Science News

bumblebee

Bumblebees lose most of their sense of smell after heat waves

A few hours in high temps reduced the ability of antennae to detect flower scents by 80 percent. That could impact the bees’ ability to find food.

A stack of PVC pipe lies in front of workers.

50 years ago, some of plastic’s toxic hazards were exposed

A person types on a keyboard next to a small fan

A new drug shows promise for hot flashes due to menopause

An illustration of a woman with chronic pain in her upper and lower back, wrists and feet

A next-gen pain drug shows promise, but chronic sufferers need more options

A spiral galaxy shown in a composite image from the James Webb Space Telescope and Hubble Space Telescope

In an epic cosmology clash, rival scientists begin to find common ground 

A photograph of scientific equipment, including a laser beam illuminating gas inside a vacuum chamber.

A nuclear clock prototype hints at ultraprecise timekeeping 

research paper articles

Fiddler crabs are migrating north to cooler waters

Trending stories.

A spiral galaxy shown in a composite image from the James Webb Space Telescope and Hubble Space Telescope

Recipe for Roman cosmetic revealed

A bunch of stumps protrude from the waves on a beach.

Geoscientists found the most dangerous part of a famous West Coast fault

An illustration of a woman with chronic pain in her upper and lower back, wrists and feet

Despite new clues, this ancient fish has stumped scientists for centuries

Spotlight on health.

An illustration of a woman with chronic pain in her upper and lower back, wrists and feet

A new painkiller nearing approval called suzetrigine may prove to be an opioid alternative. But for many with chronic pain, treatment must go beyond pills.

What is ‘Stage 0’ breast cancer and how is it treated?

From the archives.

research paper articles

Animal Virus Used on Cancer Patients

September 7, 1974 Vol. 106 No. #10

Science News Magazine

Cover of August 24, 2024 issue of Science News

August 24, 2024 Vol. 206 No. 3

A newly approved ‘living drug’ could save more cancer patients’ lives

Nasa’s perseverance rover finds its first possible hint of ancient life on mars, paper cut physics pinpoints the most hazardous types of paper.

research paper articles

Featured Media

research paper articles

The crabs are climate migrants and could be a harbinger of changes to come as more species move in.

Here’s how an arthropod pulls off the world’s fastest backflip

A photograph of the OceanXplorers ship in the background with crew members standing on an inflatable motorboat in the foreground

National Geographic’s ‘OceanXplorers’ dives into the ocean’s mysteries

image of house sparrow

A risk-tolerant immune system may enable house sparrows’ wanderlust

An illustration of element 120 shows 120 electrons arranged around a nucleus.

A new element on the periodic table might be within reach 

research paper articles

Follow Science News

  • Follow Science News on X
  • Follow Science News on Facebook
  • Follow Science News on Instagram

More Stories

golden coral

Remote seamounts in the southeast Pacific may be home to 20 new species

This protist unfolds its ‘neck’ up to 30 times its body length to scout prey, the largest known genome belongs to a tiny fern.

Usain Bolt crouches next to a digital display showing his new world record while pointing to a crowd in a stadium

World record speeds for two Olympics events have fallen over time. We can go faster

Does social status shape height, rain bosworth studies how deaf children experience the world.

A photograph of James Price Point, in Western Australia.

Summer-like heat is scorching the Southern Hemisphere — in winter

Zapping sand to create rock could help curb coastal erosion, the world’s record-breaking hot streak has lasted 14 months. when will it end.

A bright concentration of stars on a dark sky.

The nearest midsized black hole might instead be a horde of lightweights

A distant quasar may be zapping all galaxies around itself, some meteors leave trails lasting up to an hour. now we may know why.

A spoon scooping mayonnaise out of a jar.

Mayo is weirdly great for understanding nuclear fusion experiments

The world’s fastest microscope makes its debut, health & medicine.

A picture of an epinephrine nasal spray for the treatment of severe allergic reactions

People with food and other allergies have a new way to treat severe reactions

Extreme heat and rain are fueling rising cases of mosquito-borne diseases, 50 years ago, antibiotic resistant bacteria became a problem outside hospitals.

Brown mountains stand in the background, with golden grass covered foothills in the foreground.

Mantle waves buoy continents upward and bedeck them with diamonds

‘turning to stone’ paints rocks as storytellers and mentors, why japan issued its first-ever mega-earthquake alert, science & society.

A black-and-white woodcut engraving depicting Phoenician sea traders, who thrived after the Bronze Age

‘After 1177 B.C.’ describes how societies fared when the Bronze Age ended

Scientists are fixing flawed forensics that can lead to wrongful convictions, language models may miss signs of depression in black people’s facebook posts.

Subscribers, enter your e-mail address for full access to the Science News archives and digital editions.

Not a subscriber? Become one now .

research paper articles

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

  • We're Hiring!
  • Help Center

Download 55 million PDFs for free

Explore our top research interests.

research paper articles

Engineering

research paper articles

Anthropology

research paper articles

  • Earth Sciences

research paper articles

  • Computer Science

research paper articles

  • Mathematics

research paper articles

  • Health Sciences

research paper articles

Join 270 million academics and researchers

Track your impact.

Share your work with other academics, grow your audience and track your impact on your field with our robust analytics

Discover new research

Get access to millions of research papers and stay informed with the important topics around the world

Publish your work

Publish your research with fast and rigorous service through Academia.edu Journals. Get instant worldwide dissemination of your work

Unlock the most powerful tools with Academia Premium

research paper articles

Work faster and smarter with advanced research discovery tools

Search the full text and citations of our millions of papers. Download groups of related papers to jumpstart your research. Save time with detailed summaries and search alerts.

  • Advanced Search
  • PDF Packages of 37 papers
  • Summaries and Search Alerts

research paper articles

Share your work, track your impact, and grow your audience

Get notified when other academics mention you or cite your papers. Track your impact with in-depth analytics and network with members of your field.

  • Mentions and Citations Tracking
  • Advanced Analytics
  • Publishing Tools

Real stories from real people

research paper articles

Used by academics at over 15,000 universities

research paper articles

Get started and find the best quality research

  • Academia.edu Journals
  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Cognitive Science
  • Academia ©2024

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Research paper

How to Write a Research Paper | A Beginner's Guide

A research paper is a piece of academic writing that provides analysis, interpretation, and argument based on in-depth independent research.

Research papers are similar to academic essays , but they are usually longer and more detailed assignments, designed to assess not only your writing skills but also your skills in scholarly research. Writing a research paper requires you to demonstrate a strong knowledge of your topic, engage with a variety of sources, and make an original contribution to the debate.

This step-by-step guide takes you through the entire writing process, from understanding your assignment to proofreading your final draft.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Understand the assignment, choose a research paper topic, conduct preliminary research, develop a thesis statement, create a research paper outline, write a first draft of the research paper, write the introduction, write a compelling body of text, write the conclusion, the second draft, the revision process, research paper checklist, free lecture slides.

Completing a research paper successfully means accomplishing the specific tasks set out for you. Before you start, make sure you thoroughly understanding the assignment task sheet:

  • Read it carefully, looking for anything confusing you might need to clarify with your professor.
  • Identify the assignment goal, deadline, length specifications, formatting, and submission method.
  • Make a bulleted list of the key points, then go back and cross completed items off as you’re writing.

Carefully consider your timeframe and word limit: be realistic, and plan enough time to research, write, and edit.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

There are many ways to generate an idea for a research paper, from brainstorming with pen and paper to talking it through with a fellow student or professor.

You can try free writing, which involves taking a broad topic and writing continuously for two or three minutes to identify absolutely anything relevant that could be interesting.

You can also gain inspiration from other research. The discussion or recommendations sections of research papers often include ideas for other specific topics that require further examination.

Once you have a broad subject area, narrow it down to choose a topic that interests you, m eets the criteria of your assignment, and i s possible to research. Aim for ideas that are both original and specific:

  • A paper following the chronology of World War II would not be original or specific enough.
  • A paper on the experience of Danish citizens living close to the German border during World War II would be specific and could be original enough.

Note any discussions that seem important to the topic, and try to find an issue that you can focus your paper around. Use a variety of sources , including journals, books, and reliable websites, to ensure you do not miss anything glaring.

Do not only verify the ideas you have in mind, but look for sources that contradict your point of view.

  • Is there anything people seem to overlook in the sources you research?
  • Are there any heated debates you can address?
  • Do you have a unique take on your topic?
  • Have there been some recent developments that build on the extant research?

In this stage, you might find it helpful to formulate some research questions to help guide you. To write research questions, try to finish the following sentence: “I want to know how/what/why…”

A thesis statement is a statement of your central argument — it establishes the purpose and position of your paper. If you started with a research question, the thesis statement should answer it. It should also show what evidence and reasoning you’ll use to support that answer.

The thesis statement should be concise, contentious, and coherent. That means it should briefly summarize your argument in a sentence or two, make a claim that requires further evidence or analysis, and make a coherent point that relates to every part of the paper.

You will probably revise and refine the thesis statement as you do more research, but it can serve as a guide throughout the writing process. Every paragraph should aim to support and develop this central claim.

Prevent plagiarism. Run a free check.

A research paper outline is essentially a list of the key topics, arguments, and evidence you want to include, divided into sections with headings so that you know roughly what the paper will look like before you start writing.

A structure outline can help make the writing process much more efficient, so it’s worth dedicating some time to create one.

Your first draft won’t be perfect — you can polish later on. Your priorities at this stage are as follows:

  • Maintaining forward momentum — write now, perfect later.
  • Paying attention to clear organization and logical ordering of paragraphs and sentences, which will help when you come to the second draft.
  • Expressing your ideas as clearly as possible, so you know what you were trying to say when you come back to the text.

You do not need to start by writing the introduction. Begin where it feels most natural for you — some prefer to finish the most difficult sections first, while others choose to start with the easiest part. If you created an outline, use it as a map while you work.

Do not delete large sections of text. If you begin to dislike something you have written or find it doesn’t quite fit, move it to a different document, but don’t lose it completely — you never know if it might come in useful later.

Paragraph structure

Paragraphs are the basic building blocks of research papers. Each one should focus on a single claim or idea that helps to establish the overall argument or purpose of the paper.

Example paragraph

George Orwell’s 1946 essay “Politics and the English Language” has had an enduring impact on thought about the relationship between politics and language. This impact is particularly obvious in light of the various critical review articles that have recently referenced the essay. For example, consider Mark Falcoff’s 2009 article in The National Review Online, “The Perversion of Language; or, Orwell Revisited,” in which he analyzes several common words (“activist,” “civil-rights leader,” “diversity,” and more). Falcoff’s close analysis of the ambiguity built into political language intentionally mirrors Orwell’s own point-by-point analysis of the political language of his day. Even 63 years after its publication, Orwell’s essay is emulated by contemporary thinkers.

Citing sources

It’s also important to keep track of citations at this stage to avoid accidental plagiarism . Each time you use a source, make sure to take note of where the information came from.

You can use our free citation generators to automatically create citations and save your reference list as you go.

APA Citation Generator MLA Citation Generator

The research paper introduction should address three questions: What, why, and how? After finishing the introduction, the reader should know what the paper is about, why it is worth reading, and how you’ll build your arguments.

What? Be specific about the topic of the paper, introduce the background, and define key terms or concepts.

Why? This is the most important, but also the most difficult, part of the introduction. Try to provide brief answers to the following questions: What new material or insight are you offering? What important issues does your essay help define or answer?

How? To let the reader know what to expect from the rest of the paper, the introduction should include a “map” of what will be discussed, briefly presenting the key elements of the paper in chronological order.

The major struggle faced by most writers is how to organize the information presented in the paper, which is one reason an outline is so useful. However, remember that the outline is only a guide and, when writing, you can be flexible with the order in which the information and arguments are presented.

One way to stay on track is to use your thesis statement and topic sentences . Check:

  • topic sentences against the thesis statement;
  • topic sentences against each other, for similarities and logical ordering;
  • and each sentence against the topic sentence of that paragraph.

Be aware of paragraphs that seem to cover the same things. If two paragraphs discuss something similar, they must approach that topic in different ways. Aim to create smooth transitions between sentences, paragraphs, and sections.

The research paper conclusion is designed to help your reader out of the paper’s argument, giving them a sense of finality.

Trace the course of the paper, emphasizing how it all comes together to prove your thesis statement. Give the paper a sense of finality by making sure the reader understands how you’ve settled the issues raised in the introduction.

You might also discuss the more general consequences of the argument, outline what the paper offers to future students of the topic, and suggest any questions the paper’s argument raises but cannot or does not try to answer.

You should not :

  • Offer new arguments or essential information
  • Take up any more space than necessary
  • Begin with stock phrases that signal you are ending the paper (e.g. “In conclusion”)

There are four main considerations when it comes to the second draft.

  • Check how your vision of the paper lines up with the first draft and, more importantly, that your paper still answers the assignment.
  • Identify any assumptions that might require (more substantial) justification, keeping your reader’s perspective foremost in mind. Remove these points if you cannot substantiate them further.
  • Be open to rearranging your ideas. Check whether any sections feel out of place and whether your ideas could be better organized.
  • If you find that old ideas do not fit as well as you anticipated, you should cut them out or condense them. You might also find that new and well-suited ideas occurred to you during the writing of the first draft — now is the time to make them part of the paper.

The goal during the revision and proofreading process is to ensure you have completed all the necessary tasks and that the paper is as well-articulated as possible. You can speed up the proofreading process by using the AI proofreader .

Global concerns

  • Confirm that your paper completes every task specified in your assignment sheet.
  • Check for logical organization and flow of paragraphs.
  • Check paragraphs against the introduction and thesis statement.

Fine-grained details

Check the content of each paragraph, making sure that:

  • each sentence helps support the topic sentence.
  • no unnecessary or irrelevant information is present.
  • all technical terms your audience might not know are identified.

Next, think about sentence structure , grammatical errors, and formatting . Check that you have correctly used transition words and phrases to show the connections between your ideas. Look for typos, cut unnecessary words, and check for consistency in aspects such as heading formatting and spellings .

Finally, you need to make sure your paper is correctly formatted according to the rules of the citation style you are using. For example, you might need to include an MLA heading  or create an APA title page .

Scribbr’s professional editors can help with the revision process with our award-winning proofreading services.

Discover our paper editing service

Checklist: Research paper

I have followed all instructions in the assignment sheet.

My introduction presents my topic in an engaging way and provides necessary background information.

My introduction presents a clear, focused research problem and/or thesis statement .

My paper is logically organized using paragraphs and (if relevant) section headings .

Each paragraph is clearly focused on one central idea, expressed in a clear topic sentence .

Each paragraph is relevant to my research problem or thesis statement.

I have used appropriate transitions  to clarify the connections between sections, paragraphs, and sentences.

My conclusion provides a concise answer to the research question or emphasizes how the thesis has been supported.

My conclusion shows how my research has contributed to knowledge or understanding of my topic.

My conclusion does not present any new points or information essential to my argument.

I have provided an in-text citation every time I refer to ideas or information from a source.

I have included a reference list at the end of my paper, consistently formatted according to a specific citation style .

I have thoroughly revised my paper and addressed any feedback from my professor or supervisor.

I have followed all formatting guidelines (page numbers, headers, spacing, etc.).

You've written a great paper. Make sure it's perfect with the help of a Scribbr editor!

Open Google Slides Download PowerPoint

Is this article helpful?

Other students also liked.

  • Writing a Research Paper Introduction | Step-by-Step Guide
  • Writing a Research Paper Conclusion | Step-by-Step Guide
  • Research Paper Format | APA, MLA, & Chicago Templates

More interesting articles

  • Academic Paragraph Structure | Step-by-Step Guide & Examples
  • Checklist: Writing a Great Research Paper
  • How to Create a Structured Research Paper Outline | Example
  • How to Write a Discussion Section | Tips & Examples
  • How to Write Recommendations in Research | Examples & Tips
  • How to Write Topic Sentences | 4 Steps, Examples & Purpose
  • Research Paper Appendix | Example & Templates
  • Research Paper Damage Control | Managing a Broken Argument
  • What Is a Theoretical Framework? | Guide to Organizing

What is your plagiarism score?

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • PMC11335839

Logo of springeropen

Drug–Drug Interactions Involving High-Alert Medications that Lead to Interaction-Associated Symptoms in Pediatric Intensive Care Patients: A Retrospective Study

Lisa marie kiesel.

1 Clinical Pharmacy, Institute of Pharmacy, Medical Faculty, Leipzig University, and Drug Safety Center, Leipzig University and Leipzig University Hospital, Leipzig, Germany

Astrid Bertsche

2 Division of Neuropediatrics, University Hospital for Children and Adolescents, Greifswald, Germany

3 Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig, Germany

Wieland Kiess

Manuela siekmeyer, thilo bertsche, martina patrizia neininger, associated data.

Children treated in a pediatric intensive care unit (PICU) often receive several drugs together, among them drugs defined as high-alert medications (HAMs). Those drugs carry a high risk of causing patient harm, for example, due to a higher potential for interactions. HAMs should therefore be administered with caution, especially in a PICU.

The objective of the current study was to identify drug–drug interactions involving HAMs that increase the risk of interaction-associated symptoms in pediatric intensive care.

In a retrospective study, we analyzed the electronic documentation of patients hospitalized for at least 48 h in a general PICU who received at least two different drugs within a 24-h interval. We assessed potential drug–drug interactions involving HAM on the basis of the two drug information databases UpToDate and drugs.com. Furthermore, we analyzed whether symptoms were observed after the administration of drug pairs that could lead to interaction-associated symptoms. For drug pairs involving HAM administered on at least 2% of patient days, and symptoms observed at least ten times after a respective drug pair, we calculated odds ratios, 95% confidence intervals, and p -values by using a univariate binary logistic regression.

Among 315 analyzed patients, 81.3% (256/315) received drugs defined as high-alert medication for pediatric patients. Those high-alert medications were involved in 20,150 potential drug–drug interactions. In 14.0% (2830/20,150) of these, one or more symptoms were observed that could be a possible consequence of the interaction, resulting in 3203 observed symptoms affecting 56.3% (144/256) of patients receiving high-alert medication. The odds ratios for symptoms observed after a drug–drug interaction were increased for eight specific symptoms (each p ≤ 0.05), especially hemodynamic alterations and disturbances of electrolyte and fluid balance. The odds ratio was highest for decreased blood pressure observed after the administration of the drug pair fentanyl and furosemide (OR 5.06; 95% confidence interval 3.5–7.4; p < 0.001). Increased odds ratios for specific symptoms observed after drug–drug interactions resulted from eight combinations composed of eight different drugs: digoxin, fentanyl, midazolam, phenobarbital, potassium salts and vancomycin (high-alert medications), and the diuretics furosemide and hydrochlorothiazide (non-high-alert medications). The resulting drug pairs were: potassium salts–furosemide, fentanyl–furosemide, vancomycin–furosemide, digoxin–furosemide, digoxin–hydrochlorothiazide, fentanyl–phenobarbital, potassium salts–hydrochlorothiazide, and midazolam–hydrochlorothiazide.

Conclusions

In a cohort of PICU patients, this study identified eight specific drug pairs involving high-alert medications that may increase the risk of interaction-associated symptoms, mainly hemodynamic alterations and electrolyte/fluid balance disturbances. If the administration of those drug pairs is unavoidable, patients should be closely monitored.

Supplementary Information

The online version contains supplementary material available at 10.1007/s40272-024-00641-x.

More than half of the patients receiving high-alert medications were affected by a total of 3203 symptoms observed after drug–drug interactions involving high-alert medications. More than one in four observed symptoms were associated with a drug–drug interaction at a significant odds ratio.
Specific drug pairs were identified that may increase the risk of interaction-associated symptoms, mainly categorized as hemodynamic alterations and fluid and electrolyte balance disturbances. Those drug pairs involved eight drugs frequently administered in a PICU.
Physicians should avoid the administration of these specific drug pairs, or if their administration is unavoidable, monitor patients closely for corresponding symptoms.

