University College University of Denver Logo

  • University of Denver Boot Camps

18 Skills All Programmers Need to Have

programmer problem solving skills

Are you an aspiring programmer, or perhaps just interested in learning more about the programming field? Read on to learn more about the hard and soft skills that programmers need to succeed.

Technology has become the backbone of our everyday lives, and programmers are needed to keep moving that technology forward. The options are endless: an aspiring programmer can bring the next life-changing smartphone app to life, create new worlds in gaming, or craft the way millions of people across the globe interact and communicate online. These are just a few of the ways programmers impact the world around them, but all programmers have certain things in common — the in-demand hard and soft skills that propel their career success.

Hard Skills

  • Data structures and algorithms
  • Database and SQL
  • Object-oriented programming (OOP) languages
  • Integrated development environments (IDEs)
  • Cloud computing
  • Web development
  • Text editors
  • Git version control

Soft Skills

  • Communication (verbal and written)
  • Teamwork and conflict resolution
  • Problem solving
  • Adaptability
  • Accountability
  • Time management

9 Hard Skills Programmers Need

Graphic listing 9 hard programming skills

1. Data Structures and Algorithms

Many programmers think that data structures and algorithms (DSAs) are just something you have to “get through” in school, but will never need in real life. However, they’re surprised when so many interviews include DSA questions. There are several reasons companies are interested in a prospective employee’s DSA knowledge, and why programmers should be interested in it too.

For many companies, such as Meta, Google, Microsoft, and Amazon, writing code is just the final step in a long process. The majority of a programmer’s time is actually spent considering the best way to approach a project, including the best data structures and optimal algorithms to employ. These decisions have a real impact on the company’s resource usage and profitability, so it’s no surprise that DSAs figure prominently in their interview process. And, even for companies outside of Silicon Valley, these questions are important because they demonstrate a programmer’s foundational knowledge and problem solving abilities.

Once a programmer has the position, DSAs still play a role in day-to-day work. Specifically, data structures are a particular way of organizing data so that it can be used most effectively, and there are many to choose from . One of the most commonly used data structures is an array , which holds and indexes items of the same data type such as integers. Additional types of data structures include linked lists , which organize data into linear, sequentially-linked order; and stacks , which allow programmers to access recently placed items first, as if they were picking up the first book in a pile. 

Algorithms , meanwhile, are a set of instructions programmers give to computers to solve a problem, much like the recipe one might give a cook. These step-by-step guidelines can perform a variety of tasks, including searching and sorting data in a way that is ordered and makes sense.

In addition, many startups, as well as FAANG employers , look for programmers who possess the agility to scale programs and innovate through the use of DSAs.

2. Database and SQL

One of the basic expectations of any programmer is that they are familiar with core database concepts. This is because data is the fuel companies run on, and it proliferates almost every aspect of every project. 

While there are many languages used to work with databases, the most common is Structured Query Language (SQL — pronounced “sequel”). Though SQL was developed in the 1980s, it is still the standard language used to communicate with relational databases and is considered critical for modern programmers. In recent years, SQL has been heavily used by PC databases because it facilitates access to distributed databases (e.g., those spread out over multiple computer systems); allowing several local users to access the same network simultaneously. SQL also enables easy storage and organization of data in relational databases (e.g., databases where tables are related to one another through common data). 

If you’re interested in gaining SQL experience, it may be helpful to practice with MySQL . Referred to as a relational database management system (RDMS), this open-source software is based on SQL and many aspiring coders use it to work on developing their own systems, applications, and websites for free.

NoSQL , on the other hand, is a database management system (DBMS) that stores and accesses data using key-values, rather than relationally, which offers some additional flexibility. One example of a NoSQL database is MongoDB , an open-source program which can be used for high-volume document data storage, and deals with document structure variations nicely.

Of course, there are many more systems and software packages to learn when mastering databases, but having a strong foundation in database concepts and SQL is an important first step for all programmers.

