to implement decriminalization of recreational marijuana and some states not to in order to assess the effects of the policy change.  There are, however, important examples of policy experiments that use random assignment, including the Oregon Medicaid experiment. In the Oregon Medicaid experiment, the wait list for Oregon was so long, state officials conducted a lottery to see who from the wait list would receive Medicaid (Baicker et al., 2013).  Researchers used the lottery as a natural experiment that included random assignment. People selected to be a part of Medicaid were the experimental group and those on the wait list were in the control group. There are some practical complications macro-level experiments, just as with other experiments.  For example, the ethical concern with using people on a wait list as a control group exists in macro-level research just as it does in micro-level research.

Key Takeaways

  • True experimental designs require random assignment.
  • Control groups do not receive an intervention, and experimental groups receive an intervention.
  • The basic components of a true experiment include a pretest, posttest, control group, and experimental group.
  • Testing effects may cause researchers to use variations on the classic experimental design.
  • Classic experimental design- uses random assignment, an experimental and control group, as well as pre- and posttesting
  • Control group- the group in an experiment that does not receive the intervention
  • Experiment- a method of data collection designed to test hypotheses under controlled conditions
  • Experimental group- the group in an experiment that receives the intervention
  • Posttest- a measurement taken after the intervention
  • Posttest-only control group design- a type of experimental design that uses random assignment, and an experimental and control group, but does not use a pretest
  • Pretest- a measurement taken prior to the intervention
  • Random assignment-using a random process to assign people into experimental and control groups
  • Solomon four-group design- uses random assignment, two experimental and two control groups, pretests for half of the groups, and posttests for all
  • Testing effects- when a participant’s scores on a measure change because they have already been exposed to it
  • True experiments- a group of experimental designs that contain independent and dependent variables, pretesting and post testing, and experimental and control groups

Image attributions

exam scientific experiment by mohamed_hassan CC-0

Foundations of Social Work Research Copyright © 2020 by Rebecca L. Mauldin is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

COMMENTS

  1. Control Groups and Treatment Groups

    Example of multiple control groups. You have developed a new pill to treat high blood pressure. To test its effectiveness, you run an experiment with a treatment and two control groups. The treatment group gets the new pill. Control group 1 gets an identical-looking sugar pill (a placebo)

  2. Control Group Definition and Examples

    Get the control group definition and examples in an experiment. Learn how the control group differs from the a control variable.

  3. 10 Examples of a Control Group

    A control group is a parallel experiment with a different treatment that provides a benchmark of comparison that is used to validate results. A control variable is a factor that can influence the results of an experiment that is held constant.

  4. Control Groups & Treatment Groups

    To test its effectiveness, you run an experiment with a treatment and two control groups. The treatment group gets the new pill. Control group 1 gets an identical-looking sugar pill (a placebo). Control group 2 gets a pill already approved to treat high blood pressure. Since the only variable that differs between the three groups is the type of ...

  5. Control Group in an Experiment

    A control group in an experiment does not receive the treatment. Instead, it serves as a comparison group for the treatments.

  6. What Is a Control Group? Definition and Explanation

    A control group in a scientific experiment is a group separated from the rest of the experiment, where the independent variable being tested cannot influence the results. This isolates the independent variable 's effects on the experiment and can help rule out alternative explanations of the experimental results. Control groups can also be separated into two other types: positive or negative.

  7. Controlled experiments (article)

    A controlled experiment is a scientific test done under controlled conditions, meaning that just one (or a few) factors are changed at a time, while all others are kept constant. We'll look closely at controlled experiments in the next section.

  8. What are Control Groups?

    A control group is typically thought of as the baseline in an experiment. In an experiment, clinical trial, or other sort of controlled study, there are at least two groups whose results are compared against each other. The experimental group receives some sort of treatment, and their results are compared against those of the control group ...

  9. Control group

    Control group, the standard to which comparisons are made in an experiment. Many experiments are designed to include a control group and one or more experimental groups; in fact, some scholars reserve the term 'experiment' for study designs that include a control group.

  10. Control Group

    In scientific experiments, the control group is the group of subject that receive no treatment or a standardized treatment. Without the control group, there would be nothing to compare the treatment group to.

  11. Control Group vs Experimental Group

    In research, the control group is the one not exposed to the variable of interest (the independent variable) and provides a baseline for comparison. The experimental group, on the other hand, is exposed to the independent variable. Comparing results between these groups helps determine if the independent variable has a significant effect on the outcome (the dependent variable).

  12. Experimental & Control Group

    What's the difference between an experimental and a control group? Experimental and control groups are the two main groups found in an experiment, each serving a slightly different purpose.

  13. Examples of Control Groups in Experiments and Research

    A control group example shows why it's important to have factors that don't change in experiments, testing and design. Learn to identify control groups.

  14. Experimental Design: Types, Examples & Methods

    Experimental design refers to how participants are allocated to different groups in an experiment. Types of design include repeated measures, independent groups, and matched pairs designs.

  15. What is Control Group? Types, Examples, and Pros & Cons

    What is a control group in simple terms? Splitting the audience you're testing into two identical groups will give you a control group and an experimental group. Nothing will change for the control group during the research. For example, this group would receive a placebo in pharmaceutical research.

  16. What Is a Controlled Experiment?

    Example: Control group In your experiment on the effects of colors in advertising, all participants are invited to come to a lab individually, where environmental conditions are kept the same throughout the study.

  17. What Is a Control Group?

    Experiments that look at the effects of medications on certain conditions are also examples of how a control group can be used in research. For example, researchers looking at the effectiveness of a new antidepressant might use a control group that receives a placebo and an experimental group that receives the new medication.

  18. Treatment and control groups

    Treatment and control groups In the design of experiments, hypotheses are applied to experimental units in a treatment group. [ 1] In comparative experiments, members of a control group receive a standard treatment, a placebo, or no treatment at all. [ 2] There may be more than one treatment group, more than one control group, or both.

  19. The Difference Between Control Group and Experimental Group

    Learn about the difference between the control group and the experimental group in a scientific experiment, including positive and negative controls.

  20. Positive Control Group

    See a comparison of positive control vs. negative control group. Understand what positive control in an experiment is and what the purpose of a...

  21. Controlled Experiments: Definition and Examples

    A controlled experiment is a research study in which participants are randomly assigned to experimental and control groups. A controlled experiment allows researchers to determine cause and effect between variables. One drawback of controlled experiments is that they lack external validity (which means their results may not generalize to real ...

  22. 8.1 Experimental design: What is it and when should it be used

    Experimental and control groups In a true experiment, the effect of an intervention is tested by comparing two groups: one that is exposed to the intervention (the experimental group, also known as the treatment group) and another that does not receive the intervention (the control group ). Importantly, participants in a true experiment need to be randomly assigned to either the control or ...

  23. What Is a Control Group? (With Uses, Types and 11 Examples)

    Learn about control groups, discover who uses them and explore 11 control group examples and types to help you design a thoughtful experiment of your own.

  24. Social framing effects in leadership by example: Preferences or beliefs

    The group level frame involves a change in how the experiment was referred to in the instructions and displayed on the screen during the experiment: "Wall Street" versus "Community" frame. Specifically, there were five headings in the instructions that referred to either the "Wall Street experiment" or the "Community experiment."