Introduction

Children admitted to a pediatric intensive care unit (PICU) are often in a critical state of health and require complex drug treatment. Although administration of multiple drugs together leads to an increased risk of drug-related problems [ 1 , 2 ], previous studies reported most patients in PICUs received a median number of ten different drugs per patient day [ 3 , 4 ]. Especially in the PICU, so-called high-alert medications (HAMs) must be administered frequently. Due to various factors, such as a narrow therapeutic range or a high potential for drug–drug interactions (DDIs) [ 5 , 6 ], these drugs bear a higher risk of causing patient harm compared with other drugs, according to the Institute for Safe Medication Practices (ISMP) [ 7 ]. Therefore, the administration of HAM should be given careful consideration. The ISMP developed its first list of HAMs for the acute care setting in 1995 [ 7 ]. Until now, few studies have identified specialized lists of HAM for children [ 6 , 8 – 10 ]. Schilling et al. combined results from three previous studies to develop a list of 20 HAMs for pediatric patients in the German setting. They described DDI as a drug-related problem for half of those 20 [ 6 ].

There is scant literature about DDIs involving HAMs for pediatric patients or their implications for children admitted to a PICU. Therefore, we aimed to identify DDIs involving HAMs that may increase the risk of interaction-associated symptoms. We specifically targeted drug pairs that should be avoided in daily clinical practice or closely monitored if their administration is unavoidable. We did not distinguish between different severity grades for DDI and symptoms, as we aimed to assess the most common DDIs regardless of their classification according to the databases, and we endeavored not to overlook any relevant symptoms. Therefore, we also included drug–drug interactions with a low classification according to the databases, as these can also severely affect patients in a critical health state.

Material and Methods

Study design.

This retrospective study analyzed data from April 2018 to March 2019 obtained in a general PICU of a university hospital in Germany. Patients of all pediatric age groups were treated in the study unit, except neonates, who were treated in a separate neonatal intensive care unit. We assessed the electronic documentation for each patient in the hospital’s patient data management system to identify potential DDIs (pDDIs) involving at least one drug defined as a HAM. Furthermore, we analyzed symptoms observed after these pDDIs to detect interaction-associated symptoms.

We included patients hospitalized for at least 48 h in the study unit who received at least two different drugs within a 24-h interval during their stay. Patients on chemotherapy were excluded because they were mainly treated at the pediatric oncology unit of the university hospital and only transferred to the PICU for a short time if their health condition deteriorated severely.

The study titled “Adverse drug reactions in an interdisciplinary PICU” was conducted according to the guidelines of the Declaration of Helsinki and approved by the Ethics Committee at the Medical Faculty, Leipzig University, Germany (study number: 127/19-ek) on 2 May 2019. The ethics committee waived informed consent because this was a retrospective study, and patients’ treatment was not influenced.

Identification of HAM in the PICU and pDDIs Involving at Least One HAM in Clinical Care

On the basis of the electronic patient documentation, we first examined the administration of the 20 drugs that Schilling et al. [ 6 ] defined as HAM for hospitalized pediatric patients. We included 15 of those HAMs in our analysis because 5 of the 20 defined HAMs were not administered in our PICU during the study period: cyclosporine, phenytoin, amiodarone, vecuronium, and rocuronium. Second, we evaluated pDDIs that involved at least one HAM for each patient day. For this purpose, potentially interacting drug pairs were identified on the basis of two drug information databases: UpToDate (provided by Wolters Kluwer, Riverwoods, Illinois, USA) and drugs.com (provided by Drugsite Trust, Auckland, New Zealand). Each drug pair for which an interaction alert was reported in at least one of the databases was defined as a pDDI. To identify potentially interacting drug pairs, we considered a maximum time interval of 24 h between administering a HAM and another potentially interacting drug, regardless of whether the second drug was defined as a HAM. We considered a 24-h interval to be appropriate because estimating the correct half-lives of interacting drugs in individual patients in our cohort was hardly feasible due to the general developmental variability of pharmacokinetics and pharmacodynamics in children and the possible influence of the individual patient’s condition. Hence, if a potentially interacting drug was administered 24 h before or after a HAM, the event was categorized as a pDDI. If a pDDI occurred more than once within the defined time interval, it was counted only once. For continuous infusions, it was assessed for each drug administered concurrently whether a pDDI occurred due to the additional drug.

Identification of Interaction-Associated Symptoms

For each pDDI, we investigated whether symptoms that could be associated with it were observed after the administration. For this investigation, we examined the nurses’ and physicians’ daily documentation of the patient’s condition for symptoms that occurred within a 24-hour interval after administration of the second drug of the relevant drug pair. The documentation included automatically recorded vital parameters, laboratory parameters, and additional documentation, such as non-measurable symptoms as nausea or vomiting (Online Resource 1). For vital and laboratory parameters, age-dependent standard ranges for infants, children, and adolescents were determined by the treating physicians. For some patients, the attending physician adjusted the standard ranges to the patient’s health condition. In our analyses, we considered deviations from the determined patient–individual ranges. We focused on symptoms that were identified as possible consequences of a pDDI according to our database search in UpToDate and drugs.com. If at least one of these symptoms was associated with the relevant drug pair at a statistically significant odds ratio (OR), this was defined as a DDI. Since we took the underlying data on the symptoms from the documentation of physicians and nursing staff, it can be assumed that those symptoms were clinically relevant, as they would otherwise not have been documented.

To estimate the risk associated with the interaction of a particular drug pair for an observed symptom, we calculated the OR and 95% confidence interval. To ensure that the calculation was based on a sufficient occurrence of a particular drug pair and corresponding symptom, we set two criteria. First, we only considered potentially interacting drug pairs administered on at least 2% of patient days. Second, we focused only on corresponding symptoms observed at least ten times after a given drug pair. Combining potentially interacting drug pairs and symptoms that met these criteria, we created a contingency table that presents the frequency of the following combinations on each patient day: both the potentially interacting drug pair and corresponding symptom were observed; only the potentially interacting drug pair was observed; only the symptom was observed; and neither the potentially interacting drug pair nor the symptom was observed. On the basis of the contingency table, a univariate logistic regression was performed to obtain OR, 95% confidence interval, and p -value. The calculation was conducted using IBM SPSS Statistics Version 29 (IBM Corporation, Armonk, New York, USA). A p value ≤ 0.05 was considered to indicate significance.

Characteristics of Patients and Administered Drugs

We examined 1263 patients admitted to the PICU during the study period for the inclusion criteria (Fig. ​ (Fig.1). 1 ). Of those, 315 (24.9%) patients fulfilled the inclusion criteria. Baseline patient characteristics are presented in Table ​ Table1. 1 . In total, 255 different drugs were administered to the patients. Of these drugs, 5.9% (15/255) were identified as HAM for hospitalized pediatric patients, according to the study by Schilling et al. [ 6 ] (Table ​ (Table2). 2 ). The most commonly administered sedative during the study period was midazolam [affected 173/315 (54.0%) patients on 1011/3788 (26.7%) patient days; Online Resource 2]. Potassium salts were the most frequently administered HAM, used on 39.0% of patient days (1477/3788), in 47.3% (149/315) of patients (Table ​ (Table3 3 ).

An external file that holds a picture, illustration, etc.
Object name is 40272_2024_641_Fig1_HTML.jpg

Flow chart of patient inclusion

Baseline patient characteristics

CharacteristicsValue
Number of patients,  (m/f)315 (183/132)
Median age, years (Q25/Q75; min/max)3.7 (0.8/11.3; 0.0/22.8)
Median weight, kg (Q25/Q75; min/max)13.0 (6.7/29.0; 2.3/156.0)
Median length of PICU stay, days (Q25/Q75; min/max)8 (4/14; 3/99)
Median simplified acute physiology score on PICU admission (Q25/Q75; min/max)13 (9/21; 2/50)
Status of ventilation at PICU admission, (%)
 Not ventilated151 (47.9)
 Non-invasive ventilation116 (36.8)
 Invasive ventilation48 (15.3)
Death, (%)6 (1.9)
Primary reason for PICU admission, (%)
 Surgical167 (53.0)
  Gastrointestinal53 (16.8)
  Musculoskeletal40 (12.7)
  Neurologic25 (7.9)
  Oncologic23 (7.3)
  Ears-nose-throat/maxillofacial13 (4.1)
  Urologic7 (2.2)
  Other6 (1.9)
 Medical141 (44.8)
  Respiratory60 (19.0)
  Neurologic20 (6.3)
  Sepsis15 (4.8)
  Gastrointestinal13 (4.1)
  Metabolic11 (3.5)
  Cardiovascular5 (1.2)
  Other17 (5.4)
 Trauma7 (2.2)

PICU pediatric intensive care unit

Characteristics of drug therapy

CharacteristicsValue
Total number of administered drugs, 43,200
Number of different administered drugs, 255
Median number of drugs per patient per day, (Q25/Q75; min/max)10 (7/15;1/34)
Total number of administered HAM, / (%)5385/43,200 (12.5)
Number of different administered HAM, / (%)15/255 (5.9)
Median number of HAM per patient per day, (Q25/Q75; min/max)1 (0/2; 0/8)

HAM high-alert medication

Frequency of high-alert medications administered in the pediatric intensive care unit during the study period. In our analysis, we included 15 of 20 drugs defined as high-alert medications for hospitalized pediatric patients according to Schilling et al. [ 6 ]

High-alert medicationNumber of patients receiving the high-alert medication, (%)
( = 315 patients)
Number of patient days with the high-alert medication, (%)
( = 3788 patient days)
Potassium salts149 (47.3)1477 (39.0)
Midazolam173 (54.9)1011 (26.7)
Vancomycin33 (10.5)449 (11.9)
Epinephrine74 (23.5)431 (11.4)
Clonidine30 (9.5)415 (11.0)
Phenobarbital65 (20.6)405 (10.7)
Fentanyl42 (13.3)389 (10.3)
Digoxin14 (4.4)302 (8.0)
Amphotericin B13 (4.1)131 (3.5)
Tacrolimus12 (3.8)127 (3.4)
Propofol40 (12.7)84 (2.2)
Dobutamine7 (2.2)69 (1.8)
Norepinephrine18 (5.7)35 (0.9)
Morphine12 (3.8)33 (0.9)
Dopamine3 (1.0)27 (0.7)

The remaining five high-alert medications were not administered during the study period: cyclosporine, phenytoin, amiodarone, vecuronium, and rocuronium

pDDIs Involving at Least One HAM

Analyzing each patient’s electronic documentation, we identified 20,150 pDDIs involving at least one HAM on the basis of our database search in UpToDate and drugs.com. We calculated a rate of 78.7 pDDIs per patient that involved at least one HAM (20,150 pDDI involving at least one HAM/256 patients receiving HAM). The 20,150 pDDIs resulted from 469 different drug pairs. Of these potentially interacting drug pairs, 14.3% (67/469) were administered on at least 2% of patient days. The frequency of the potentially interacting drug pairs and their classifications according to the databases is presented in Online Resource 3.

Interaction-Associated Symptoms Identified in the PICU

We observed at least one symptom after 14.0% (2830/20,150) of pDDIs, resulting in a total of 3203 observed symptoms affecting 56.3% (144/256) of patients receiving HAM (Table  4 ). While we observed one symptom after the administration of 87.7% (2482/2830) of those pDDIs, more than one symptom was observed after 12.3% (348/2830) of pDDIs.

Frequency of symptoms observed after potential drug–drug interactions involving high-alert medications

SymptomFrequency of symptoms,
Frequency related to total of symptoms, %
( = 3203)
Frequency of patients affected by the respective symptom after a pDDI involving HAM,
(%)
( = 256 patients receiving HAM)
Increased heart rate78124.462 (24.2)
Hyponatremia39012.252 (20.3)
Vomiting2628.241 (16.0)
Hypokalemia2437.618 (7.0)
Decreased blood pressure2377.428 (10.9)
Respiratory depression1645.124 (9.4)
Urinary retention1374.329 (11.3)
Hyperkalemia1314.143 (16.8)
Edema1284.013 (5.1)
Nausea1193.724 (9.4)
Agitation1183.721 (8.2)
Decreased diuresis1123.523 (9.0)
Decreased heart rate963.010 (3.9)
Hypomagnesemia571.814 (5.5)
Sweating461.49 (3.5)
Hypocalcemia431.312 (4.7)
Increased blood pressure431.312 (4.7)
Fever190.612 (4.7)
Dyspnea140.47 (2.7)
Seizures140.45 (2.0)
Constipation100.34 (1.6)
Diarrhea90.32 (0.8)
Dizziness80.23 (1.2)
Abdominal pain50.23 (1.2)
Sedation40.11 (0.4)
Excessive diuresis30.12 (0.8)
Hypercalcemia30.12 (0.8)
Increased PTH30.11 (0.4)
Exanthema20.12 (0.8)
Tachypnea20.12 (0.8)

HAM high-alert medication, pDDI potential drug–drug interaction, PTH parathyroid hormone

The most pDDIs after which we observed at least one symptom involved potassium salts (2.4%; 493/20,150), followed closely by digoxin (2.4%; 480/20,150) and fentanyl (2.4%; 476/20,150; Fig. ​ Fig.2 2 ).

An external file that holds a picture, illustration, etc.
Object name is 40272_2024_641_Fig2_HTML.jpg

For each high-alert medication, the number of potential drug–drug interactions (total interactions: N = 20,150) is plotted against how often at least one symptom was observed after a potential drug–drug interaction involving the respective high-alert medication (total interactions followed by symptoms: N = 2830)

For 33.1% (1061/3203) of observed symptoms, the preconditions for the calculation of the OR were fulfilled (Table ​ (Table5). 5 ). We found an increased OR for hyponatremia, hypokalemia, decreased blood pressure, increased heart rate, urinary retention, edema, sweating, and restlessness (each p ≤ 0.05; Table ​ Table5). 5 ). Those eight specific symptoms accounted for 28.0% (897/3203) of all observed symptoms potentially related to DDI. These DDIs involved eight different drugs in eight different combinations. Of the eight drugs, 75% (6/8) were defined as HAM for pediatric patients: digoxin, fentanyl, midazolam, phenobarbital, potassium salts, and vancomycin. The remaining 25% (2/8) were diuretics not defined as HAM: furosemide and hydrochlorothiazide. The highest OR was found for decreased blood pressure observed after administration of the drug pair fentanyl and furosemide (OR 5.06; 95% CI 3.5–7.4; p < 0.001), followed by hypokalemia observed after administration of the drug pairs digoxin and furosemide (OR 4.16; 95% CI 3.1–5.6; p < 0.001) and digoxin and hydrochlorothiazide (OR 3.86; 95% CI 2.9–5.1; p < 0.001).

Drug–drug interactions involving high-alert medications and subsequent symptoms observed within 24 h after the administration of the respective drug–drug interaction

pDDIClassificationAssociated symptomPatient days with/without pDDI and symptom,
Drug 1Drug 2UpToDate drugs.com pDDIYesYesNoNoOdds ratio [95% CI] value
SymptomYesNoYesNo
Potassium salts FurosemideBn/aHyponatremia16366734126171.88 [1.5; 2.3]< 0.001*
Fentanyl FurosemideCModerateDecreased blood pressure4327510433665.06 [3.5; 7.4]< 0.001*
Urinary retention8623254129292.01 [1.5; 2.6]< 0.001*
Increased heart rate7624252129491.78 [1.3; 2.3]< 0.001*
Vancomycin Furosemiden/aModerateEdema8315049030653.46 [2.6; 4.6]< 0.001*
Decreased diuresis4219157529801.14 [0.8; 1.6]0.459
Vomiting3619750230531.11 [0.8; 1.6]0.573
Digoxin Furosemiden/aModerateHypokalemia8913452330423.86 [2.9; 5.1]< 0.001*
Nausea1021317733880.90 [0.5; 1.7]0.748
Increased heart rate3518856230030.99 [0.7; 1.4]0.978
Hypomagnesemia1221123833270.80 [0.4; 1.4]0.451
Digoxin HCTn/aModerateHypokalemia8612052630564.16 [3.1; 5.6]< 0.001*
Increased heart rate2917756830140.87 [0.6; 1.3]0.496
Fentanyl Phenobarbital DMajorRestlessness805996126883.79 [2.7; 5.4]< 0.001*
Sweating3010948031691.82 [1.2; 2.8]0.005*
Potassium salts HCTBn/aHyponatremia8522941930552.71 [2.1; 3.5]< 0.001*
Midazolam HCTn/aModerateDecreased blood pressure2016812734733.26 [2.0; 5.3]< 0.001*
Increased heart rate5613254130592.40 [1.7; 3.3]< 0.001*

For each drug combination and observed symptom, the frequencies of patient days on which the respective potential drug–drug interaction was or was not administered and whether the symptom was observed is shown. From those numbers, the odds ratios, 95% confidence intervals, and p -values were calculated using a univariate logistic regression

HCT hydrochlorothiazide, n/a not applicable (not listed in the respective database), pDDI potential drug–drug interaction

*Significant

a Categorized as high-alert medication for hospitalized pediatric patients according to Schilling et al. [ 6 ]

b Classification used in UpToDate: “D—Consider therapy modification; C—Monitor therapy; B—No action needed. Agents may interact with each other”

c Classification used in Drugs.com: “Major—Avoid combinations; Moderate—Usually avoid combination. Use it only under special circumstances; Minor—Take steps to circumvent the interaction risk and/or establish a monitoring plan”

HAMs are Common Drugs Administered in the PICU

According to the ISMP, HAMs carry a higher risk of patient harm compared with ordinary drugs [ 7 ]. Even when used as prescribed, they significantly increase the risk of drug-related problems [ 11 ]. In our study, 81% of critically ill children received at least one drug defined as HAM for pediatric patients by Schilling et al. [ 6 ]. Potassium salts, midazolam, and vancomycin were the HAMs most frequently administered. This is in line with a previous study in a pediatric emergency setting reporting that 91% of patients were prescribed at least one HAM, with potassium salts being the most frequently administered [ 12 ].

More than 20,000 pDDIs with HAM During a 1-Year Study

It is widely known that pDDIs are highly prevalent in PICUs. They are associated with various factors, such as a high number of administered drugs, a complex chronic condition, or an increased length of hospitalization [ 4 , 13 , 14 ]. Although previous studies determined pDDI as a cause of drug-related problems with HAM for pediatric patients, there is only limited knowledge about the frequency of pDDIs in pediatric intensive care [ 6 , 8 , 10 ]. In our study, we found more than 20,000 pDDIs involving HAM in 256 pediatric patients over the 1-year study period. A previous Brazilian study of adult intensive care patients reported 846 HAM-related pDDIs in 60 patients [ 15 ]. Compared with our research, the Brazilian study reported a considerably lower rate of HAM-related pDDIs per patient (79 versus 14). Part of this difference may be explained by the fact that pediatric patients requiring intensive care are more susceptible to drug–drug interactions [ 16 ]. However, it may also be related to the fact that the Brazilian study was performed on the basis of the database Micromedex 2.0 only [ 15 ]. Several studies recommended using at least two databases to determine pDDIs in daily routine [ 17 – 19 ] . Thus, we used the two databases, UpToDate and drugs.com, to avoid underestimating any potential risks. However, since the concordance between different databases is limited, comparing various studies can be challenging [ 20 , 21 ].

Physicians Should be Aware of Interaction-Associated Symptoms

For 2830 pDDIs, we observed 3203 symptoms occurring after the administration of the potentially interacting drug pairs. More than one in four detected symptoms were eventually associated with a DDI. Those interaction-associated symptoms comprised eight specific symptoms, mainly hemodynamic alterations or electrolyte and fluid balance disturbances. These symptoms were frequently reported in previous pediatric intensive care studies [ 3 , 22 – 24 ]. The study presented here shows that DDI involving HAM should be considered a likely trigger for symptoms in addition to other factors, such as the underlying disease or non-drug treatments, such as surgeries. It can also be assumed that various factors contribute to the occurrence of a symptom. When identifying DDIs and following interaction-associated symptoms, we did not distinguish between different severity grades of DDI or symptoms, as the main aim of our study was to identify drug pairs that are frequently associated with symptoms that are considered clinically relevant by the responsible physicians and nurses. Physicians usually receive a considerable number of alerts when using a database-related interaction checker. This may quickly lead to over-alerting. Therefore, we aimed to provide physicians with a concise overview of clinically relevant DDIs that occur frequently in a PICU. Our findings could be implemented in commonly used database-related interaction checkers to draw physicians’ attention to drug pairs involving HAM that are potentially associated with an increased risk of adverse events.