3. Object-oriented programming (OOP) languages

OOP languages support a way of programming (sometimes called a paradigm) that relies on classes and objects. Think of classes like groups of similar things, such as fruits, with objects that tell us more about individual items in that class, such as apples. This programming paradigm is important because it allows programmers to easily reuse complex code across programs. For example, if I say “my apple,” it isn’t necessary for me to tell you all the attributes of my apple (i.e., red, round, grew on a tree, belongs to me). Similarly, by using an object (myapple) from a class (fruit), a programmer can easily communicate instructions or information across multiple programs, enabling more effective and efficient coding as a result.

For this reason, OOP languages such as Java , C++ , Python , and Perl are important for programmers, and they need to have at least one in their skill set.

In addition, such languages as JavaScript and PHP pair well with OOP languages to further enhance efficiencies and functionality.

4. Integrated Development Environments (IDEs)

Combining a variety of developer tools through a single graphic user interface (GUI), IDEs are a workbench for programmers where all the tools they need are laid out and ready for them to use — kind of like a workbench with a saw, drill, nails, and a hammer if you were planning to build a birdhouse.

IDEs are valuable in that by learning one IDE, a developer can become familiar with a variety of tools that work synergistically, rather than learning each tool separately and pulling together the right tools for each coding task. In addition, because all the tools are available through one GUI, the programmer doesn’t have to spend time switching between applications.

It’s important to note that IDEs are language-specific, meaning that an IDE may be designed to work with one or more programming languages. Here is a quick rundown of some of the more popular IDEs and the languages they work with (listed alphabetically).

Chart showing Integrated Development Environments and the languages they work with

  • AWS Cloud9 : Supports over 40 languages , including JavaScript, Python, PHP, Ruby, Go, and C++ 
  • Code:: Blocks : Supports C and C++
  • Eclipse : Supports Java
  • Eclipse Theia : Supports over 60 languages, including JavaScript, Java, and Python
  • GNAT Studio : Supports Ada, SPARK, C, C++, and Python
  • IntelliJ IDEA : Supports Java, but understands many other programming languages, including Groovy, Kotlin, Scala, JavaScript, TypeScript, and SQL
  • NetBeans : Supports several languages including, Java, PHP, JavaFX, and JavaScript
  • PyCharm : Supports major Python frameworks such as Flask, Django, web2py, Pyramid, and Google App Engine 
  • SlickEdit : Supports over 70 languages , including C++, Java, HTML, PHP, JavaScript, Python, Perl, and Ruby
  • Xcode : supports Swift, but allows coding in C, C++, Objective-C, Objective-C++, Java, Applescript, Python, React.js, and Ruby
  • Visual Studio : Supports C, C++, C++/CLI, Visual Basic .NET, C#, F#, JavaScript, TypeScript, XML, XSLT, HTML, and CSS
  • Visual Studio Code : Supports many languages including, C++, C#, CSS, Dart, Dockerfile, F#, Go, HTML, Java, JavaScript, JSON, Julia, PHP, Python, SCSS, T-SQL, and TypeScript.

It’s also important to remember that while cloud-based IDEs aren’t constrained by the programmer’s operating system, this is a use constraint for IDEs that aren’t cloud-native.

5. Cloud computing

Cloud computing is experiencing explosive growth, as cloud developers are needed for all businesses who wish to migrate their environments, storage, and digital assets to the cloud. In fact, according to LogicMonitor , 87% of global IT decision makers agree that the COVID-19 pandemic has accelerated cloud migration for most organizations. In addition, once migrated, businesses will need programmers familiar with the technology necessary to work effectively with cloud-native applications. And, as businesses rely more heavily on data science, machine learning, and artificial intelligence, work in the cloud becomes even more important since algorithms and models consume significant resources. The result of these business transitions and needs is that cloud engineers and developers, as well as cloud-savvy programmers, are in high demand.