We identified eight specific drug pairs composed of eight different drugs that may lead to an increased risk of interaction-associated symptoms. By calculating the OR for a DDI and a respective symptom, we took into account how often a symptom was observed on patient days when the interacting drug pair was administered compared with days when the respective drug pair was not administered. In particular, this should minimize the risk that certain combinations of DDI and symptoms are over- or underestimated. For the interaction of fentanyl and furosemide, we found the highest OR for the symptom of decreased blood pressure. Both drugs have been shown to belong to the top ten of the most frequently administered drugs and to be among the drugs most commonly involved in pDDIs in the pediatric intensive care setting [ 4 ]. In our study, DDI was associated with a potential fivefold increased risk of decreased blood pressure. The second highest OR, indicating a potential fourfold increased risk, was found for the interaction of digoxin with hydrochlorothiazide and the observed symptom of hypokalemia. Consequently, when the administration of drug pairs associated with a potentially increased risk of interaction-associated symptoms is unavoidable, patients should be closely monitored for potential symptoms.

Until now, few studies have dealt with interaction-associated symptoms in the pediatric intensive care setting [ 14 , 25 , 26 ]. One of those studies only focused on cytochrome P450-mediated drug–drug interactions [ 25 ]. Two other studies concentrated on symptoms on the basis of clinical monitoring and laboratory results, as we did in our research. Both studies also identified hemodynamic alterations and electrolyte and fluid balance disturbances as symptoms following DDIs. However, neither of those studies noted specific interactions that increased the risk of the detected symptoms [ 14 , 26 ]. Our study went one step further by revealing eight interacting drug pairs that may increase the risk of the identified interaction-associated symptoms in clinical practice. We found symptoms that are widely known to follow the respective DDI, such as the association of hyponatremia with the DDI of potassium salts and furosemide, or the increased risk for hypokalemia associated with the DDI of digoxin and furosemide. However, we also observed symptoms after a DDI that we did not expect. For example, we unexpectedly found that the DDI of fentanyl and furosemide was associated with a potential risk increase for urinary retention, or that the DDI of vancomycin and furosemide was associated with edema. Especially for symptoms that unexpectedly are observed after a specific DDI, other factors, such as the state of illness or a surgery that could also lead to the symptom, should be critically evaluated.

Limitations

Some limitations have to be considered when interpreting our study results. First of all, the relevance of some drugs administered in our study can vary in different PICUs around the world. However, the 15 drugs defined as HAM that were in the focus of our study are used in many PICUs worldwide [ 4 , 27 – 31 ].

As recommended by previous studies [ 17 – 19 ], we used two databases to prevent failure to detect interactions that could lead to interaction-associated symptoms. However, we could not identify a database specializing in DDI for pediatrics. Previous studies did not find an age-related trend in the magnitude of DDIs, although it should be noted that there are insufficient data for children under 2 years of age [ 32 , 33 ]. In addition, extrapolating data from adults to children may over- or underestimate the severity of DDIs [ 34 ]. Additionally, as most databases are limited to the information on the interactions of two drugs, potential synergistic or antagonistic effects of combinations consisting of three or more drugs might be overlooked.

Furthermore, the allowed maximum time interval of 24 h between the administration of two drugs may be too long for an interaction for some drug pairs. According to a previous review by Bakker et al., the optimal time interval would consider the half-lives of interacting drugs [ 21 ]. However, due to the developmental variability of pharmacokinetics and pharmacodynamics in children, it is very challenging to determine standardized drug half-lives in the pediatric population [ 35 ]. In addition, the individual patients’ conditions, such as renal function, can also have significant influence on drugs’ half-lives [ 36 ]. In addition, a constant plasma concentration is aimed for with many drugs, which is why a longer-lasting interaction potential can be assumed, although the half-lives of the individual drugs are varying. To ensure a standardized approach for evaluating DDI, we established a 24-h time interval as described in the review by Bakker et al. if consideration of drug half-lives is not feasible [ 21 ]. This methodological approach might potentially increase the risk of overestimation.

The retrospective design is another limitation of this study, as using nurses’ and physicians’ daily documentation entails the risk of missing data. That could lead to information bias, as the documentation was not primarily compiled to answer research questions. Consequently, using the patient documentation as data basis may have an impact on the identification of symptoms themselves, and on the observed associations between interacting drugs pairs and subsequent symptoms. Furthermore, due to the retrospective design, we could not assess whether the physicians accepted certain expectable symptoms as an inevitable consequence of the chosen drug therapy because the patient’s state of health required the administration.

In addition, it should be kept in mind that the administration of a HAM alone and the underlying disease may also increase the risk of adverse events. However, we focused on acknowledged DDIs and interaction-associated symptoms reported in established databases. We endeavored to identify symptoms prone to being associated with a DDI by calculating ORs, as those interactions potentially contribute to evoking symptoms, or to prolonging or exacerbating existing symptoms. These drug combinations should therefore be given special consideration in the routine care of critically ill pediatric patients who are already at risk.

Our study sheds light on a topic about which knowledge is limited: symptoms associated with DDIs involving HAM. We showed that pDDIs involving HAM are very common in pediatric intensive care. More than one in four observed symptoms were associated with a DDI. These symptoms were mainly disturbances of electrolyte and fluid balance and hemodynamic alterations. Focusing on drug pairs with a potentially increased risk of triggering these symptoms, we identified eight specific drug pairs composed of eight different drugs. However, administration of these drug pairs may be unavoidable. In that case, patients should be carefully monitored for electrolyte and fluid balance disturbances and hemodynamic alterations, which were observed as the most frequent interaction-associated symptoms.

Below is the link to the electronic supplementary material.

Acknowledgements

We thank all the physicians and nurses in the participating PICU for their helpful collaboration.

Declarations

Open Access funding enabled and organized by Projekt DEAL.

A. Bertsche reports grants from UCB Pharma GmbH and honoraria for speaking engagements from Biogen GmbH, Desitin Arzneimittel GmbH, Eisai GmbH, GW Pharma GmbH, Neuraxpharm GmbH, Shire/Takeda GmbH, UCB Pharma GmbH, and ViroPharma GmbH. The other authors declare they have no conflicts of interests.

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to ethical and privacy considerations to protect the confidentiality of patients.

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Ethics Committee of the Medical Faculty, Leipzig University, Germany (127/19-ek). The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments.

As this was a retrospective study and data were collected from patient records without any influence on patients’ treatment, the ethics committee waived informed consent.

Not applicable.

Conceptualization: Lisa Marie Kiesel and Martina Patrizia Neininger; methodology: Lisa Marie Kiesel, Martina Patrizia Neininger, Astrid Bertsche, Thilo Bertsche, Manuela Siekmeyer, and Wieland Kiess; formal analysis: Lisa Marie Kiesel; investigation: Lisa Marie Kiesel and Martina Patrizia Neininger; writing—original draft preparation: Lisa Marie Kiesel and Martina Patrizia Neininger; writing—review and editing: Astrid Bertsche, Thilo Bertsche, Manuela Siekmeyer, and Wieland Kiess; supervision: Martina Patrizia Neininger; project administration: Lisa Marie Kiesel and Martina Patrizia Neininger. All authors read and approved the final version.

American Psychological Association Logo

Free APA Journals ™ Articles

Recently published articles from subdisciplines of psychology covered by more than 90 APA Journals™ publications.

For additional free resources (such as article summaries, podcasts, and more), please visit the Highlights in Psychological Research page.

  • Basic / Experimental Psychology
  • Clinical Psychology
  • Core of Psychology
  • Developmental Psychology
  • Educational Psychology, School Psychology, and Training
  • Forensic Psychology
  • Health Psychology & Medicine
  • Industrial / Organizational Psychology & Management
  • Neuroscience & Cognition
  • Social Psychology & Social Processes
  • Moving While Black: Intergroup Attitudes Influence Judgments of Speed (PDF, 71KB) Journal of Experimental Psychology: General February 2016 by Andreana C. Kenrick, Stacey Sinclair, Jennifer Richeson, Sara C. Verosky, and Janetta Lun
  • Recognition Without Awareness: Encoding and Retrieval Factors (PDF, 116KB) Journal of Experimental Psychology: Learning, Memory, and Cognition September 2015 by Fergus I. M. Craik, Nathan S. Rose, and Nigel Gopie
  • The Tip-of-the-Tongue Heuristic: How Tip-of-the-Tongue States Confer Perceptibility on Inaccessible Words (PDF, 91KB) Journal of Experimental Psychology: Learning, Memory, and Cognition September 2015 by Anne M. Cleary and Alexander B. Claxton
  • Cognitive Processes in the Breakfast Task: Planning and Monitoring (PDF, 146KB) Canadian Journal of Experimental Psychology / Revue canadienne de psychologie expérimentale September 2015 by Nathan S. Rose, Lin Luo, Ellen Bialystok, Alexandra Hering, Karen Lau, and Fergus I. M. Craik
  • Searching for Explanations: How the Internet Inflates Estimates of Internal Knowledge (PDF, 138KB) Journal of Experimental Psychology: General June 2015 by Matthew Fisher, Mariel K. Goddu, and Frank C. Keil
  • Client Perceptions of Corrective Experiences in Cognitive Behavioral Therapy and Motivational Interviewing for Generalized Anxiety Disorder: An Exploratory Pilot Study (PDF, 62KB) Journal of Psychotherapy Integration March 2017 by Jasmine Khattra, Lynne Angus, Henny Westra, Christianne Macaulay, Kathrin Moertl, and Michael Constantino
  • Attention-Deficit/Hyperactivity Disorder Developmental Trajectories Related to Parental Expressed Emotion (PDF, 160KB) Journal of Abnormal Psychology February 2016 by Erica D. Musser, Sarah L. Karalunas, Nathan Dieckmann, Tara S. Peris, and Joel T. Nigg
  • The Integrated Scientist-Practitioner: A New Model for Combining Research and Clinical Practice in Fee-For-Service Settings (PDF, 58KB) Professional Psychology: Research and Practice December 2015 by Jenna T. LeJeune and Jason B. Luoma
  • Psychotherapists as Gatekeepers: An Evidence-Based Case Study Highlighting the Role and Process of Letter Writing for Transgender Clients (PDF, 76KB) Psychotherapy September 2015 by Stephanie L. Budge
  • Perspectives of Family and Veterans on Family Programs to Support Reintegration of Returning Veterans With Posttraumatic Stress Disorder (PDF, 70KB) Psychological Services August 2015 by Ellen P. Fischer, Michelle D. Sherman, Jean C. McSweeney, Jeffrey M. Pyne, Richard R. Owen, and Lisa B. Dixon
  • "So What Are You?": Inappropriate Interview Questions for Psychology Doctoral and Internship Applicants (PDF, 79KB) Training and Education in Professional Psychology May 2015 by Mike C. Parent, Dana A. Weiser, and Andrea McCourt
  • Cultural Competence as a Core Emphasis of Psychoanalytic Psychotherapy (PDF, 81KB) Psychoanalytic Psychology April 2015 by Pratyusha Tummala-Narra
  • The Role of Gratitude in Spiritual Well-Being in Asymptomatic Heart Failure Patients (PDF, 123KB) Spirituality in Clinical Practice March 2015 by Paul J. Mills, Laura Redwine, Kathleen Wilson, Meredith A. Pung, Kelly Chinh, Barry H. Greenberg, Ottar Lunde, Alan Maisel, Ajit Raisinghani, Alex Wood, and Deepak Chopra
  • Nepali Bhutanese Refugees Reap Support Through Community Gardening (PDF, 104KB) International Perspectives in Psychology: Research, Practice, Consultation January 2017 by Monica M. Gerber, Jennifer L. Callahan, Danielle N. Moyer, Melissa L. Connally, Pamela M. Holtz, and Beth M. Janis
  • Does Monitoring Goal Progress Promote Goal Attainment? A Meta-Analysis of the Experimental Evidence (PDF, 384KB) Psychological Bulletin February 2016 by Benjamin Harkin, Thomas L. Webb, Betty P. I. Chang, Andrew Prestwich, Mark Conner, Ian Kellar, Yael Benn, and Paschal Sheeran
  • Youth Violence: What We Know and What We Need to Know (PDF, 388KB) American Psychologist January 2016 by Brad J. Bushman, Katherine Newman, Sandra L. Calvert, Geraldine Downey, Mark Dredze, Michael Gottfredson, Nina G. Jablonski, Ann S. Masten, Calvin Morrill, Daniel B. Neill, Daniel Romer, and Daniel W. Webster
  • Supervenience and Psychiatry: Are Mental Disorders Brain Disorders? (PDF, 113KB) Journal of Theoretical and Philosophical Psychology November 2015 by Charles M. Olbert and Gary J. Gala
  • Constructing Psychological Objects: The Rhetoric of Constructs (PDF, 108KB) Journal of Theoretical and Philosophical Psychology November 2015 by Kathleen L. Slaney and Donald A. Garcia
  • Expanding Opportunities for Diversity in Positive Psychology: An Examination of Gender, Race, and Ethnicity (PDF, 119KB) Canadian Psychology / Psychologie canadienne August 2015 by Meghana A. Rao and Stewart I. Donaldson
  • Racial Microaggression Experiences and Coping Strategies of Black Women in Corporate Leadership (PDF, 132KB) Qualitative Psychology August 2015 by Aisha M. B. Holder, Margo A. Jackson, and Joseph G. Ponterotto
  • An Appraisal Theory of Empathy and Other Vicarious Emotional Experiences (PDF, 151KB) Psychological Review July 2015 by Joshua D. Wondra and Phoebe C. Ellsworth
  • An Attachment Theoretical Framework for Personality Disorders (PDF, 100KB) Canadian Psychology / Psychologie canadienne May 2015 by Kenneth N. Levy, Benjamin N. Johnson, Tracy L. Clouthier, J. Wesley Scala, and Christina M. Temes
  • Emerging Approaches to the Conceptualization and Treatment of Personality Disorder (PDF, 111KB) Canadian Psychology / Psychologie canadienne May 2015 by John F. Clarkin, Kevin B. Meehan, and Mark F. Lenzenweger
  • A Complementary Processes Account of the Development of Childhood Amnesia and a Personal Past (PDF, 585KB) Psychological Review April 2015 by Patricia J. Bauer
  • Terminal Decline in Well-Being: The Role of Social Orientation (PDF, 238KB) Psychology and Aging March 2016 by Denis Gerstorf, Christiane A. Hoppmann, Corinna E. Löckenhoff, Frank J. Infurna, Jürgen Schupp, Gert G. Wagner, and Nilam Ram
  • Student Threat Assessment as a Standard School Safety Practice: Results From a Statewide Implementation Study (PDF, 97KB) School Psychology Quarterly June 2018 by Dewey Cornell, Jennifer L. Maeng, Anna Grace Burnette, Yuane Jia, Francis Huang, Timothy Konold, Pooja Datta, Marisa Malone, and Patrick Meyer
  • Can a Learner-Centered Syllabus Change Students’ Perceptions of Student–Professor Rapport and Master Teacher Behaviors? (PDF, 90KB) Scholarship of Teaching and Learning in Psychology September 2016 by Aaron S. Richmond, Jeanne M. Slattery, Nathanael Mitchell, Robin K. Morgan, and Jared Becknell
  • Adolescents' Homework Performance in Mathematics and Science: Personal Factors and Teaching Practices (PDF, 170KB) Journal of Educational Psychology November 2015 by Rubén Fernández-Alonso, Javier Suárez-Álvarez, and José Muñiz
  • Teacher-Ready Research Review: Clickers (PDF, 55KB) Scholarship of Teaching and Learning in Psychology September 2015 by R. Eric Landrum
  • Enhancing Attention and Memory During Video-Recorded Lectures (PDF, 83KB) Scholarship of Teaching and Learning in Psychology March 2015 by Daniel L. Schacter and Karl K. Szpunar
  • The Alleged "Ferguson Effect" and Police Willingness to Engage in Community Partnership (PDF, 70KB) Law and Human Behavior February 2016 by Scott E. Wolfe and Justin Nix
  • Randomized Controlled Trial of an Internet Cognitive Behavioral Skills-Based Program for Auditory Hallucinations in Persons With Psychosis (PDF, 92KB) Psychiatric Rehabilitation Journal September 2017 by Jennifer D. Gottlieb, Vasudha Gidugu, Mihoko Maru, Miriam C. Tepper, Matthew J. Davis, Jennifer Greenwold, Ruth A. Barron, Brian P. Chiko, and Kim T. Mueser
  • Preventing Unemployment and Disability Benefit Receipt Among People With Mental Illness: Evidence Review and Policy Significance (PDF, 134KB) Psychiatric Rehabilitation Journal June 2017 by Bonnie O'Day, Rebecca Kleinman, Benjamin Fischer, Eric Morris, and Crystal Blyler
  • Sending Your Grandparents to University Increases Cognitive Reserve: The Tasmanian Healthy Brain Project (PDF, 88KB) Neuropsychology July 2016 by Megan E. Lenehan, Mathew J. Summers, Nichole L. Saunders, Jeffery J. Summers, David D. Ward, Karen Ritchie, and James C. Vickers
  • The Foundational Principles as Psychological Lodestars: Theoretical Inspiration and Empirical Direction in Rehabilitation Psychology (PDF, 68KB) Rehabilitation Psychology February 2016 by Dana S. Dunn, Dawn M. Ehde, and Stephen T. Wegener
  • Feeling Older and Risk of Hospitalization: Evidence From Three Longitudinal Cohorts (PDF, 55KB) Health Psychology Online First Publication — February 11, 2016 by Yannick Stephan, Angelina R. Sutin, and Antonio Terracciano
  • Anger Intensification With Combat-Related PTSD and Depression Comorbidity (PDF, 81KB) Psychological Trauma: Theory, Research, Practice, and Policy January 2016 by Oscar I. Gonzalez, Raymond W. Novaco, Mark A. Reger, and Gregory A. Gahm
  • Special Issue on eHealth and mHealth: Challenges and Future Directions for Assessment, Treatment, and Dissemination (PDF, 32KB) Health Psychology December 2015 by Belinda Borrelli and Lee M. Ritterband
  • Posttraumatic Growth Among Combat Veterans: A Proposed Developmental Pathway (PDF, 110KB) Psychological Trauma: Theory, Research, Practice, and Policy July 2015 by Sylvia Marotta-Walters, Jaehwa Choi, and Megan Doughty Shaine
  • Racial and Sexual Minority Women's Receipt of Medical Assistance to Become Pregnant (PDF, 111KB) Health Psychology June 2015 by Bernadette V. Blanchfield and Charlotte J. Patterson
  • An Examination of Generational Stereotypes as a Path Towards Reverse Ageism (PDF, 205KB) The Psychologist-Manager Journal August 2017 By Michelle Raymer, Marissa Reed, Melissa Spiegel, and Radostina K. Purvanova
  • Sexual Harassment: Have We Made Any Progress? (PDF, 121KB) Journal of Occupational Health Psychology July 2017 By James Campbell Quick and M. Ann McFadyen
  • Multidimensional Suicide Inventory-28 (MSI-28) Within a Sample of Military Basic Trainees: An Examination of Psychometric Properties (PDF, 79KB) Military Psychology November 2015 By Serena Bezdjian, Danielle Burchett, Kristin G. Schneider, Monty T. Baker, and Howard N. Garb
  • Cross-Cultural Competence: The Role of Emotion Regulation Ability and Optimism (PDF, 100KB) Military Psychology September 2015 By Bianca C. Trejo, Erin M. Richard, Marinus van Driel, and Daniel P. McDonald
  • The Effects of Stress on Prospective Memory: A Systematic Review (PDF, 149KB) Psychology & Neuroscience September 2017 by Martina Piefke and Katharina Glienke
  • Don't Aim Too High for Your Kids: Parental Overaspiration Undermines Students' Learning in Mathematics (PDF, 164KB) Journal of Personality and Social Psychology November 2016 by Kou Murayama, Reinhard Pekrun, Masayuki Suzuki, Herbert W. Marsh, and Stephanie Lichtenfeld
  • Sex Differences in Sports Interest and Motivation: An Evolutionary Perspective (PDF, 155KB) Evolutionary Behavioral Sciences April 2016 by Robert O. Deaner, Shea M. Balish, and Michael P. Lombardo
  • Asian Indian International Students' Trajectories of Depression, Acculturation, and Enculturation (PDF, 210KB) Asian American Journal of Psychology March 2016 By Dhara T. Meghani and Elizabeth A. Harvey
  • Cynical Beliefs About Human Nature and Income: Longitudinal and Cross-Cultural Analyses (PDF, 163KB) January 2016 Journal of Personality and Social Psychology by Olga Stavrova and Daniel Ehlebracht
  • Annual Review of Asian American Psychology, 2014 (PDF, 384KB) Asian American Journal of Psychology December 2015 By Su Yeong Kim, Yishan Shen, Yang Hou, Kelsey E. Tilton, Linda Juang, and Yijie Wang
  • Resilience in the Study of Minority Stress and Health of Sexual and Gender Minorities (PDF, 40KB) Psychology of Sexual Orientation and Gender Diversity September 2015 by Ilan H. Meyer
  • Self-Reported Psychopathy and Its Association With Criminal Cognition and Antisocial Behavior in a Sample of University Undergraduates (PDF, 91KB) Canadian Journal of Behavioural Science / Revue canadienne des sciences du comportement July 2015 by Samantha J. Riopka, Richard B. A. Coupland, and Mark E. Olver

Journals Publishing Resource Center

Find resources for writing, reviewing, and editing articles for publishing with APA Journals™.