The good news is that many of the languages needed for cloud computing are already top languages for programmers, including:

In addition, it’s a good idea for programmers to familiarize themselves with cloud platforms, such as: 

  • Amazon Web Services (AWS)
  • Microsoft Azure
  • Google Cloud Platform (GCP)

Even focusing on just one, to learn key functionality, will help you gain a better understanding of how the others work, adding value to your skill set.

6. Web development

Many professionals consider web development a subset, or specialization of programming. Therefore, it only makes sense for those who plan on working in web development to learn the associated languages and tech, right? Well, maybe not.

Certainly, it goes without saying that programmers who plan to work in web development need to have a strong background in the core tools. Some of these tools include:

  • HTML/CSS : HyperText Markup Language (HTML) and Cascading Style Sheets (CSS) are both basic coding languages — often, they are the first two that web developers learn. HTML helps organize the content and structure of a web page, while CSS determines its style and presentation.
  • JavaScript : JavaScript is most commonly used for front end development, though it is sometimes used for back end development as well. As one writer for Mozilla explains, “Every time a web page does more than just sit there and display static information for you to look at — displaying timely content updates, interactive maps, animated 2D/3D graphics, scrolling video jukeboxes, etc. — you can bet that JavaScript is probably involved.”
  • API : An API (Application Programming Interface) is the part of a remote server that receives a user’s requests and sends responses to the rest of the server and website. Programmers set up a website’s API to complete user requests and connect them to an external server without leaving the original site. Having familiarity with APIs ranks high on any web development skills list because it helps improve a customer’s experience on websites.
  • PHP : PHP (Hypertext Preprocessor) is a highly accessible, general-purpose scripting language that can be easily embedded into HTML to accentuate front end programming efforts. Unlike JavaScript, PHP is executed entirely on the server-side , rather than the client-side .

With that said, even programmers who don’t plan on working in web development can benefit from understanding the basics. For example, many projects that programmers work on include a web component. With some foundational knowledge of web development concepts, concerns, and constraints, programmers are better able to understand how data will be collected and used, what functionality may be required at a later date, and how enterprise systems may be impacted in the future. Certainly, this knowledge will help programmers have a more comprehensive understanding of not only the best way to develop their own portion of the project, but also how to offer additional solutions to those whose expertise is focused on client-side functionality.

7. Containers

Containers are preconfigured environments that package code and other dependencies an application needs to run, without the need for downloads to a physical computer. Unlike traditional methods where code is developed in a specific computing environment and transferred to a new location resulting in bugs (i.e., virtual machines ), containers bundle the application code with related configuration files, libraries, and dependencies which minimizes the potential for bugs. In addition, because the operating system (OS) files are included, containers virtualize the operating system and the application can run anywhere. As a result, programmers are able to develop and deploy applications in a faster and more secure manner. 

A basic example of container usage in education is a teacher preparing for their Python programming class . By using a container, they are able to grab the necessary application, libraries, and dependencies (including the OS), making it easier to prepare while ensuring learners will have the necessary access to learn Python from anywhere. 

Some of the most popular container management software includes:

  • AWS Fargate
  • Google Kubernetes Engine
  • Linux Containers
  • Microsoft Azure Container Services

8. Text editors

Text editors are programs that enable the opening, viewing, and editing of plain text files. Because text editors do not add formatting to text, like word processing programs do, programmers can use text editors to easily write and edit in programming and markup languages. In addition, text editors help programmers create documentation files and maintain configuration files.

Some of the most frequently used text editors include:

  • Visual Studio Code
  • Sublime Text

Git is a version control system that allows programmers to manage and track changes to source code throughout the development process. It makes it easy to correct any errors that may occur because every version is saved and can be recalled on demand. And, using version control encourages programmers to innovate through trial and error, as they don’t have to worry about losing previous coding attempts.

Git is the most widely used version control system among employers, so it’s important to be well versed and ready to use it when approaching a career in programming.

9 Soft Skills Programmers Need

Soft skills are different from technical (hard) skills in that they are a combination of personal attributes and interpersonal skills that enable professionals to work more effectively and more harmoniously with others.

Here are a few of the most valuable programmer soft skills:

1.  Communication : The ability to explain ideas or work methods clearly, ask and answer questions productively in a group setting, and help reduce conflict through respectful dialog is important to succeeding in coding.

2.  Teamwork and conflict resolution : Constructively sharing ideas, and supporting others’ ideas in turn, is a key element in team success. But would it surprise you to know that consistent agreement isn’t always beneficial? In fact, it’s actually the differing backgrounds and ideas each team member brings to the table that helps a team yield a better result than individual outcomes. Specifically, it’s how differing ideas are discussed, tested, and applied (as a group) to reach a common goal that makes for great collaboration and outstanding results.

3.  Problem Solving : Problem-solving skills are just as important for programmers as technical ability. As Dominique Simoneau-Ritchie, the Director of Engineering at Lever, wrote for HackerNoon , “The more senior you are, the more you’ll be expected to take on complex, poorly defined problems, often with very little context. The true secret to increasing your impact is learning how to tackle a problem of any size and breaking it into manageable pieces that you can successfully solve.”

4.  Empathy : The ability to truly understand the thoughts, feelings, and experiences of another, without judgment, is a vital skill for programmers. Empathy for program end users will result in software with higher satisfaction levels and better user acceptance. And, empathy for team members will not only enhance team connections, but will also foster a culture of trust and mutual assistance. It’s no wonder that so many companies rank empathy as a top 5 soft skill.

5.  Patience : It’s a virtue — but not for the reason you might think. Patient people tend to be less stressed when dealing with obstacles. Studies have shown that cortisol (a stress hormone) negatively impacts cognitive performance, perception, and organizational skills , which are critical to successful coding. As a result, patience (or a lack thereof) can significantly impact project outcomes and coding quality.

6.  Curiosity : “The best developers tend to be naturally curious people who love to learn,” CodeFights CEO Tigran Sloyan writes for Tech Beacon . This skill is likely what drives their ongoing exploration, iterative testing of various ideas, and actively seeking new ways to improve, which are key drivers in a programmer’s growth and success.

7.  Adaptability : If there is one thing that’s constant in programming, it’s that everything changes. Technology evolves, new versions of software release, requirements change, and clients’ needs multiply. For this reason, it is imperative that programmers be adaptable and resilient when it comes to dealing with change and occasional setbacks. Having the ability to calmly assess what needs to be done and adapt is key to success in this field.

8.  Accountability : Many wrongly associate accountability with “blame,” but when used effectively, it is actually something quite different. Accountability begins before a task is assigned or a single line of code is written — it is simply the building of trust between teammates through public discussion of direction, design, and timelines. Specifically, that trust translates into each teammate committing to doing their best work, quickly letting the team know if there is an unanticipated obstacle, and knowing that teammates will work together to address the obstacle in the best way possible. By working transparently and setting collective goals and timelines, accountability is a support — not a sword. Professionals can demonstrate this skill by truly supporting their teammates in a mutual fashion to achieve their overall goals. In fact, the popularity of agile methodology through Scrum project management is an excellent example of the correct application of accountability. 

9.  Time management : Whether it’s a client deadline, a team deliverable, or available budget hours, programmers must be able to manage their time effectively. This includes everything from estimating time to complete a task, helping the team agree on deliverable timelines, or completing individual tasks on time. It also includes knowing when you are running behind and asking a team member for help. Making time management a priority not only makes you more productive as an individual, but it also makes you a better, more reliable team member. Consequently, this is why employers consider this soft skill so important.

Becoming a Programmer

Career prospects for programmers look bright. According to CareerOneStop , an expected 9,700 U.S. job openings in programming are anticipated each year through 2030 with a median salary of $89,190. 