Visit the resource center

Journals information

  • Frequently Asked Questions
  • Journal statistics and operations data
  • Special Issues
  • Email alerts
  • Copyright and permissions

Contact APA Publications

How to Write and Publish a Research Paper for a Peer-Reviewed Journal

  • Open access
  • Published: 30 April 2020
  • Volume 36 , pages 909–913, ( 2021 )

Cite this article

You have full access to this open access article

research paper articles

  • Clara Busse   ORCID: orcid.org/0000-0002-0178-1000 1 &
  • Ella August   ORCID: orcid.org/0000-0001-5151-1036 1 , 2  

282k Accesses

17 Citations

709 Altmetric

Explore all metrics

Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that should be included in each section. We also identify common pitfalls for each section and recommend strategies to avoid them. Further, we give advice about target journal selection and authorship. In the online resource 1 , we provide an example of a high-quality scientific paper, with annotations identifying the elements we describe in this article.

Similar content being viewed by others

research paper articles

How to Choose the Right Journal

research paper articles

The Point Is…to Publish?

research paper articles

Writing and publishing a scientific paper

Explore related subjects.

  • Artificial Intelligence

Avoid common mistakes on your manuscript.

Introduction

Writing a scientific paper is an important component of the research process, yet researchers often receive little formal training in scientific writing. This is especially true in low-resource settings. In this article, we explain why choosing a target journal is important, give advice about authorship, provide a basic structure for writing each section of a scientific paper, and describe common pitfalls and recommendations for each section. In the online resource 1 , we also include an annotated journal article that identifies the key elements and writing approaches that we detail here. Before you begin your research, make sure you have ethical clearance from all relevant ethical review boards.

Select a Target Journal Early in the Writing Process

We recommend that you select a “target journal” early in the writing process; a “target journal” is the journal to which you plan to submit your paper. Each journal has a set of core readers and you should tailor your writing to this readership. For example, if you plan to submit a manuscript about vaping during pregnancy to a pregnancy-focused journal, you will need to explain what vaping is because readers of this journal may not have a background in this topic. However, if you were to submit that same article to a tobacco journal, you would not need to provide as much background information about vaping.

Information about a journal’s core readership can be found on its website, usually in a section called “About this journal” or something similar. For example, the Journal of Cancer Education presents such information on the “Aims and Scope” page of its website, which can be found here: https://www.springer.com/journal/13187/aims-and-scope .

Peer reviewer guidelines from your target journal are an additional resource that can help you tailor your writing to the journal and provide additional advice about crafting an effective article [ 1 ]. These are not always available, but it is worth a quick web search to find out.

Identify Author Roles Early in the Process

Early in the writing process, identify authors, determine the order of authors, and discuss the responsibilities of each author. Standard author responsibilities have been identified by The International Committee of Medical Journal Editors (ICMJE) [ 2 ]. To set clear expectations about each team member’s responsibilities and prevent errors in communication, we also suggest outlining more detailed roles, such as who will draft each section of the manuscript, write the abstract, submit the paper electronically, serve as corresponding author, and write the cover letter. It is best to formalize this agreement in writing after discussing it, circulating the document to the author team for approval. We suggest creating a title page on which all authors are listed in the agreed-upon order. It may be necessary to adjust authorship roles and order during the development of the paper. If a new author order is agreed upon, be sure to update the title page in the manuscript draft.

In the case where multiple papers will result from a single study, authors should discuss who will author each paper. Additionally, authors should agree on a deadline for each paper and the lead author should take responsibility for producing an initial draft by this deadline.

Structure of the Introduction Section

The introduction section should be approximately three to five paragraphs in length. Look at examples from your target journal to decide the appropriate length. This section should include the elements shown in Fig.  1 . Begin with a general context, narrowing to the specific focus of the paper. Include five main elements: why your research is important, what is already known about the topic, the “gap” or what is not yet known about the topic, why it is important to learn the new information that your research adds, and the specific research aim(s) that your paper addresses. Your research aim should address the gap you identified. Be sure to add enough background information to enable readers to understand your study. Table 1 provides common introduction section pitfalls and recommendations for addressing them.

figure 1

The main elements of the introduction section of an original research article. Often, the elements overlap

Methods Section

The purpose of the methods section is twofold: to explain how the study was done in enough detail to enable its replication and to provide enough contextual detail to enable readers to understand and interpret the results. In general, the essential elements of a methods section are the following: a description of the setting and participants, the study design and timing, the recruitment and sampling, the data collection process, the dataset, the dependent and independent variables, the covariates, the analytic approach for each research objective, and the ethical approval. The hallmark of an exemplary methods section is the justification of why each method was used. Table 2 provides common methods section pitfalls and recommendations for addressing them.

Results Section

The focus of the results section should be associations, or lack thereof, rather than statistical tests. Two considerations should guide your writing here. First, the results should present answers to each part of the research aim. Second, return to the methods section to ensure that the analysis and variables for each result have been explained.

Begin the results section by describing the number of participants in the final sample and details such as the number who were approached to participate, the proportion who were eligible and who enrolled, and the number of participants who dropped out. The next part of the results should describe the participant characteristics. After that, you may organize your results by the aim or by putting the most exciting results first. Do not forget to report your non-significant associations. These are still findings.

Tables and figures capture the reader’s attention and efficiently communicate your main findings [ 3 ]. Each table and figure should have a clear message and should complement, rather than repeat, the text. Tables and figures should communicate all salient details necessary for a reader to understand the findings without consulting the text. Include information on comparisons and tests, as well as information about the sample and timing of the study in the title, legend, or in a footnote. Note that figures are often more visually interesting than tables, so if it is feasible to make a figure, make a figure. To avoid confusing the reader, either avoid abbreviations in tables and figures, or define them in a footnote. Note that there should not be citations in the results section and you should not interpret results here. Table 3 provides common results section pitfalls and recommendations for addressing them.

Discussion Section

Opposite the introduction section, the discussion should take the form of a right-side-up triangle beginning with interpretation of your results and moving to general implications (Fig.  2 ). This section typically begins with a restatement of the main findings, which can usually be accomplished with a few carefully-crafted sentences.

figure 2

Major elements of the discussion section of an original research article. Often, the elements overlap

Next, interpret the meaning or explain the significance of your results, lifting the reader’s gaze from the study’s specific findings to more general applications. Then, compare these study findings with other research. Are these findings in agreement or disagreement with those from other studies? Does this study impart additional nuance to well-accepted theories? Situate your findings within the broader context of scientific literature, then explain the pathways or mechanisms that might give rise to, or explain, the results.

Journals vary in their approach to strengths and limitations sections: some are embedded paragraphs within the discussion section, while some mandate separate section headings. Keep in mind that every study has strengths and limitations. Candidly reporting yours helps readers to correctly interpret your research findings.

The next element of the discussion is a summary of the potential impacts and applications of the research. Should these results be used to optimally design an intervention? Does the work have implications for clinical protocols or public policy? These considerations will help the reader to further grasp the possible impacts of the presented work.

Finally, the discussion should conclude with specific suggestions for future work. Here, you have an opportunity to illuminate specific gaps in the literature that compel further study. Avoid the phrase “future research is necessary” because the recommendation is too general to be helpful to readers. Instead, provide substantive and specific recommendations for future studies. Table 4 provides common discussion section pitfalls and recommendations for addressing them.

Follow the Journal’s Author Guidelines

After you select a target journal, identify the journal’s author guidelines to guide the formatting of your manuscript and references. Author guidelines will often (but not always) include instructions for titles, cover letters, and other components of a manuscript submission. Read the guidelines carefully. If you do not follow the guidelines, your article will be sent back to you.

Finally, do not submit your paper to more than one journal at a time. Even if this is not explicitly stated in the author guidelines of your target journal, it is considered inappropriate and unprofessional.

Your title should invite readers to continue reading beyond the first page [ 4 , 5 ]. It should be informative and interesting. Consider describing the independent and dependent variables, the population and setting, the study design, the timing, and even the main result in your title. Because the focus of the paper can change as you write and revise, we recommend you wait until you have finished writing your paper before composing the title.

Be sure that the title is useful for potential readers searching for your topic. The keywords you select should complement those in your title to maximize the likelihood that a researcher will find your paper through a database search. Avoid using abbreviations in your title unless they are very well known, such as SNP, because it is more likely that someone will use a complete word rather than an abbreviation as a search term to help readers find your paper.

After you have written a complete draft, use the checklist (Fig. 3 ) below to guide your revisions and editing. Additional resources are available on writing the abstract and citing references [ 5 ]. When you feel that your work is ready, ask a trusted colleague or two to read the work and provide informal feedback. The box below provides a checklist that summarizes the key points offered in this article.

figure 3

Checklist for manuscript quality

Data Availability

Michalek AM (2014) Down the rabbit hole…advice to reviewers. J Cancer Educ 29:4–5

Article   Google Scholar  

International Committee of Medical Journal Editors. Defining the role of authors and contributors: who is an author? http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authosrs-and-contributors.html . Accessed 15 January, 2020

Vetto JT (2014) Short and sweet: a short course on concise medical writing. J Cancer Educ 29(1):194–195

Brett M, Kording K (2017) Ten simple rules for structuring papers. PLoS ComputBiol. https://doi.org/10.1371/journal.pcbi.1005619

Lang TA (2017) Writing a better research article. J Public Health Emerg. https://doi.org/10.21037/jphe.2017.11.06

Download references

Acknowledgments

Ella August is grateful to the Sustainable Sciences Institute for mentoring her in training researchers on writing and publishing their research.

Code Availability

Not applicable.

Author information

Authors and affiliations.

Department of Maternal and Child Health, University of North Carolina Gillings School of Global Public Health, 135 Dauer Dr, 27599, Chapel Hill, NC, USA

Clara Busse & Ella August

Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA

Ella August

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Ella August .

Ethics declarations

Conflicts of interests.

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

(PDF 362 kb)

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Busse, C., August, E. How to Write and Publish a Research Paper for a Peer-Reviewed Journal. J Canc Educ 36 , 909–913 (2021). https://doi.org/10.1007/s13187-020-01751-z

Download citation

Published : 30 April 2020

Issue Date : October 2021

DOI : https://doi.org/10.1007/s13187-020-01751-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Manuscripts
  • Scientific writing
  • Find a journal
  • Publish with us
  • Track your research

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • For authors
  • New editors
  • BMJ Journals

You are here

  • Volume 58, Issue 17
  • Where is the research on sport-related concussion in Olympic athletes? A descriptive report and assessment of the impact of access to multidisciplinary care on recovery
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • http://orcid.org/0000-0002-3298-5719 Thomas Romeas 1 , 2 , 3 ,
  • http://orcid.org/0000-0003-1748-7241 Félix Croteau 3 , 4 , 5 ,
  • Suzanne Leclerc 3 , 4
  • 1 Sport Sciences , Institut national du sport du Québec , Montreal , Quebec , Canada
  • 2 School of Optometry , Université de Montréal , Montreal , Quebec , Canada
  • 3 IOC Research Centre for Injury Prevention and Protection of Athlete Health , Réseau Francophone Olympique de la Recherche en Médecine du Sport , Montreal , Quebec , Canada
  • 4 Sport Medicine , Institut national du sport du Québec , Montreal , Quebec , Canada
  • 5 School of Physical and Occupational Therapy , McGill University , Montreal , Quebec , Canada
  • Correspondence to Dr Thomas Romeas; thomas.romeas{at}umontreal.ca

Objectives This cohort study reported descriptive statistics in athletes engaged in Summer and Winter Olympic sports who sustained a sport-related concussion (SRC) and assessed the impact of access to multidisciplinary care and injury modifiers on recovery.

Methods 133 athletes formed two subgroups treated in a Canadian sport institute medical clinic: earlier (≤7 days) and late (≥8 days) access. Descriptive sample characteristics were reported and unrestricted return to sport (RTS) was evaluated based on access groups as well as injury modifiers. Correlations were assessed between time to RTS, history of concussions, the number of specialist consults and initial symptoms.

Results 160 SRC (median age 19.1 years; female=86 (54%); male=74 (46%)) were observed with a median (IQR) RTS duration of 34.0 (21.0–63.0) days. Median days to care access was different in the early (1; n SRC =77) and late (20; n SRC =83) groups, resulting in median (IQR) RTS duration of 26.0 (17.0–38.5) and 45.0 (27.5–84.5) days, respectively (p<0.001). Initial symptoms displayed a meaningful correlation with prognosis in this study (p<0.05), and female athletes (52 days (95% CI 42 to 101)) had longer recovery trajectories than male athletes (39 days (95% CI 31 to 65)) in the late access group (p<0.05).

Conclusions Olympic athletes in this cohort experienced an RTS time frame of about a month, partly due to limited access to multidisciplinary care and resources. Earlier access to care shortened the RTS delay. Greater initial symptoms and female sex in the late access group were meaningful modifiers of a longer RTS.

  • Brain Concussion
  • Cohort Studies
  • Retrospective Studies

Data availability statement

Data are available on reasonable request. Due to the confidential nature of the dataset, it will be shared through a controlled access repository and made available on specific and reasonable requests.

https://doi.org/10.1136/bjsports-2024-108211

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

WHAT IS ALREADY KNOWN ON THIS TOPIC

Most data regarding the impact of sport-related concussion (SRC) guidelines on return to sport (RTS) are derived from collegiate or recreational athletes. In these groups, time to RTS has steadily increased in the literature since 2005, coinciding with the evolution of RTS guidelines. However, current evidence suggests that earlier access to care may accelerate recovery and RTS time frames.

WHAT THIS STUDY ADDS

This study reports epidemiological data on the occurrence of SRC in athletes from several Summer and Winter Olympic sports with either early or late access to multidisciplinary care. We found the median time to RTS for Olympic athletes with an SRC was 34.0 days which is longer than that reported in other athletic groups such as professional or collegiate athletes. Time to RTS was reduced by prompt access to multidisciplinary care following SRC, and sex-influenced recovery in the late access group with female athletes having a longer RTS timeline. Greater initial symptoms, but not prior concussion history, were also associated with a longer time to RTS.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

Considerable differences exist in access to care for athletes engaged in Olympic sports, which impact their recovery. In this cohort, several concussions occurred during international competitions where athletes are confronted with poor access to organised healthcare. Pathways for prompt access to multidisciplinary care should be considered by healthcare authorities, especially for athletes who travel internationally and may not have the guidance or financial resources to access recommended care.

Introduction

After two decades of consensus statements, sport-related concussion (SRC) remains a high focus of research, with incidence ranging from 0.1 to 21.5 SRC per 1000 athlete exposures, varying according to age, sex, sport and level of competition. 1 2 Evidence-based guidelines have been proposed by experts to improve its identification and management, such as those from the Concussion in Sport Group. 3 Notably, they recommend specific strategies to improve SRC detection and monitoring such as immediate removal, 4 prompt access to healthcare providers, 5 evidence-based interventions 6 and multidisciplinary team approaches. 7 It is believed that these guidelines contribute to improving the early identification and management of athletes with an SRC, thereby potentially mitigating its long-term consequences.

Nevertheless, evidence regarding the impact of SRC guidelines implementation remains remarkably limited, especially within high-performance sport domains. In fact, most reported SRC data focus on adolescent student-athletes, collegiate and sometimes professional athletes in the USA but often neglect Olympians. 1 2 8–11 Athletes engaged in Olympic sports, often referred to as elite amateurs, are typically classified among the highest performers in elite sport, alongside professional athletes. 12 13 They train year-round and uniquely compete regularly on the international stage in sports that often lack professional leagues and rely on highly variable resources and facilities, mostly dependent on winning medals. 14 Unlike professional athletes, Olympians do not have access to large financial rewards. Although some Olympians work or study in addition to their intensive sports practice, they can devote more time to full-time sports practice compared with collegiate athletes. Competition calendars in Olympians differ from collegiate athletes, with periodic international competitions (eg, World Cups, World Championships) throughout the whole year rather than regular domestic competitions within a shorter season (eg, semester). Olympians outclass most collegiate athletes, and only the best collegiate athletes will have the chance to become Olympians and/or professionals. 12 13 15 In Canada, a primary reason for limited SRC data in Olympic sports is that the Canadian Olympic and Paralympic Sports Institute (COPSI) network only adopted official guidelines in 2018 to standardise care for athletes’ SRC nationwide. 16 17 The second reason could be the absence of a centralised medical structure and surveillance systems, identified as key factors contributing to the under-reporting and underdiagnosis of athletes with an SRC. 18

Among the available evidence on the evolution of SRC management, a 2023 systematic review and meta-analysis in athletic populations including children, adolescents and adults indicated that a full return to sport (RTS) could take up to a month but is estimated to require 19.8 days on average (15.4 days in adults), as opposed to the initial expectation of approximately 10.0 days based on studies published prior to 2005. 19 In comparison, studies focusing strictly on American collegiate athletes report median times to RTS of 16 days. 9 20 21 Notably, a recent study of military cadets reported an even longer return to duty times of 29.4 days on average, attributed to poorer access to care and fewer incentives to return to play compared with elite sports. 22 In addition, several modifiers have also been identified as influencing the time to RTS, such as the history of concussions, type of sport, sex, past medical problems (eg, preinjury modifiers), as well as the initial number of symptoms and their severity (eg, postinjury modifiers). 20 22 The evidence regarding the potential influence of sex on the time to RTS has yielded mixed findings in this area. 23–25 In fact, females are typically under-represented in SRC research, highlighting the need for additional studies that incorporate more balanced sample representation across sexes and control for known sources of bias. 26 Interestingly, a recent Concussion Assessment, Research and Education Consortium study, which included a high representation of concussed female athletes (615 out of 1071 patients), revealed no meaningful differences in RTS between females and males (13.5 and 11.8 days, respectively). 27 Importantly, findings in the sporting population suggested that earlier initiation of clinical care is linked to shorter recovery after concussion. 5 28 However, these factors affecting the time to RTS require a more thorough investigation, especially among athletes engaged in Olympic sports who may or may not have equal access to prompt, high-quality care.