Even better, in the Denver, Colorado, area, programmers can anticipate a median salary of $91,550 and companies such as Meta (formerly Facebook), Intel, Honeywell, Lockheed Martin, and Colorado State University are all actively looking for programmers ,  

To take advantage of these great opportunities, you’ll need to acquire the knowledge and skills programmers need to be successful. The good news is that there are several options to choose from — a traditional degree, independent study, or a coding boot camp.

Obtaining a degree in computer science is always a popular choice for those interested in pursuing a career in programming. Taking three to four years, these degrees allow learners to explore the theoretical aspects of programming, while pursuing adjacent subject matter and additional interests. Given the significant time and financial commitment required to pursue this type of degree, it’s important to be sure it’s the right path for you. Some learners consider taking an introductory coding course, boot camp, or conducting independent study prior to committing to a degree program.

For those who lack the time or financial resources required to pursue a traditional degree, or want to explore their options before making a commitment, independent study can be the right choice. Also, many who prefer a slower tempo and self-directed approach pursue independent study of a programming language to enhance their existing skill set. Common options include:

  • MIT OpenCourseWare  
  • The Odin Project

Interestingly, many who begin their coding journey in independent study soon progress to enrolling in a coding boot camp. Boot camps are a great place to gain in-demand skills in a practical environment where learners apply their newfound knowledge on real-world projects that will eventually populate their professional portfolios. 

Regardless of the educational path you choose, the right combination of in-demand hard and soft skills will fuel your progress toward a rewarding career in programming.

Are you ready to take the next step and gain the in-demand technical skills needed for a successful web development career? Consider University of Denver Coding Boot Camp — learn critical programming languages, put them into practice on real-world projects to populate your professional portfolio, and hone your soft skills working collaboratively with your classmates. Start your future in programming today!

Get Program Info

Step 1 of 6

Arc Talent Career Blog

Problem-Solving Skills for Software Developers: Why & How to Improve

how to improve problem-solving skills for software developers

Problem-solving skills go hand-in-hand with software development. Learn some great problem-solving techniques and tips for improvement here!

Software developer jobs today require that you possess excellent problem-solving skills , and for good reason. Unfortunately, there seems to be a sort of talent gap when it comes to this one skill required of all software developers.

Troubleshooting and problem resolution are both informally and formally taught, but you mostly find that software developers have to learn problem-solving skills on their own. This is true for self-taught developers , obviously, but also even for those with software engineering degrees or who’ve graduated from coding boot camps.

This is why it’s necessary to acquaint yourself with the problem-solving process, whether you are a newbie or an experienced developer. In this article, we’ll explore everything you need to know about problem-solving so you can 10x your software development career.

Arc Signup Call-to-Action Banner v.6

What are Problem-Solving Skills?

As a developer, what do we mean by problem-solving? Let’s attempt a simple definition.

In software development, problem-solving is the process of using theories and research to find solutions to a problem domain, while testing different ideas and applying best practices to achieve a desired result. Problem-solving also has to do with utilizing creativity and logical thought processes to identify problems and resolve them with software.

Becoming a great software developer hinges more on learning algorithms than programming languages or frameworks . And algorithms are simply step-by-step instructions to solve a given problem.

Read More : How to Build a Software Engineer Portfolio (With Examples & Tips)

Why are impeccable problem-solving skills crucial?

Making good use of a computer language can be likened to being a skilled writer. An effective writer must know how to construct sentences and use grammar appropriately. There’s more to writing than just knowing all the words in the dictionary, and that’s how it works for developers, too.

You have different tasks to work on as a software developer, including perhaps designing, coding, and troubleshooting. Much of your time will be spent on identifying problems, spotting and correcting bugs, and making sense of codebases from before you started working there. Being ingenious at problem-solving is essential in creating incredible solutions to issues that arise throughout software development.

To demonstrate ingenuity, let’s consider Google’s autocomplete tool as an example.