Therefore, the primary objective of this study was to provide descriptive statistics among athletes with SRC engaged in both Summer and Winter Olympic sport programmes over a quadrennial, and to assess the influence of recommended guidelines of the COPSI network and the fifth International Consensus Conference on Concussion in Sport on the duration of RTS performance. 16 17 Building on available evidence, the international schedule constraints, variability in resources 14 and high-performance expectation among this elite population, 22 prolonged durations for RTS, compared with what is typically reported (eg, 16.0 or 15.4 days), were hypothesised in Olympians. 3 19 The secondary objective was to more specifically evaluate the impact of access to multidisciplinary care and injury modifiers on the time to RTS. Based on current evidence, 5 7 29 30 the hypothesis was formulated that athletes with earlier multidisciplinary access would experience a faster RTS. Regarding injury modifiers, it was expected that female and male athletes would show similar time to RTS despite presenting sex-specific characteristics of SRC. 31 The history of concussions, the severity of initial symptoms and the number of specialist consults were expected to be positively correlated to the time to RTS. 20 32

Participants

A total of 133 athletes (F=72; M=61; mean age±SD: 20.7±4.9 years old) who received medical care at the Institut national du sport du Québec, a COPSI training centre set up with a medical clinic, were included in this cohort study with retrospective analysis. They participated in 23 different Summer and Winter Olympic sports which were classified into six categories: team (soccer, water polo), middle distance/power (rowing, swimming), speed/strength (alpine skiing, para alpine skiing, short and long track speed skating), precision/skill-dependent (artistic swimming, diving, equestrian, figure skating, gymnastics, skateboard, synchronised skating, trampoline) and combat/weight-making (boxing, fencing, judo, para judo, karate, para taekwondo, wrestling) sports. 13 This sample consists of two distinct groups: (1) early access group in which athletes had access to a medical integrated support team of multidisciplinary experts within 7 days following their SRC and (2) late access group composed of athletes who had access to a medical integrated support team of multidisciplinary experts eight or more days following their SRC. 5 30 Inclusion criteria for the study were participation in a national or international-level sports programme 13 and having sustained at least one SRC diagnosed by an authorised healthcare practitioner (eg, physician and/or physiotherapist).

Clinical context

The institute clinic provides multidisciplinary services for care of patients with SRC including a broad range of recommended tests for concussion monitoring ( table 1 ). The typical pathway for the athletes consisted of an initial visit to either a sports medicine physician or their team sports therapist. A clinical diagnosis of SRC was then confirmed by a sports medicine physician, and referral for the required multidisciplinary assessments ensued based on the patient’s signs and symptoms. Rehabilitation progression was based on the evaluation of exercise tolerance, 33 priority to return to cognitive tasks and additional targeted support based on clinical findings of a cervical, visual or vestibular nature. 17 The expert team worked in an integrated manner with the athlete and their coaching staff for the rehabilitation phase, including regular round tables and ongoing communication. 34 For some athletes, access to recommended care was fee based, without a priori agreements with a third party payer (eg, National Sports Federation).

  • View inline

Main evaluations performed to guide the return to sport following sport-related concussion

Data collection

Data were collected at the medical clinic using a standardised injury surveillance form based on International Olympic Committee guidelines. 35 All injury characteristics were extracted from the central injury database between 1 July 2018 and 31 July 2022. This period corresponds to a Winter Olympic sports quadrennial but also covers 3 years for Summer Olympic sports due to the postponing of the Tokyo 2020 Olympic Games. Therefore, the observation period includes a typical volume of competitions across sports and minimises differences in exposure based on major sports competition schedules. The information extracted from the database included: participant ID, sex, date of birth, sport, date of injury, type of injury, date of their visit at the clinic, clearance date of unrestricted RTS (eg, defined as step 6 of the RTS strategy with a return to normal gameplay including competitions), the number and type of specialist consults, mechanism of injury (eg, fall, hit), environment where the injury took place (eg, training, competition), history of concussions, history of modifiers (eg, previous head injury, migraines, learning disability, attention deficit disorder or attention deficit/hyperactivity disorder, depression, anxiety, psychotic disorder), as well as the number of symptoms and the total severity score from the first Sport Concussion Assessment Tool 5 (SCAT5) assessment following SRC. 17

Following a Shapiro-Wilk test, medians, IQR and non-parametric tests were used for the analyses because of the absence of normal distributions for all the variables in the dataset (all p<0.001). The skewness was introduced by the presence of individuals that required lengthy recovery periods. One participant was removed from the analysis because their time to consult with the multidisciplinary team was extremely delayed (>1 year).

Descriptive statistics were used to describe the participant’s demographics, SRC characteristics and risk factors in the total sample. Estimated incidences of SRC were also reported for seven resident sports at the institute for which it was possible to quantify a detailed estimate of training volume based on the annual number of training and competition hours as well as the number of athletes in each sport.

To assess if access to multidisciplinary care modified the time to RTS, we compared time to RTS between early and late access groups using a method based on median differences described elsewhere. 36 Wilcoxon rank sum tests were also performed to make between-group comparisons on single variables of age, time to first consult, the number of specialists consulted and medical visits. Fisher’s exact tests were used to compare count data between groups on variables of sex, history of concussion, time since the previous concussion, presence of injury modifiers, environment and mechanism of injury. Bonferroni corrections were applied for multiple comparisons in case of meaningful differences.

To assess if injury modifiers modified time to RTS in the total sample, we compared time to RTS between sexes, history of concussions, time since previous concussion or other injury modifiers using a method based on median differences described elsewhere. 36 Kaplan-Meier curves were drawn to illustrate time to RTS differences between sexes (origin and start time: date of injury; end time: clearance date of unrestricted RTS). Trajectories were then assessed for statistical differences using Cox proportional hazards model. Wilcoxon rank sum tests were employed for comparing the total number of symptoms and severity scores on the SCAT5. The association of multilevel variables on return to play duration was evaluated in the total sample with Kruskal-Wallis rank tests for environment, mechanism of injury, history of concussions and time since previous concussion. For all subsequent analyses of correlations between SCAT5 results and secondary variables, only data obtained from SCAT5 assessments within the acute phase of injury (≤72 hours) were considered (n=65 SRC episodes in the early access group). 37 Spearman rank correlations were estimated between RTS duration, history of concussions, number of specialist consults and total number of SCAT5 symptoms or total symptom severity. All statistical tests were performed using RStudio (R V.4.1.0, The R Foundation for Statistical Computing). The significance level was set to p<0.05.

Equity, diversity and inclusion statement

The study population is representative of the Canadian athletic population in terms of age, gender, demographics and includes a balanced representation of female and male athletes. The study team consists of investigators from different disciplines and countries, but with a predominantly white composition and under-representation of other ethnic groups. Our study population encompasses data from the Institut national du sport du Québec, covering individuals of all genders, ethnicities and geographical regions across Canada.

Patient and public involvement

The patients or the public were not involved in the design, conduct, reporting or dissemination plans of our research.

Sample characteristics

During the 4-year period covered by this retrospective chart review, a total of 160 SRC episodes were recorded in 132 athletes with a median (IQR) age of 19.1 (17.8–22.2) years old ( table 2 ). 13 female and 10 male athletes had multiple SRC episodes during this time. The sample had a relatively balanced number of females (53.8%) and males (46.2%) with SRC included. 60% of the sample reported a history of concussion, with 35.0% reporting having experienced more than two episodes. However, most of these concussions had occurred more than 1 year before the SRC for which they were being treated. Within this sample, 33.1% of participants reported a history of injury modifiers. Importantly, the median (IQR) time to first clinic consult was 10.0 (1.0–20.0) days and the median (IQR) time to RTS was 34.0 (21.0–63.0) days in this sample ( table 3 ). The majority of SRCs occurred during training (56.3%) rather than competition (33.1%) and were mainly due to a fall (63.7%) or a hit (31.3%). The median (IQR) number of follow-up consultations and specialists consulted after the SRC were, respectively, 9 (5.0–14.3) and 3 (2.0–4.0).

Participants demographics

Sport-related concussion characteristics

Among seven sports of the total sample (n=89 SRC), the estimated incidence of athletes with SRC was highest in short-track speed skating (0.47/1000 hours; 95% CI 0.3 to 0.6), and lower in boxing, trampoline, water polo, judo, artistic swimming, and diving (0.24 (95% CI 0.0 to 0.5), 0.16 (95% CI 0.0 to 0.5), 0.13 (95% CI 0.1 to 0.2), 0.11 (95% CI 0.1 to 0.2), 0.09 (95% CI 0.0 to 0.2) and 0.06 (95% CI 0.0 to 0.1)/1000, respectively ( online supplemental material ). Furthermore, most athletes sustained an SRC in training (66.5%; 95% CI 41.0 to 92.0) rather than competition (26.0%; 95% CI 0.0 to 55.0) except for judo athletes (20.0% (95% CI 4.1 to 62.0) and 80.0% (95% CI 38.0 to 96.0), respectively). Falls were the most common injury mechanism in speed skating, trampoline and judo while hits were the most common injury mechanism in boxing, water polo, artistic swimming and diving.

Supplemental material

Access to care.

The median difference in time to RTS was 19 days (95% CI 9.3 to 28.7; p<0.001) between the early (26 (IQR 17.0–38.5) days) and late (45 (IQR 27.5–84.5) days) access groups ( table 3 ; figure 1 ). Importantly, the distribution of SRC environments was different between both groups (p=0.008). The post hoc analysis demonstrated a meaningful difference in the distribution of SRC in training and competition environments between groups (p=0.029) but not for the other comparisons. There was a meaningful difference between the groups in time to first consult (p<0.001; 95% CI −23.0 to −15.0), but no meaningful differences between groups in median age (p=0.176; 95% CI −0.3 to 1.6), sex distribution (p=0.341; 95% CI 0.7 to 2.8), concussion history (p=0.210), time since last concussion (p=0.866), mechanisms of SRC (p=0.412), the presence of modifiers (p=0.313; 95% CI 0.3 to 1.4) and the number of consulted specialists (p=0.368; 95% CI −5.4 to 1.0) or medical visits (p=0.162; 95% CI −1.0 to 3.0).

  • Download figure
  • Open in new tab
  • Download powerpoint

Time to return to sport following sport-related concussion as a function of group’s access to care and sex. Outliers: below=Q1−1.5×IQR; above=Q3+1.5×IQR.

The median difference in time to RTS was 6.5 days (95% CI −19.3 to 5.3; p=0.263; figure 1 ) between female (37.5 (IQR 22.0–65.3) days) and male (31.0 (IQR 20.0–48.0) days) athletes. Survival analyses highlighted an increased hazard of longer recovery trajectory in female compared with male athletes (HR 1.4; 95% CI 1.4 to 0.7; p=0.052; figure 2A ), which was mainly driven by the late (HR 1.8; 95% CI 1.8 to 0.6; p=0.019; figure 2C ) rather than the early (HR 1.1; 95% CI 1.1 to 0.9; p=0.700; figure 2B ) access group. Interestingly, a greater number of female athletes (n=15) required longer than 100 days for RTS as opposed to the male athletes (n=6). There were no meaningful differences between sexes for the total number of symptoms recorded on the SCAT5 (p=0.539; 95% CI −1.0 to 2.0) nor the total symptoms total severity score (p=0.989; 95% CI −5.0 to 5.0).

Time analysis of sex differences in the time to return to sport following sport-related concussion in the (A) total sample, as well as (B) early, and (C) late groups using survival curves with 95% confidence bands and tables of time-specific number of patients at risk (censoring proportion: 0%).

History of modifiers

SRC modifiers are presented in table 2 , and their influence on RTP is shown in table 4 . The median difference in time to RTS was 1.5 days (95% CI −10.6 to 13.6; p=0.807) between athletes with none and one episode of previous concussion, was 3.5 days (95% CI −13.9 to 19.9; p=0.728) between athletes with none and two or more episodes of previous concussion, and was 2 days (95% CI −12.4 to 15.4; p=0.832) between athletes with one and two or more episodes of previous concussion. The history of concussions (none, one, two or more) had no meaningful impact on the time to RTS (p=0.471). The median difference in time to RTS was 4.5 days (95% CI −21.0 to 30.0; p=0.729) between athletes with none and one episode of concussion in the previous year, was 2 days (95% CI −10.0 to 14.0; p=0.744) between athletes with none and one episode of concussion more than 1 year ago, and was 2.5 days (95% CI −27.7 to 22.7; p=0.846) between athletes with an episode of concussion in the previous year and more than 1 year ago. Time since the most recent concussion did not change the time to RTS (p=0.740). The longest time to RTS was observed in the late access group in which athletes had a concussion in the previous year, with a very large spread of durations (65.0 (IQR 33.0–116.5) days). The median difference in time to RTS was 3 days (95% CI −13.1 to 7.1; p=0.561) between athletes with and without other injury modifiers. The history of other injury modifiers had no meaningful influence on the time to RTS (95% CI −6.0 to 11.0; p=0.579).

Preinjury modifiers of time to return to sport following SRC

SCAT5 symptoms and severity scores

Positive associations were observed between the time to RTS and the number of initial symptoms (r=0.3; p=0.010; 95% CI 0.1 to 0.5) or initial severity score (r=0.3; p=0.008; 95% CI 0.1 to 0.5) from the SCAT5. The associations were not meaningful between the number of specialist consultations and the initial number of symptoms (r=−0.1; p=0.633; 95% CI −0.3 to 0.2) or initial severity score (r=−0.1; p=0.432; 95% CI −0.3 to 0.2). Anecdotally, most reported symptoms following SRC were ‘headache’ (86.2%) and ‘pressure in the head’ (80.0%), followed by ‘fatigue’ (72.3%), ‘neck pain’ (70.8%) and ‘not feeling right’ (67.7%; online supplemental material ).

This study is the first to report descriptive data on athletes with SRC collected across several sports during an Olympic quadrennial, including athletes who received the most recent evidence-based care at the time of data collection. Primarily, results indicate that the time to RTS in athletes engaged in Summer and Winter Olympic sports may require a median (IQR) of 34.0 (21.0–63.0) days. Importantly, findings demonstrated that athletes with earlier (≤7 days) access to multidisciplinary concussion care showed faster RTS compared with those with late access. Time to RTS exhibited large variability where sex had a meaningful influence on the recovery pathway in the late access group. Initial symptoms, but not history of concussion, were correlated with prognosis in this sample. The main reported symptoms were consistent with previous studies. 38 39

Time to RTS in Olympic sports

This study provides descriptive data on the impact of SRC monitoring programmes on recovery in elite athletes engaged in Olympic sports. As hypothesised, the median time to RTS found in this study (eg, 34.0 days) was about three times longer than those found in reports from before 2005, and 2 weeks longer than the typical median values (eg, 19.8 days) recently reported in athletic levels including youth (high heterogeneity, I 2 =99.3%). 19 These durations were also twice as long as the median unrestricted time to RTS observed among American collegiate athletes, which averages around 16 days. 9 20 21 However, they were more closely aligned with findings from collegiate athletes with slow recovery (eg, 34.7 days) and evidence from military cadets with poor access where return to duty duration was 29.4 days. 8 22 Several reasons could explain such extended time to RTS, but the most likely seems to be related to the diversity in access among these sports to multidisciplinary services (eg, 10.0 median days (1–20)), well beyond the delays experienced by collegiate athletes, for example (eg, 0.0 median days (0–2)). 40 In the total sample, the delays to first consult with the multidisciplinary clinic were notably mediated by the group with late access, whose athletes had more SRC during international competition. One of the issues for athletes engaged in Olympic sports is that they travel abroad year-round for competitions, in contrast with collegiate athletes who compete domestically. These circumstances likely make access to quality care very variable and make the follow-up of care less centralised. Also, access to resources among these sports is highly variable (eg, medal-dependant), 14 and at the discretion of the sport’s leadership (eg, sport federation), who may decide to prioritise more or fewer resources to concussion management considering the relatively low incidence of this injury. Another explanation for the longer recovery times in these athletes could be the lack of financial incentives to return to play faster, which are less prevalent among Olympic sports compared with professionals. However, the stakes of performance and return to play are still very high among these athletes.

Additionally, it is plausible that studies vary their outcome with shifting operational definitions such as resolution of symptoms, return to activities, graduated return to play or unrestricted RTS. 19 40 It is understood that resolution of symptoms may occur much earlier than return to preinjury performance levels. Finally, an aspect that has been little studied to date is the influence of the sport’s demands on the RTS. For example, acrobatic sports requiring precision/technical skills such as figure skating, trampoline and diving, which involve high visuospatial and vestibular demands, 41 might require more time to recover or elicit symptoms for longer times. Anecdotally, athletes who experienced a long time to RTS (>100 days) were mostly from precision/skill-dependent sports in this sample. The sports demand should be further considered as an injury modifier. More epidemiological reports that consider the latest guidelines are therefore necessary to gain a better understanding of the true time to RTS and impact following SRC in Olympians.

Supporting early multidisciplinary access to care

In this study, athletes who obtained early access to multidisciplinary care after SRC recovered faster than those with late access to multidisciplinary care. This result aligns with findings showing that delayed access to a healthcare practitioner delays recovery, 19 including previous evidence in a sample of patients from a sports medicine clinic (ages 12–22), indicating that the group with a delayed first clinical visit (eg, 8–20 days) was associated with a 5.8 times increased likelihood of a recovery longer than 30 days. 5 Prompt multidisciplinary approach for patients with SRC is suggested to yield greater effectiveness over usual care, 3 6 17 which is currently evaluated under randomised controlled trial. 42 Notably, early physical exercise and prescribed exercise (eg, 48 hours postinjury) are effective in improving recovery compared with strict rest or stretching. 43 44 In fact, preclinical and clinical studies have shown that exercise has the potential to improve neurotransmission, neuroplasticity and cerebral blood flow which supports that the physically trained brain enhanced recovery. 45 46 Prompt access to specialised healthcare professionals can be challenging in some contexts (eg, during international travel), and the cost of accessing medical care privately may prove further prohibitive. This barrier to recovery should be a priority for stakeholders in Olympic sports and given more consideration by health authorities.

Estimated incidences and implications

The estimated incidences of SRC were in the lower range compared with what is reported in other elite sport populations. 1 2 However, the burden of injury remained high for these sports, and the financial resources as well as expertise required to facilitate athletes’ rehabilitation was considerable (median number of consultations: 9.0). Notably, the current standard of public healthcare in Canada does not subsidise the level of support recommended following SRC as first-line care, and the financial subsidisation of this recommended care within each federation is highly dependent on the available funding, varying significantly between sports. 14 Therefore, the ongoing efforts to improve education, prevention and early recognition, modification of rules to make the environments safer and multidisciplinary care access for athletes remain crucial. 7

Strength and limitations

This unique study provides multisport characteristics following the evolution of concussion guidelines in Summer and Winter Olympic sports in North America. Notably, it features a balance between the number of female and male athletes, allowing the analysis of sex differences. 23 26 In a previous review of 171 studies informing consensus statements, samples were mostly composed of more than 80% of male participants, and more than 40% of these studies did not include female participants at all. 26 This study also included multiple non-traditional sports typically not encompassed in SRC research, feature previously identified as a key requirement of future epidemiological research. 47

However, it must be acknowledged that potential confounding factors could influence the results. For example, the number of SRC detected during the study period does not account for potentially unreported concussions. Nevertheless, this figure should be minimal because these athletes are supervised both in training and in competition by medical staff. Next, the sport types were heterogeneous, with inconsistent risk for head impacts or inconsistent sport demand which might have an influence on recovery. Furthermore, the number of participants or sex in each sport was not evenly distributed, with short-track speed skaters representing a large portion of the overall sample (32.5%), for example. Additionally, the number of participants with specific modifiers was too small in the current sample to conclude whether the presence of precise characteristics (eg, history of concussion) impacted the time to RTS. Also, the group with late access was more likely to consist of athletes who sought specialised care for persistent symptoms. These complex cases are often expected to require additional time to recover. 48 Furthermore, athletes in the late group may have sought support outside of the institute medical clinic, without a coordinated multidisciplinary approach. Therefore, the estimation of clinical consultations was tentative for this group and may represent a potential confounding factor in this study.

This is the first study to provide evidence of the prevalence of athletes with SRC and modifiers of recovery in both female and male elite-level athletes across a variety of Summer and Winter Olympic sports. There was a high variability in access to care in this group, and the median (IQR) time to RTS following SRC was 34.0 (21.0–63.0) days. Athletes with earlier access to multidisciplinary care took nearly half the time to RTS compared with those with late access. Sex had a meaningful influence on the recovery pathway in the late access group. Initial symptom number and severity score but not history of concussion were meaningful modifiers of recovery. Injury surveillance programmes targeting national sport organisations should be prioritised to help evaluate the efficacy of recommended injury monitoring programmes and to help athletes engaged in Olympic sports who travel a lot internationally have better access to care. 35 49

Ethics statements

Patient consent for publication.

Not applicable.

Ethics approval

This study involves human participants and was approved by the ethics board of Université de Montréal (certificate #2023-4052). Participants gave informed consent to participate in the study before taking part.

Acknowledgments

The authors would like to thank the members of the concussion interdisciplinary clinic of the Institut national du sport du Québec for collecting the data and for their unconditional support to the athletes.

  • Glover KL ,
  • Chandran A ,
  • Morris SN , et al
  • Patricios JS ,
  • Schneider KJ ,
  • Dvorak J , et al
  • Guskiewicz KM , et al
  • Kontos AP ,
  • Jorgensen-Wagers K ,
  • Trbovich AM , et al
  • Critchley ML ,
  • Anderson V , et al
  • Eliason PH ,
  • Galarneau J-M ,
  • Kolstad AT , et al
  • McAllister TW ,
  • Broglio SP ,
  • Katz BP , et al
  • Liebel SW ,
  • Van Pelt KL ,
  • Pasquina PF , et al
  • Pellman EJ ,
  • Lovell MR ,
  • Viano DC , et al
  • Casson IR , et al
  • McKinney J ,
  • Fee J , et al
  • McKay AKA ,
  • Stellingwerff T ,
  • Smith ES , et al
  • Government of Canada
  • Pereira LA ,
  • Cal Abad CC ,
  • Kobal R , et al
  • ↵ COPSI - sport related concussion guidelines . Available : https://www.ownthepodium.org/en-CA/Initiatives/Sport-Science-Innovation/2018-COPSI-Network-Concussion-Guidelines [Accessed 25 May 2023 ].
  • McCrory P ,
  • Meeuwisse W ,
  • Dvořák J , et al
  • Gardner AJ ,
  • Quarrie KL ,
  • Putukian M ,
  • Purcell L ,
  • Schneider KJ , et al
  • Nguyen JN , et al
  • Lempke LB ,
  • Caccese JB ,
  • Syrydiuk RA , et al
  • D’Lauro C ,
  • Johnson BR ,
  • McGinty G , et al
  • Crossley KM ,
  • Bo K , et al
  • Covassin T ,
  • Harris W , et al
  • Swanik CB ,
  • Swope LM , et al
  • Master CL ,
  • Arbogast KB , et al
  • Walton SR ,
  • Kelshaw PM ,
  • Munce TA , et al
  • Barron TF , et al
  • Tsushima WT ,
  • Riegler K ,
  • Amalfe S , et al
  • Monteiro D ,
  • Silva F , et al
  • Dijkstra HP ,
  • Pollock N ,
  • Chakraverty R , et al
  • Clarsen B ,
  • Derman W , et al
  • Matthews JN ,
  • Echemendia RJ ,
  • Bruce JM , et al
  • Yeates KO ,
  • Räisänen AM ,
  • Premji Z , et al
  • Breedlove K ,
  • McAllister TW , et al
  • Hennig L , et al
  • Register-Mihalik JK ,
  • Guskiewicz KM ,
  • Marshall SW , et al
  • Toomey CM , et al
  • Mannix R , et al
  • Barkhoudarian G ,
  • Haider MN ,
  • Ellis M , et al
  • Harmon KG ,
  • Clugston JR ,
  • Dec K , et al
  • Carson JD ,
  • Lawrence DW ,
  • Kraft SA , et al
  • Martens G ,
  • Edouard P ,
  • Tscholl P , et al

Supplementary materials

Supplementary data.

This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

  • Data supplement 1

X @ThomasRomeas

Correction notice This article has been corrected since it published Online First. The ORCID details have been added for Dr Croteau.

Contributors TR, FC and SL were involved in planning, conducting and reporting the work. François Bieuzen and Magdalena Wojtowicz critically reviewed the manuscript. TR is guarantor.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Read the full text or download the PDF:

What a Southern Plantation’s Paper Trail Can Reveal about the Lasting Legacies of Slavery

Historian mary snyder (grs’29) spent her summer building the archives of the whitney plantation’s store.

Photo: Mary Snyder, a white woman with shoulder length hair, is a BU PhD student in the American Studies program. She stands in a room with rows of wooden bare shelves. Photo: Mary Snyder, a white woman with shoulder length hair, is a BU PhD student in the American Studies program. She stands in a room with rows of wooden bare shelves.

Before her summer internship at the Whitney Plantation, Mary Snyder (GRS’29) worked for the Historic Charleston Foundation and Monticello, the home of founding father Thomas Jefferson. Photo by Sydney Joelle Walker

BU historian Mary Snyder (GRS’29) spent her summer building the archives of the Whitney Plantation’s store

Amy laskowski.

Rice (30 cents), oatmeal (20 cents), and meat (50 cents) all appear on Whitney Plantation worker John Johnson’s 1953 grocery bill. He spent $14.18 on 24 items, a balance carried over when he left Whitney to start a new job at a nearby plantation. “We understand that Johnson owns a balance of about $25,” his new manager wrote to his former boss . “Will you therefore bill me for the difference as soon as possible?”.

This running total would continue to follow Johnson, indebting him to his bosses—just like thousands of other Black Americans who worked as sharecroppers on Southern plantations until the 1970s. 

The bill and the letter are two of thousands of records studied by Boston University PhD student Mary Snyder , who spent her summer on the grounds of Whitney Plantation, now a historic site, on the banks of the Mississippi River in Louisiana, about an hour’s drive west of New Orleans. Snyder (GRS’29) pored over decades of handwritten receipts, tax returns, insurance claims, letters, and other documents from the Whitney Plantation’s store, which sold everything from clothing to medicine to groceries—and even handled workers’ personal affairs.

research paper articles

The records, Snyder says, tell an important story of the Jim Crow era. After emancipation, formerly enslaved workers often returned to plantations to work for low wages and in harsh conditions. Without money for housing or food, they had no choice. Plantation owners in turn set up stores, where the workers could buy groceries, medicine, clothing, and other items—usually at inflated prices and on a credit system. Anything the workers purchased from the store was subtracted from their paychecks at the end of the week. All of this prevented them from getting out of debt and moving off the plantation.

“Little has been written on wage-fixing in sugar plantations during this time frame,” says Snyder, a student in American and New England studies. “Many plantations don’t do an in-depth study of what happens to the site after Reconstruction.” 

When Snyder took on the project, she wondered what records, like tax returns from the 1950s, could add to understanding the history of these grounds. Building on a decade of research performed by Whitney’s executive director, Ashley Rogers, Snyder’s 12-week internship involved cataloging 52 boxes of documents that, in the future, will be digitized and available to researchers. 

“The collection provides an understanding of the legacies of slavery in that transformation: postbellum into Jim Crow into the civil rights era,” Snyder says. “We have a tendency to jump from the period of enslavement right into the present day, or we’ll talk about Jim Crow, but we don’t see how nuanced the mechanisms are that stay in place even after emancipation.”

A Different Kind of Plantation Tour

Other plantations in the South host weddings and offer tours of the “big house” by costumed guides, complete with mint juleps on the porch and nary a mention of the brutality that earned the owners their fortunes.

The Whitney is strikingly different, asking visitors to confront the country’s deep-seated effects of racism. It is considered the first and still one of the only museums in the country to focus on slavery. Mitch Landrieu, the former mayor of New Orleans and a top advisor to President Biden, once compared the site’s significance to Auschwitz. 

research paper articles

The plantation was started in 1752 by the Haydel family and expanded over the years, growing indigo plants, rice, and, most important, sugar. Sugar was a brutal crop that required constant, hazardous labor, and “for many enslaved people, being sold south to Louisiana was considered a death sentence,” reads the history section on the Whitney’s website. At its peak, the grounds were run by more than 350 enslaved people who produced more than 400,000 pounds of sugar every year. They also tended to the owner’s family, who lived in the Creole-style “big house” mansion, which is flanked by an allée of Spanish moss oaks.

After the Civil War ended, the house fell into disrepair, and its future was uncertain. In 1999, a wealthy local trial lawyer bought the Whitney land . After learning the site’s history and seeing documents that included the names of enslaved people, he felt compelled to invest $8 million of his own money to restore the property and develop it into a museum. He collaborated with artists, historians, preservationists, and researchers in the lead-up to the site’s 2014 opening. 

Today, when visitors arrive at the Whitney, they receive a card with the name and story of a formerly enslaved person who’d been interviewed by the Federal Writers’ Project in the 1930s. Eerily placed around the site’s chapel are 40 life-size casts of slave children who lived—and, in many cases, died—on the plantation. The grounds also include seven slave cabins, and just outside their doors are massive iron kettles that enslaved people used to boil sugar cane.

research paper articles

Although Snyder has spent years studying historic preservation and interpretation of 19th-century US historical sites tied to the history of enslavement, she was surprised and affected by her first visit to the Whitney. 

“The mission of the site is to provide a history of slavery, and so when you go around the grounds and through the buildings, it feels like you are genuinely following these enslaved men, women, and families’ life journeys,” she says. “Unlike many other sites, there is little attention given to the enslavers.” 

This spring, Snyder, who has a master’s degree in library and information science from Wayne State University, was looking for an internship and contacted executive director Rogers, who enthusiastically hired her to help finish their store’s archives project.

research paper articles

Before the Whitney opened to the public, Rogers had found previously untouched boxes of records in the plantation store. Much of the contents had been damaged and were covered in dirt and dust, but she salvaged hundreds of records spanning 1939 to 1975. In 2015, Rogers began working on this archival research project with help from previous interns and the Historic New Orleans Collection. In 2022, the Whitney received $85,000 from the African American Cultural Heritage Action Fund, a program of the National Trust for Historic Preservation, to aid in the project.

research paper articles

“Everything had already been sorted into major themes, but there was no structure within those themes,” Rogers says. “Mary’s work this summer has helped to cap off a decade-long project. These records tell the story of the plantation in the 20th century, and they will be invaluable to Whitney Plantation as well as future researchers.”

Snyder created a cataloging system within the existing overarching structure. She reorganized and meticulously ordered the records, which had been stacked in boxes or housed in sheets of transparent Mylar. Most important, she inventoried each box and created a metadata system (a structured index), which will be especially helpful to future researchers. Her work is also helping inform the ongoing physical restoration and interpretation of the plantation store, which will one day be open to visitors. 

Snyder says those brittle invoices, payroll records, medical bills, and letters revealed a few themes. “They paint a really paternalistic picture of how, while these workers were no longer enslaved, the plantation owners maintained control over their lives through wage-fixing and other means,” she says. “They created a system in which anything that the employee or the laborer needed, the plantation store would source those things, and then determine how much to deduct from their paycheck. A lot of times the laborers didn’t even have cash in hand. And that was to restrict their economic mobility. So my work traced that.”

research paper articles

Many of the store records had been damaged and were covered in dirt and dust, but hundreds were salvaged—and can now be studied. Photos by Sydney Joelle Walker

Rogers says she is unaware of any other Southern plantation doing similar work with their store records, though she has seen some plantation store records in university archives. “On the whole, I think this is a very under-researched area,” she says. “I think that because plantations are so focused on the antebellum era, they may not see the value in preserving these 20th-century records.” She hopes that the analysis of how plantations operated in the 20th century will soon catch up to what we know about their Civil War-era histories.

Snyder says she was honored to work on the Whitney Plantation and chip away at this project. “It is a museum that really does fulfill its mission: it is dedicated to pushing forth a more inclusive narrative,” she says. “It was also eye-opening for me, as someone who usually is in the 19th-century space, to recognize how little we fully understand what happened in 20th century daily life…. Preserving and interpreting records and buildings from this period will help us all better understand how the legacy of slavery truly permeates through to today.”

A Prominent BU Alum’s Descendants Were Enslaved on the Whitney Plantation

Sybil Haydel Morial (Wheelock’52,’55) was a retired educator and longtime community and civil rights activist in her home city of New Orleans. She died at age 91 on September 4.

In her memoir, Witness to Change: From Jim Crow to Political Empowerment (John F. Blair, 2015), Morial recounts the story of her great-great-grandmother Anna, who was purchased from an auction house by the Whitney Plantation’s original owners, Marcelin and Azelie Haydel. As was the case with many enslaved women, Anna was assaulted by one of the Haydel men, and her son was, therefore, also enslaved. 

Eventually, Morial’s family fought their way off the plantation. In her book, she describes how she grew up in New Orleans’ Seventh Ward in a bungalow built “by a freeborn man of color.” Her father was a respected Creole surgeon. Morial attended Xavier College for two years before transferring to BU, where she met Martin Luther King, Jr. (GRS’55, Hon. 59) and went on to earn a master’s in education. Her husband, Ernest “Dutch” Morial, was the first Black mayor of New Orleans. They raised five children.

In addition to her long career in education, Morial organized the Louisiana League of Good Government, which has a mission to increase Black voter registration and turnout, and mentored women to become leaders.

Explore Related Topics:

  • Share this story
  • 0 Comments Add

Senior Writer Twitter Profile

Photo of Amy Laskowski. A white woman with long brown hair pulled into a half up, half down style and wearing a burgundy top, smiles and poses in front of a dark grey backdrop.

Amy Laskowski is a senior writer at Boston University. She is always hunting for interesting, quirky stories around BU and helps manage and edit the work of BU Today ’s interns. She did her undergrad at Syracuse University and earned a master’s in journalism at the College of Communication in 2015. Profile

Comments & Discussion

Boston University moderates comments to facilitate an informed, substantive, civil conversation. Abusive, profane, self-promotional, misleading, incoherent or off-topic comments will be rejected. Moderators are staffed during regular business hours (EST) and can only accept comments written in English. Statistics or facts must include a citation or a link to the citation.

Post a comment. Cancel reply

Your email address will not be published. Required fields are marked *

Latest from The Brink

Why are kids struggling with anxiety more than ever, getting their hands dirty in the lab—and in the charles river, 2024 ignition awards aim to bring bu science and tech to market, bu team wins major national science foundation grant to help phd students attack climate change, liberation through rhythm: bu ethnomusicologist studies history and present of african beats, oxygen produced in the deep sea raises questions about extraterrestrial life, the histories of enslaved people were written by slavers. a bu researcher is working to change that, making mri more globally accessible: how metamaterials offer affordable, high-impact solutions, “i love this work, but it’s killing me”: the unique toll of being a spiritual leader today, feeling the heat researchers say heat waves will put more older adults in danger, what the history of boston’s harbor can teach us about its uncertain future, eng’s mark grinstaff one of six researchers to receive nsf trailblazer engineering impact awards, how do we solve america’s affordable housing crisis bu research helps inspire a federal bill that suggests answers, missile defense won’t save us from growing nuclear arsenals, this ai software can make diagnosing dementia easier and faster for doctors, suicide now the primary cause of death among active duty us soldiers, state laws banning abortion linked to increases in mental health issues, scuba diving safely for marine biology research, heat waves are scorching boston, but are some neighborhoods hotter than others.

Peer Reviewed

GPT-fabricated scientific papers on Google Scholar: Key features, spread, and implications for preempting evidence manipulation

Article metrics.

CrossRef

CrossRef Citations

Altmetric Score

PDF Downloads

Academic journals, archives, and repositories are seeing an increasing number of questionable research papers clearly produced using generative AI. They are often created with widely available, general-purpose AI applications, most likely ChatGPT, and mimic scientific writing. Google Scholar easily locates and lists these questionable papers alongside reputable, quality-controlled research. Our analysis of a selection of questionable GPT-fabricated scientific papers found in Google Scholar shows that many are about applied, often controversial topics susceptible to disinformation: the environment, health, and computing. The resulting enhanced potential for malicious manipulation of society’s evidence base, particularly in politically divisive domains, is a growing concern.

Swedish School of Library and Information Science, University of Borås, Sweden

Department of Arts and Cultural Sciences, Lund University, Sweden

Division of Environmental Communication, Swedish University of Agricultural Sciences, Sweden

research paper articles

Research Questions

  • Where are questionable publications produced with generative pre-trained transformers (GPTs) that can be found via Google Scholar published or deposited?
  • What are the main characteristics of these publications in relation to predominant subject categories?
  • How are these publications spread in the research infrastructure for scholarly communication?
  • How is the role of the scholarly communication infrastructure challenged in maintaining public trust in science and evidence through inappropriate use of generative AI?

research note Summary

  • A sample of scientific papers with signs of GPT-use found on Google Scholar was retrieved, downloaded, and analyzed using a combination of qualitative coding and descriptive statistics. All papers contained at least one of two common phrases returned by conversational agents that use large language models (LLM) like OpenAI’s ChatGPT. Google Search was then used to determine the extent to which copies of questionable, GPT-fabricated papers were available in various repositories, archives, citation databases, and social media platforms.
  • Roughly two-thirds of the retrieved papers were found to have been produced, at least in part, through undisclosed, potentially deceptive use of GPT. The majority (57%) of these questionable papers dealt with policy-relevant subjects (i.e., environment, health, computing), susceptible to influence operations. Most were available in several copies on different domains (e.g., social media, archives, and repositories).
  • Two main risks arise from the increasingly common use of GPT to (mass-)produce fake, scientific publications. First, the abundance of fabricated “studies” seeping into all areas of the research infrastructure threatens to overwhelm the scholarly communication system and jeopardize the integrity of the scientific record. A second risk lies in the increased possibility that convincingly scientific-looking content was in fact deceitfully created with AI tools and is also optimized to be retrieved by publicly available academic search engines, particularly Google Scholar. However small, this possibility and awareness of it risks undermining the basis for trust in scientific knowledge and poses serious societal risks.

Implications

The use of ChatGPT to generate text for academic papers has raised concerns about research integrity. Discussion of this phenomenon is ongoing in editorials, commentaries, opinion pieces, and on social media (Bom, 2023; Stokel-Walker, 2024; Thorp, 2023). There are now several lists of papers suspected of GPT misuse, and new papers are constantly being added. 1 See for example Academ-AI, https://www.academ-ai.info/ , and Retraction Watch, https://retractionwatch.com/papers-and-peer-reviews-with-evidence-of-chatgpt-writing/ . While many legitimate uses of GPT for research and academic writing exist (Huang & Tan, 2023; Kitamura, 2023; Lund et al., 2023), its undeclared use—beyond proofreading—has potentially far-reaching implications for both science and society, but especially for their relationship. It, therefore, seems important to extend the discussion to one of the most accessible and well-known intermediaries between science, but also certain types of misinformation, and the public, namely Google Scholar, also in response to the legitimate concerns that the discussion of generative AI and misinformation needs to be more nuanced and empirically substantiated  (Simon et al., 2023).

Google Scholar, https://scholar.google.com , is an easy-to-use academic search engine. It is available for free, and its index is extensive (Gusenbauer & Haddaway, 2020). It is also often touted as a credible source for academic literature and even recommended in library guides, by media and information literacy initiatives, and fact checkers (Tripodi et al., 2023). However, Google Scholar lacks the transparency and adherence to standards that usually characterize citation databases. Instead, Google Scholar uses automated crawlers, like Google’s web search engine (Martín-Martín et al., 2021), and the inclusion criteria are based on primarily technical standards, allowing any individual author—with or without scientific affiliation—to upload papers to be indexed (Google Scholar Help, n.d.). It has been shown that Google Scholar is susceptible to manipulation through citation exploits (Antkare, 2020) and by providing access to fake scientific papers (Dadkhah et al., 2017). A large part of Google Scholar’s index consists of publications from established scientific journals or other forms of quality-controlled, scholarly literature. However, the index also contains a large amount of gray literature, including student papers, working papers, reports, preprint servers, and academic networking sites, as well as material from so-called “questionable” academic journals, including paper mills. The search interface does not offer the possibility to filter the results meaningfully by material type, publication status, or form of quality control, such as limiting the search to peer-reviewed material.

To understand the occurrence of ChatGPT (co-)authored work in Google Scholar’s index, we scraped it for publications, including one of two common ChatGPT responses (see Appendix A) that we encountered on social media and in media reports (DeGeurin, 2024). The results of our descriptive statistical analyses showed that around 62% did not declare the use of GPTs. Most of these GPT-fabricated papers were found in non-indexed journals and working papers, but some cases included research published in mainstream scientific journals and conference proceedings. 2 Indexed journals mean scholarly journals indexed by abstract and citation databases such as Scopus and Web of Science, where the indexation implies journals with high scientific quality. Non-indexed journals are journals that fall outside of this indexation. More than half (57%) of these GPT-fabricated papers concerned policy-relevant subject areas susceptible to influence operations. To avoid increasing the visibility of these publications, we abstained from referencing them in this research note. However, we have made the data available in the Harvard Dataverse repository.

The publications were related to three issue areas—health (14.5%), environment (19.5%) and computing (23%)—with key terms such “healthcare,” “COVID-19,” or “infection”for health-related papers, and “analysis,” “sustainable,” and “global” for environment-related papers. In several cases, the papers had titles that strung together general keywords and buzzwords, thus alluding to very broad and current research. These terms included “biology,” “telehealth,” “climate policy,” “diversity,” and “disrupting,” to name just a few.  While the study’s scope and design did not include a detailed analysis of which parts of the articles included fabricated text, our dataset did contain the surrounding sentences for each occurrence of the suspicious phrases that formed the basis for our search and subsequent selection. Based on that, we can say that the phrases occurred in most sections typically found in scientific publications, including the literature review, methods, conceptual and theoretical frameworks, background, motivation or societal relevance, and even discussion. This was confirmed during the joint coding, where we read and discussed all articles. It became clear that not just the text related to the telltale phrases was created by GPT, but that almost all articles in our sample of questionable articles likely contained traces of GPT-fabricated text everywhere.

Evidence hacking and backfiring effects

Generative pre-trained transformers (GPTs) can be used to produce texts that mimic scientific writing. These texts, when made available online—as we demonstrate—leak into the databases of academic search engines and other parts of the research infrastructure for scholarly communication. This development exacerbates problems that were already present with less sophisticated text generators (Antkare, 2020; Cabanac & Labbé, 2021). Yet, the public release of ChatGPT in 2022, together with the way Google Scholar works, has increased the likelihood of lay people (e.g., media, politicians, patients, students) coming across questionable (or even entirely GPT-fabricated) papers and other problematic research findings. Previous research has emphasized that the ability to determine the value and status of scientific publications for lay people is at stake when misleading articles are passed off as reputable (Haider & Åström, 2017) and that systematic literature reviews risk being compromised (Dadkhah et al., 2017). It has also been highlighted that Google Scholar, in particular, can be and has been exploited for manipulating the evidence base for politically charged issues and to fuel conspiracy narratives (Tripodi et al., 2023). Both concerns are likely to be magnified in the future, increasing the risk of what we suggest calling evidence hacking —the strategic and coordinated malicious manipulation of society’s evidence base.

The authority of quality-controlled research as evidence to support legislation, policy, politics, and other forms of decision-making is undermined by the presence of undeclared GPT-fabricated content in publications professing to be scientific. Due to the large number of archives, repositories, mirror sites, and shadow libraries to which they spread, there is a clear risk that GPT-fabricated, questionable papers will reach audiences even after a possible retraction. There are considerable technical difficulties involved in identifying and tracing computer-fabricated papers (Cabanac & Labbé, 2021; Dadkhah et al., 2023; Jones, 2024), not to mention preventing and curbing their spread and uptake.

However, as the rise of the so-called anti-vaxx movement during the COVID-19 pandemic and the ongoing obstruction and denial of climate change show, retracting erroneous publications often fuels conspiracies and increases the following of these movements rather than stopping them. To illustrate this mechanism, climate deniers frequently question established scientific consensus by pointing to other, supposedly scientific, studies that support their claims. Usually, these are poorly executed, not peer-reviewed, based on obsolete data, or even fraudulent (Dunlap & Brulle, 2020). A similar strategy is successful in the alternative epistemic world of the global anti-vaccination movement (Carrion, 2018) and the persistence of flawed and questionable publications in the scientific record already poses significant problems for health research, policy, and lawmakers, and thus for society as a whole (Littell et al., 2024). Considering that a person’s support for “doing your own research” is associated with increased mistrust in scientific institutions (Chinn & Hasell, 2023), it will be of utmost importance to anticipate and consider such backfiring effects already when designing a technical solution, when suggesting industry or legal regulation, and in the planning of educational measures.

Recommendations

Solutions should be based on simultaneous considerations of technical, educational, and regulatory approaches, as well as incentives, including social ones, across the entire research infrastructure. Paying attention to how these approaches and incentives relate to each other can help identify points and mechanisms for disruption. Recognizing fraudulent academic papers must happen alongside understanding how they reach their audiences and what reasons there might be for some of these papers successfully “sticking around.” A possible way to mitigate some of the risks associated with GPT-fabricated scholarly texts finding their way into academic search engine results would be to provide filtering options for facets such as indexed journals, gray literature, peer-review, and similar on the interface of publicly available academic search engines. Furthermore, evaluation tools for indexed journals 3 Such as LiU Journal CheckUp, https://ep.liu.se/JournalCheckup/default.aspx?lang=eng . could be integrated into the graphical user interfaces and the crawlers of these academic search engines. To enable accountability, it is important that the index (database) of such a search engine is populated according to criteria that are transparent, open to scrutiny, and appropriate to the workings of  science and other forms of academic research. Moreover, considering that Google Scholar has no real competitor, there is a strong case for establishing a freely accessible, non-specialized academic search engine that is not run for commercial reasons but for reasons of public interest. Such measures, together with educational initiatives aimed particularly at policymakers, science communicators, journalists, and other media workers, will be crucial to reducing the possibilities for and effects of malicious manipulation or evidence hacking. It is important not to present this as a technical problem that exists only because of AI text generators but to relate it to the wider concerns in which it is embedded. These range from a largely dysfunctional scholarly publishing system (Haider & Åström, 2017) and academia’s “publish or perish” paradigm to Google’s near-monopoly and ideological battles over the control of information and ultimately knowledge. Any intervention is likely to have systemic effects; these effects need to be considered and assessed in advance and, ideally, followed up on.

Our study focused on a selection of papers that were easily recognizable as fraudulent. We used this relatively small sample as a magnifying glass to examine, delineate, and understand a problem that goes beyond the scope of the sample itself, which however points towards larger concerns that require further investigation. The work of ongoing whistleblowing initiatives 4 Such as Academ-AI, https://www.academ-ai.info/ , and Retraction Watch, https://retractionwatch.com/papers-and-peer-reviews-with-evidence-of-chatgpt-writing/ . , recent media reports of journal closures (Subbaraman, 2024), or GPT-related changes in word use and writing style (Cabanac et al., 2021; Stokel-Walker, 2024) suggest that we only see the tip of the iceberg. There are already more sophisticated cases (Dadkhah et al., 2023) as well as cases involving fabricated images (Gu et al., 2022). Our analysis shows that questionable and potentially manipulative GPT-fabricated papers permeate the research infrastructure and are likely to become a widespread phenomenon. Our findings underline that the risk of fake scientific papers being used to maliciously manipulate evidence (see Dadkhah et al., 2017) must be taken seriously. Manipulation may involve undeclared automatic summaries of texts, inclusion in literature reviews, explicit scientific claims, or the concealment of errors in studies so that they are difficult to detect in peer review. However, the mere possibility of these things happening is a significant risk in its own right that can be strategically exploited and will have ramifications for trust in and perception of science. Society’s methods of evaluating sources and the foundations of media and information literacy are under threat and public trust in science is at risk of further erosion, with far-reaching consequences for society in dealing with information disorders. To address this multifaceted problem, we first need to understand why it exists and proliferates.

Finding 1: 139 GPT-fabricated, questionable papers were found and listed as regular results on the Google Scholar results page. Non-indexed journals dominate.

Most questionable papers we found were in non-indexed journals or were working papers, but we did also find some in established journals, publications, conferences, and repositories. We found a total of 139 papers with a suspected deceptive use of ChatGPT or similar LLM applications (see Table 1). Out of these, 19 were in indexed journals, 89 were in non-indexed journals, 19 were student papers found in university databases, and 12 were working papers (mostly in preprint databases). Table 1 divides these papers into categories. Health and environment papers made up around 34% (47) of the sample. Of these, 66% were present in non-indexed journals.

Indexed journals*534719
Non-indexed journals1818134089
Student papers4311119
Working papers532212
Total32272060139

Finding 2: GPT-fabricated, questionable papers are disseminated online, permeating the research infrastructure for scholarly communication, often in multiple copies. Applied topics with practical implications dominate.

The 20 papers concerning health-related issues are distributed across 20 unique domains, accounting for 46 URLs. The 27 papers dealing with environmental issues can be found across 26 unique domains, accounting for 56 URLs.  Most of the identified papers exist in multiple copies and have already spread to several archives, repositories, and social media. It would be difficult, or impossible, to remove them from the scientific record.

As apparent from Table 2, GPT-fabricated, questionable papers are seeping into most parts of the online research infrastructure for scholarly communication. Platforms on which identified papers have appeared include ResearchGate, ORCiD, Journal of Population Therapeutics and Clinical Pharmacology (JPTCP), Easychair, Frontiers, the Institute of Electrical and Electronics Engineer (IEEE), and X/Twitter. Thus, even if they are retracted from their original source, it will prove very difficult to track, remove, or even just mark them up on other platforms. Moreover, unless regulated, Google Scholar will enable their continued and most likely unlabeled discoverability.

Environmentresearchgate.net (13)orcid.org (4)easychair.org (3)ijope.com* (3)publikasiindonesia.id (3)
Healthresearchgate.net (15)ieee.org (4)twitter.com (3)jptcp.com** (2)frontiersin.org
(2)

A word rain visualization (Centre for Digital Humanities Uppsala, 2023), which combines word prominences through TF-IDF 5 Term frequency–inverse document frequency , a method for measuring the significance of a word in a document compared to its frequency across all documents in a collection. scores with semantic similarity of the full texts of our sample of GPT-generated articles that fall into the “Environment” and “Health” categories, reflects the two categories in question. However, as can be seen in Figure 1, it also reveals overlap and sub-areas. The y-axis shows word prominences through word positions and font sizes, while the x-axis indicates semantic similarity. In addition to a certain amount of overlap, this reveals sub-areas, which are best described as two distinct events within the word rain. The event on the left bundles terms related to the development and management of health and healthcare with “challenges,” “impact,” and “potential of artificial intelligence”emerging as semantically related terms. Terms related to research infrastructures, environmental, epistemic, and technological concepts are arranged further down in the same event (e.g., “system,” “climate,” “understanding,” “knowledge,” “learning,” “education,” “sustainable”). A second distinct event further to the right bundles terms associated with fish farming and aquatic medicinal plants, highlighting the presence of an aquaculture cluster.  Here, the prominence of groups of terms such as “used,” “model,” “-based,” and “traditional” suggests the presence of applied research on these topics. The two events making up the word rain visualization, are linked by a less dominant but overlapping cluster of terms related to “energy” and “water.”

research paper articles

The bar chart of the terms in the paper subset (see Figure 2) complements the word rain visualization by depicting the most prominent terms in the full texts along the y-axis. Here, word prominences across health and environment papers are arranged descendingly, where values outside parentheses are TF-IDF values (relative frequencies) and values inside parentheses are raw term frequencies (absolute frequencies).

research paper articles

Finding 3: Google Scholar presents results from quality-controlled and non-controlled citation databases on the same interface, providing unfiltered access to GPT-fabricated questionable papers.

Google Scholar’s central position in the publicly accessible scholarly communication infrastructure, as well as its lack of standards, transparency, and accountability in terms of inclusion criteria, has potentially serious implications for public trust in science. This is likely to exacerbate the already-known potential to exploit Google Scholar for evidence hacking (Tripodi et al., 2023) and will have implications for any attempts to retract or remove fraudulent papers from their original publication venues. Any solution must consider the entirety of the research infrastructure for scholarly communication and the interplay of different actors, interests, and incentives.

We searched and scraped Google Scholar using the Python library Scholarly (Cholewiak et al., 2023) for papers that included specific phrases known to be common responses from ChatGPT and similar applications with the same underlying model (GPT3.5 or GPT4): “as of my last knowledge update” and/or “I don’t have access to real-time data” (see Appendix A). This facilitated the identification of papers that likely used generative AI to produce text, resulting in 227 retrieved papers. The papers’ bibliographic information was automatically added to a spreadsheet and downloaded into Zotero. 6 An open-source reference manager, https://zotero.org .

We employed multiple coding (Barbour, 2001) to classify the papers based on their content. First, we jointly assessed whether the paper was suspected of fraudulent use of ChatGPT (or similar) based on how the text was integrated into the papers and whether the paper was presented as original research output or the AI tool’s role was acknowledged. Second, in analyzing the content of the papers, we continued the multiple coding by classifying the fraudulent papers into four categories identified during an initial round of analysis—health, environment, computing, and others—and then determining which subjects were most affected by this issue (see Table 1). Out of the 227 retrieved papers, 88 papers were written with legitimate and/or declared use of GPTs (i.e., false positives, which were excluded from further analysis), and 139 papers were written with undeclared and/or fraudulent use (i.e., true positives, which were included in further analysis). The multiple coding was conducted jointly by all authors of the present article, who collaboratively coded and cross-checked each other’s interpretation of the data simultaneously in a shared spreadsheet file. This was done to single out coding discrepancies and settle coding disagreements, which in turn ensured methodological thoroughness and analytical consensus (see Barbour, 2001). Redoing the category coding later based on our established coding schedule, we achieved an intercoder reliability (Cohen’s kappa) of 0.806 after eradicating obvious differences.

The ranking algorithm of Google Scholar prioritizes highly cited and older publications (Martín-Martín et al., 2016). Therefore, the position of the articles on the search engine results pages was not particularly informative, considering the relatively small number of results in combination with the recency of the publications. Only the query “as of my last knowledge update” had more than two search engine result pages. On those, questionable articles with undeclared use of GPTs were evenly distributed across all result pages (min: 4, max: 9, mode: 8), with the proportion of undeclared use being slightly higher on average on later search result pages.

To understand how the papers making fraudulent use of generative AI were disseminated online, we programmatically searched for the paper titles (with exact string matching) in Google Search from our local IP address (see Appendix B) using the googlesearch – python library(Vikramaditya, 2020). We manually verified each search result to filter out false positives—results that were not related to the paper—and then compiled the most prominent URLs by field. This enabled the identification of other platforms through which the papers had been spread. We did not, however, investigate whether copies had spread into SciHub or other shadow libraries, or if they were referenced in Wikipedia.

We used descriptive statistics to count the prevalence of the number of GPT-fabricated papers across topics and venues and top domains by subject. The pandas software library for the Python programming language (The pandas development team, 2024) was used for this part of the analysis. Based on the multiple coding, paper occurrences were counted in relation to their categories, divided into indexed journals, non-indexed journals, student papers, and working papers. The schemes, subdomains, and subdirectories of the URL strings were filtered out while top-level domains and second-level domains were kept, which led to normalizing domain names. This, in turn, allowed the counting of domain frequencies in the environment and health categories. To distinguish word prominences and meanings in the environment and health-related GPT-fabricated questionable papers, a semantically-aware word cloud visualization was produced through the use of a word rain (Centre for Digital Humanities Uppsala, 2023) for full-text versions of the papers. Font size and y-axis positions indicate word prominences through TF-IDF scores for the environment and health papers (also visualized in a separate bar chart with raw term frequencies in parentheses), and words are positioned along the x-axis to reflect semantic similarity (Skeppstedt et al., 2024), with an English Word2vec skip gram model space (Fares et al., 2017). An English stop word list was used, along with a manually produced list including terms such as “https,” “volume,” or “years.”

  • Artificial Intelligence
  • / Search engines

Cite this Essay

Haider, J., Söderström, K. R., Ekström, B., & Rödl, M. (2024). GPT-fabricated scientific papers on Google Scholar: Key features, spread, and implications for preempting evidence manipulation. Harvard Kennedy School (HKS) Misinformation Review . https://doi.org/10.37016/mr-2020-156

  • / Appendix B

Bibliography

Antkare, I. (2020). Ike Antkare, his publications, and those of his disciples. In M. Biagioli & A. Lippman (Eds.), Gaming the metrics (pp. 177–200). The MIT Press. https://doi.org/10.7551/mitpress/11087.003.0018

Barbour, R. S. (2001). Checklists for improving rigour in qualitative research: A case of the tail wagging the dog? BMJ , 322 (7294), 1115–1117. https://doi.org/10.1136/bmj.322.7294.1115

Bom, H.-S. H. (2023). Exploring the opportunities and challenges of ChatGPT in academic writing: A roundtable discussion. Nuclear Medicine and Molecular Imaging , 57 (4), 165–167. https://doi.org/10.1007/s13139-023-00809-2

Cabanac, G., & Labbé, C. (2021). Prevalence of nonsensical algorithmically generated papers in the scientific literature. Journal of the Association for Information Science and Technology , 72 (12), 1461–1476. https://doi.org/10.1002/asi.24495

Cabanac, G., Labbé, C., & Magazinov, A. (2021). Tortured phrases: A dubious writing style emerging in science. Evidence of critical issues affecting established journals . arXiv. https://doi.org/10.48550/arXiv.2107.06751

Carrion, M. L. (2018). “You need to do your research”: Vaccines, contestable science, and maternal epistemology. Public Understanding of Science , 27 (3), 310–324. https://doi.org/10.1177/0963662517728024

Centre for Digital Humanities Uppsala (2023). CDHUppsala/word-rain [Computer software]. https://github.com/CDHUppsala/word-rain

Chinn, S., & Hasell, A. (2023). Support for “doing your own research” is associated with COVID-19 misperceptions and scientific mistrust. Harvard Kennedy School (HSK) Misinformation Review, 4 (3). https://doi.org/10.37016/mr-2020-117

Cholewiak, S. A., Ipeirotis, P., Silva, V., & Kannawadi, A. (2023). SCHOLARLY: Simple access to Google Scholar authors and citation using Python (1.5.0) [Computer software]. https://doi.org/10.5281/zenodo.5764801

Dadkhah, M., Lagzian, M., & Borchardt, G. (2017). Questionable papers in citation databases as an issue for literature review. Journal of Cell Communication and Signaling , 11 (2), 181–185. https://doi.org/10.1007/s12079-016-0370-6

Dadkhah, M., Oermann, M. H., Hegedüs, M., Raman, R., & Dávid, L. D. (2023). Detection of fake papers in the era of artificial intelligence. Diagnosis , 10 (4), 390–397. https://doi.org/10.1515/dx-2023-0090

DeGeurin, M. (2024, March 19). AI-generated nonsense is leaking into scientific journals. Popular Science. https://www.popsci.com/technology/ai-generated-text-scientific-journals/

Dunlap, R. E., & Brulle, R. J. (2020). Sources and amplifiers of climate change denial. In D.C. Holmes & L. M. Richardson (Eds.), Research handbook on communicating climate change (pp. 49–61). Edward Elgar Publishing. https://doi.org/10.4337/9781789900408.00013

Fares, M., Kutuzov, A., Oepen, S., & Velldal, E. (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources. In J. Tiedemann & N. Tahmasebi (Eds.), Proceedings of the 21st Nordic Conference on Computational Linguistics (pp. 271–276). Association for Computational Linguistics. https://aclanthology.org/W17-0237

Google Scholar Help. (n.d.). Inclusion guidelines for webmasters . https://scholar.google.com/intl/en/scholar/inclusion.html

Gu, J., Wang, X., Li, C., Zhao, J., Fu, W., Liang, G., & Qiu, J. (2022). AI-enabled image fraud in scientific publications. Patterns , 3 (7), 100511. https://doi.org/10.1016/j.patter.2022.100511

Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Research Synthesis Methods , 11 (2), 181–217.   https://doi.org/10.1002/jrsm.1378

Haider, J., & Åström, F. (2017). Dimensions of trust in scholarly communication: Problematizing peer review in the aftermath of John Bohannon’s “Sting” in science. Journal of the Association for Information Science and Technology , 68 (2), 450–467. https://doi.org/10.1002/asi.23669

Huang, J., & Tan, M. (2023). The role of ChatGPT in scientific communication: Writing better scientific review articles. American Journal of Cancer Research , 13 (4), 1148–1154. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164801/

Jones, N. (2024). How journals are fighting back against a wave of questionable images. Nature , 626 (8000), 697–698. https://doi.org/10.1038/d41586-024-00372-6

Kitamura, F. C. (2023). ChatGPT is shaping the future of medical writing but still requires human judgment. Radiology , 307 (2), e230171. https://doi.org/10.1148/radiol.230171

Littell, J. H., Abel, K. M., Biggs, M. A., Blum, R. W., Foster, D. G., Haddad, L. B., Major, B., Munk-Olsen, T., Polis, C. B., Robinson, G. E., Rocca, C. H., Russo, N. F., Steinberg, J. R., Stewart, D. E., Stotland, N. L., Upadhyay, U. D., & Ditzhuijzen, J. van. (2024). Correcting the scientific record on abortion and mental health outcomes. BMJ , 384 , e076518. https://doi.org/10.1136/bmj-2023-076518

Lund, B. D., Wang, T., Mannuru, N. R., Nie, B., Shimray, S., & Wang, Z. (2023). ChatGPT and a new academic reality: Artificial Intelligence-written research papers and the ethics of the large language models in scholarly publishing. Journal of the Association for Information Science and Technology, 74 (5), 570–581. https://doi.org/10.1002/asi.24750

Martín-Martín, A., Orduna-Malea, E., Ayllón, J. M., & Delgado López-Cózar, E. (2016). Back to the past: On the shoulders of an academic search engine giant. Scientometrics , 107 , 1477–1487. https://doi.org/10.1007/s11192-016-1917-2

Martín-Martín, A., Thelwall, M., Orduna-Malea, E., & Delgado López-Cózar, E. (2021). Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics , 126 (1), 871–906. https://doi.org/10.1007/s11192-020-03690-4

Simon, F. M., Altay, S., & Mercier, H. (2023). Misinformation reloaded? Fears about the impact of generative AI on misinformation are overblown. Harvard Kennedy School (HKS) Misinformation Review, 4 (5). https://doi.org/10.37016/mr-2020-127

Skeppstedt, M., Ahltorp, M., Kucher, K., & Lindström, M. (2024). From word clouds to Word Rain: Revisiting the classic word cloud to visualize climate change texts. Information Visualization , 23 (3), 217–238. https://doi.org/10.1177/14738716241236188

Swedish Research Council. (2017). Good research practice. Vetenskapsrådet.

Stokel-Walker, C. (2024, May 1.). AI Chatbots Have Thoroughly Infiltrated Scientific Publishing . Scientific American. https://www.scientificamerican.com/article/chatbots-have-thoroughly-infiltrated-scientific-publishing/

Subbaraman, N. (2024, May 14). Flood of fake science forces multiple journal closures: Wiley to shutter 19 more journals, some tainted by fraud. The Wall Street Journal . https://www.wsj.com/science/academic-studies-research-paper-mills-journals-publishing-f5a3d4bc

The pandas development team. (2024). pandas-dev/pandas: Pandas (v2.2.2) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.10957263

Thorp, H. H. (2023). ChatGPT is fun, but not an author. Science , 379 (6630), 313–313. https://doi.org/10.1126/science.adg7879

Tripodi, F. B., Garcia, L. C., & Marwick, A. E. (2023). ‘Do your own research’: Affordance activation and disinformation spread. Information, Communication & Society , 27 (6), 1212–1228. https://doi.org/10.1080/1369118X.2023.2245869

Vikramaditya, N. (2020). Nv7-GitHub/googlesearch [Computer software]. https://github.com/Nv7-GitHub/googlesearch

This research has been supported by Mistra, the Swedish Foundation for Strategic Environmental Research, through the research program Mistra Environmental Communication (Haider, Ekström, Rödl) and the Marcus and Amalia Wallenberg Foundation [2020.0004] (Söderström).

Competing Interests

The authors declare no competing interests.

The research described in this article was carried out under Swedish legislation. According to the relevant EU and Swedish legislation (2003:460) on the ethical review of research involving humans (“Ethical Review Act”), the research reported on here is not subject to authorization by the Swedish Ethical Review Authority (“etikprövningsmyndigheten”) (SRC, 2017).

This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided that the original author and source are properly credited.

Data Availability

All data needed to replicate this study are available at the Harvard Dataverse: https://doi.org/10.7910/DVN/WUVD8X

Acknowledgements

The authors wish to thank two anonymous reviewers for their valuable comments on the article manuscript as well as the editorial group of Harvard Kennedy School (HKS) Misinformation Review for their thoughtful feedback and input.

  • University of Wisconsin–Madison

APA Style Guidelines

  • About this Guide
  • Blogs, Podcasts, and Social Media
  • Content Marketing
  • Popular Magazines
  • Professional Organizations
  • Trade Publications
  • Scholarly Journals
  • Attributive Tags or Signal Phrases
  • Citation Generators - Problems & Limitations
  • Date Retrieved for Website Reference Entries & When to Use “n.d.” (no date)
  • Differentiating between Sources with the Same Author and Date
  • Hyperlinks & Attribution: "Citation" for Digital Documents
  • Identifying & Citing Content Marketing
  • Indirect Citations, or How to Cite a Quote or Paraphrase from a Source
  • In-text Citations: Conveying Credibility
  • In-text Citations: Using a Source Multiple Times
  • In-text Citations: Principles & Formatting
  • References Page: Principles & Formatting

Synthesizing Multiple Sources

  • URLs - When to Include to Entire Address
  • Company Report
  • General Website, Non-government Website
  • Government Publication or Website
  • Industry Report from IBISWorld
  • Informational Interview
  • Job Advertisement
  • Lecture or Conference Presentation
  • O*Net Online
  • Popular Business Magazine
  • Professional/Trade Organization Website
  • Reference Works (Dictionary, Investopedia, Wiki, etc.)
  • Review Sites
  • Scholarly Journal Article
  • Social Media Posts
  • Trade Journal or Magazine Article

Synthesis means combining different sources to support an idea of your own while clearly articulating the connections between those sources. 

Synthesis and Presenting Information . If you’ve been asked to gather information so that someone else can make a decision, you’ll want to develop one or more conclusions from your reading. To help your reader understand the main takeaways from your research, quote or paraphrase key information from a variety of sources to support your conclusions. As in all other workplace writing, your task as a writer is to save your readers time; they shouldn’t have to read your sources to determine whether or not those sources actually do what you say they do if you have effectively quoted, paraphrased, and integrated them into sentences and paragraphs of your own.

Synthesis and Building Credibility . Synthesis can also help you to demonstrate credibility by showing that you looked at multiple sources. In essence, synthesizing is a way of fact-checking yourself, or of reading and citing from multiple sources to ensure accuracy. Thus, a reader is likely to be more persuaded by your conclusions if they are supported by multiple credible sources.

Synthesis and Analysis . If your purpose is to analyze something, synthesis allows you to show that your analysis is based on and accounts for a broad array of sources. A valid analytical conclusion about how effective CEOs use storytelling to promote employee engagement, for example, will be most convincing if you synthesize multiple examples of how many CEOs do this and draw your own conclusion about best practices from those examples.

The following examples synthesize multiple sources to support conclusions. Example one uses APA in-text citations, as you might do in a formal report. Example two provides citations using hyperlinks, as you would likely do in an email.

According to the , surveys show that the number of Americans reporting that a household member had a tattoo doubled between 1999 and 2014 (Zitner & Dougherty, 2020).  Similarly, a Pew Research report showed that “almost four in 10 millennials have a tattoo” (as cited in Knudson, 2020, p. 45).  These trends seem likely to continue.  The most recent IBISWorld report on “Tattoo Artists” predicted five-year growth at an “annualized 7.0% to $1.9 billion” (Diment, 2021).

Workplace acceptance of tattoos does have limits.  Although the reported that hand tattoos that can’t be covered up for an important meeting are becoming more common (Gallagher, 2018), suggested that face and neck tattoos remain taboo for most workplaces (Premack, 2018).  One tattoo artist quoted in the called them “job stoppers” (as cited in Kurutz, 2018), and they remain quite rare.  Altogether, “face, neck and hand tattoos are estimated to account for just under 2.0% of tattoos” (Diment, 2021).

Many of us think that we can do more than one thing at a time, like listening to a colleague at a meeting while responding to a text, or reviewing an expense report while watching an NBA game. 

What the research shows is it’s unlikely that very many people can do two things at once.  One study, published in the , showed that only of their test subjects could perform two tasks at the same time without reduced performance in one or both of them.  What this suggests is that more than 90% of us are fooling ourselves when we think we’re getting a lot done by doing many things at once.  According to MIT neuroscientist Earl Miller, , what we think of as multitasking is “actually just switching from one task to another very rapidly.”  Each time we make this switch, “there’s a cognitive cost,” which means that we don’t achieve as much as we could with sustained focus on one thing. 

This kind of switching could also have effects beyond our performance on the tasks we are switching between.  A survey of multiple research studies by the Proceedings of the National Academy of Sciences acknowledged that further research is needed, but stated that the existing research indicates that people who habitually engage with multiple forms of media at the same time   Although researchers hesitate to overstate the possible problems with multitasking, the business press is all in on the negative effects of multitasking, as shown by recent articles from , and , all of which advocate for limiting distractions to increase productivity and letting go of the myth of multitasking.

  • << Previous: References Page: Principles & Formatting
  • Next: URLs - When to Include to Entire Address >>
  • Last Updated: Sep 5, 2024 3:28 PM
  • URL: https://researchguides.library.wisc.edu/APAStyleGuide

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Technology articles from across Nature Portfolio

Latest research and reviews, navigating the eu ai act: implications for regulated digital medical products.

The newly adopted EU AI Act represents a pivotal milestone that heralds a new era of AI regulation across industries. With its broad territorial scope and applicability, this comprehensive legislation establishes stringent requirements for AI systems. In this article, we analyze the AI Act’s impact on digital medical products, such as medical devices: How does the AI Act apply to AI/ML-enabled medical devices? How are they classified? What are the compliance requirements? And, what are the obligations of ‘providers’ of these AI systems? After addressing these foundational questions, we discuss the AI Act’s broader implications for the future of regulated digital medical products.

  • Timo Minssen
  • Effy Vayena

research paper articles

Contribution of double-cropped maize ethanol in Brazil to sustainable development

Combined food–energy production systems can help improve resource-use efficiency, but the extent to which such systems contribute to sustainable development has not yet been fully explored. This study evaluates this system in double-cropped maize ethanol production in Brazil.

  • Angelo C. Gurgel
  • Joaquim E. A. Seabra
  • Rosana Galindo

research paper articles

Human detection of political speech deepfakes across transcripts, audio, and video

With advances in generative AI, political speech deepfakes are becoming more realistic. Here, the authors show that people’s ability to distinguish between real and fake speeches relies on audio and visual information more than the speech content.

  • Matthew Groh
  • Aruna Sankaranarayanan
  • Rosalind Picard

research paper articles

Effect of freeze-thaw and PEF pretreatments on the kinetics and microstructure of convective and ultrasound-assisted drying of orange peel

  • Beatriz Llavata
  • Ronaldo E. Mello
  • Juan A. Cárcel

research paper articles

Hardware-accelerated integrated optoelectronic platform towards real-time high-resolution hyperspectral video understanding

The field AI for processing language and images is quite developed, but analysing video content remains a significant challenge. This work introduces a hardware-accelerated integrated optoelectronic platform for real-time multidimensional video analysis, achieving data processing speeds of 1.2 Tb/s.

  • Maksim Makarenko
  • Arturo Burguete-Lopez
  • Andrea Fratalocchi

research paper articles

Two-dimensional and high-order directional information modulations for secure communications based on programmable metasurface

The authors showcase a directional information modulation scheme based on a programmable metasurface, which opens a new route to ensure physical-layer security and serves as a stepping stone toward endogenous secure communications.

  • Tie Jun Cui

Advertisement

News and Comment

research paper articles

A day in the life of the world’s fastest supercomputer

In the hills of eastern Tennessee, a record-breaking machine called Frontier is providing scientists with unprecedented opportunities to study everything from atoms to galaxies.

  • Sophia Chen

To tackle social-media harms, mandate data access for researchers

  • Steve Rathje

research paper articles

Simplifying obstetric sonography with AI

Researchers developed an AI-enabled, battery-operated tool that can be operated by clinicians with no sonography experience — and that measures gestational age as accurately as high-specification ultrasound.

  • Karen O’Leary

research paper articles

Inside China’s race to lead the world in nuclear fusion

The country has ambitious plans for fusion power plants to provide clean, limitless energy. Can they be realized?

  • Gemma Conroy

research paper articles

The cool technologies that could protect cities from dangerous heat

From supercool materials that send heat into space to shape-shifting materials that can selectively fend it off, scientists are finding new strategies to reduce urban temperatures.

  • Shannon Hall

Health equity through CMS collaboration with startups and digital health innovations

There is a need for digital health innovation focused on bettering the health of marginalized populations. These communities, often insured by Medicaid and Medicare, face complex healthcare barriers that technology can address—emphasizing the role of the Center for Medicaid and Medicare Services (CMS) in fostering innovation. Dasari et al. identify four areas of CMS collaboration with startups: enhancing consumer awareness, leveraging telehealth, streamlining cross-state licensing and billing, and adopting technology-enabled tools.

  • Serena C. Y. Wang
  • Grace Nickel
  • Joseph C. Kvedar

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research paper articles

COMMENTS

  1. Research articles

    Read the latest Research articles from Nature. The authors use lineage tracing to map the fate of wild-type and Brca1 −/−;Trp53 −/− cells in the adult mouse mammary gland, identifying ...

  2. Research articles

    Research articles | Scientific Reports

  3. Browse Articles

    Browse Articles

  4. Google Scholar

    الباحث العلمي من Google

  5. The New England Journal of Medicine

    The New England Journal of Medicine | Research & Review ...

  6. ScienceDirect.com

    ScienceDirect.com | Science, health and medical journals, full ...

  7. Home

    Discover a digital archive of scholarly articles, spanning centuries of scientific research. User Guide Learn how to find and read articles of interest to you. ... Journals deposit all NIH-funded articles as defined by the NIH Public Access Policy. 44 Selective Deposit Programs. Publisher deposits a subset of articles from a collection of journals.

  8. JSTOR Home

    JSTOR Home ... JSTOR Home

  9. Science News

    Science News features news articles, videos and more about the latest scientific advances. Independent, accurate nonprofit news since 1921.

  10. Search

    With 160+ million publication pages, 25+ million researchers and 1+ million questions, this is where everyone can access science. You can use AND, OR, NOT, "" and () to specify your search ...

  11. Latest Research

    Cardiac manifestations and outcomes of COVID-19 vaccine-associated myocarditis in the young in the USA: longitudinal results from the Myocarditis After COVID Vaccination (MACiV) multicenter study. eClinicalMedicine. Vol. 76102809Published: September 6, 2024. Supriya S. Jain.

  12. ResearchGate

    ResearchGate | Find and share research

  13. Academia.edu

    Academia.edu - Share research

  14. How to Write a Research Paper

    How to Write a Research Paper | A Beginner's Guide

  15. 110553 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on RESEARCH PAPERS. Find methods information, sources, references or conduct a literature review on ...

  16. Latest science news, discoveries and analysis

    Latest science news and analysis from the world's leading research journal. ... Awareness of when a paper can't be trusted is often too low — but adopting some easy-to-use technological ...

  17. Drug-Drug Interactions Involving High-Alert Medications that Lead to

    Compared with our research, the Brazilian study reported a considerably lower rate of HAM-related pDDIs per patient (79 versus 14). Part of this difference may be explained by the fact that pediatric patients requiring intensive care are more susceptible to drug-drug interactions [ 16 ].

  18. The top 10 journal articles of 2020

    Amachine learning algorithm can identify which patients would derive more benefit from cognitive behavioral therapy (CBT) versus counseling for depression, suggests research in this Journal of Consulting and Clinical Psychology (Vol. 88, No. 1) article. Researchers retrospectively explored data from 1,085 patients in the United Kingdom treated ...

  19. Free APA Journal Articles

    Recently published articles from subdisciplines of psychology covered by more than 90 APA Journals™ publications. For additional free resources (such as article summaries, podcasts, and more), please visit the Highlights in Psychological Research page. Browse and read free articles from APA Journals across the field of psychology, selected by ...

  20. How to Write and Publish a Research Paper for a Peer ...

    Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that should be included in each section. We also identify common ...

  21. Where is the research on sport-related concussion in Olympic athletes

    Objectives This cohort study reported descriptive statistics in athletes engaged in Summer and Winter Olympic sports who sustained a sport-related concussion (SRC) and assessed the impact of access to multidisciplinary care and injury modifiers on recovery. Methods 133 athletes formed two subgroups treated in a Canadian sport institute medical clinic: earlier (≤7 days) and late (≥8 days ...

  22. Research Article

    Research Article - an overview | ScienceDirect Topics

  23. Journal Top 100

    The most downloaded Scientific Reports papers published in 2022. ... Featuring authors from around the world, these papers highlight valuable research from an international community.

  24. 10000 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on RESEARCH TOPICS. Find methods information, sources, references or conduct a literature review on ...

  25. Models of instructional design in gamification: A systematic review of

    Gamification allows for the implementation of experiences that simulate the design of (video) games, giving individuals the opportunity to be the protagonists in them. Its inclusion in the educational environment responds to the need to adapt teaching-learning processes to the characteristics of homo videoludens, placing value once again on the role of playful action in the personal ...

  26. What a Southern Plantation's Paper Trail Can Reveal about the Lasting

    What a Southern Plantation's Paper Trail Can Reveal about the Lasting Legacies of Slavery Historian Mary Snyder (GRS'29) spent her summer building the archives of the Whitney Plantation's store ... Building on a decade of research performed by Whitney's executive director, Ashley Rogers, Snyder's 12-week internship involved cataloging ...

  27. GPT-fabricated scientific papers on Google Scholar: Key features

    Academic journals, archives, and repositories are seeing an increasing number of questionable research papers clearly produced using generative AI. They are often created with widely available, general-purpose AI applications, most likely ChatGPT, and mimic scientific writing. Google Scholar easily locates and lists these questionable papers alongside reputable, quality-controlled research.

  28. Carbon emissions from the 2023 Canadian wildfires

    Buck, A. Buck Research CR-1A User's Manual (Appendix 1) (Buck Research Instruments, 1996). ... B.B. conducted the analysis and wrote the paper, with input from all authors.

  29. Research Guides: APA Style Guidelines: Synthesizing Multiple Sources

    Example One: Acceptance of Tattoos in the Workplace Increases, but Limits Remain. According to the Wall Street Journal, surveys show that the number of Americans reporting that a household member had a tattoo doubled between 1999 and 2014 (Zitner & Dougherty, 2020).Similarly, a Pew Research report showed that "almost four in 10 millennials have a tattoo" (as cited in Knudson, 2020, p. 45).

  30. Technology

    Research Open Access 20 Jul 2024 Nature Communications. Volume: 15, P: 6140. All Research & Reviews. News and Comment. A day in the life of the world's fastest supercomputer.