The autocomplete tool is built to suggest related terms in the search bar as you type. The idea behind the tool is to reduce more than 200 years of time spent typing daily and to help users save time by up to 25% while typing.

Here’s what had to be done:

  • To activate real-time completion of suggestions, the UI experience and JavaScript had to be implemented.
  • Next, since users could type just about anything, the autocomplete suggestions had to be compiled into a sensible list dependent on user input.
  • Then, Google had to create a back-end sustainability system for this function. Doing this meant massively increasing its infrastructure to accommodate all forms of data query and HTTP requests.
  • Finally, the user interface had to be refined by software engineers in order to make sure that every user enjoyed a worthwhile experience. So they employed Google Trends to power the auto-completion tool while using algorithms to take out explicit or offensive predictions in line with Google’s auto-completion policy.

This is just one of Google’s innumerable problem-solving examples, but it’s clear to see that solving problems involves more than just telling a computer to do stuff. It’s about your ability to come up with parameters rightly tailored to target users so they can meet their goals.

So why must developers focus on problem-solving at work?

Software developers work with a wide range of people and departments, and it’s common to discover that some clients and teams find it difficult to define what they want. As a problem solver, it’s up to you to help them identify their needs and communicate their thoughts in an effective way.

Of course, you’ll need time and practice to develop your problem resolution ability. That’s because it’s less about solving problems faster but more about coming up with the best solution . And then you’ll need to deploy that solution.

Read More : Common Interview Questions for Software Developer Jobs (Non-Technical)

Types of problem-solving skills

Now let’s talk about four types of problem-solving skills for developers:

1.  Parallel thinking

As a software developer, parallel thinking is a crucial skill necessary to perform optimally. This makes it possible for you to carry out two tasks that complement each other at the same time (like an optimized form of multitasking skills). Being able to reorder tasks to boost parallel execution can help to improve your output and save valuable time .

2. Dissecting broad and/or complex goals

When it comes to building software, you will need to effectively outline the steps and tasks necessary to achieve your goal. Developers must learn to break large and complex tasks into smaller assignments because this is an important skill that will help you create results with precision.

3. Reimplementing existing solutions

You don’t always need to reinvent the wheel. Part of being an effective software developer comes with being able to use already existing tools before even thinking of creating new solutions. Developing problem-solving skills is very much connected to finding solutions that already exist and reusing them.

4. Abstraction

Keep in mind that goals tend to evolve. So if your client comes up with new ideas, that will mean changing your design goals and reordering your tasks. A good programmer must learn to create solutions in such a way that does not require a complete redesign from scratch.

You also have to become adept at abstracting problems so that your solutions can get them resolved so long as they aren’t entirely different from the original issue. You don’t necessarily have to abstract every aspect to avoid more complications being created. This calls for balance by abstracting only where necessary without making narrow decisions.

Read More : Learn 8 Great Benefits of Working From Home

4 Important Tips & Strategies for Improving Problem-Solving Skills

To keep your problem-solving skills and techniques from growing weaker over time, you need to exercise them non-stop. As they say: practice makes perfect!

To train the problem-solving side of your brain, these four tips and strategies can help you improve your abilities:

1. Make problem-solving a part of your life

Never restrict yourself to working on problems only during work hours. Don’t make it a chore, but, instead, do things that make problem-solving look fun. The game of chess, solving puzzles, and playing video games that compel you to think critically will help strengthen your problem-solving skills, and you can tell your significant other you are advancing your career! 🙂

When you come to a complex problem in your life, whether it’s budgeting for a home or renovating the downstairs bathroom, approach it both creatively and critically. Ask yourself: What would a great software engineer do in this situation?

2. Use different platforms to solve problems

Proffer solutions to a set of problems without restricting yourself to one platform. Using different platforms and tools regularly helps make sure you become flexible as a problem-solver. And it makes sense, because there really is no universal solution for the different problems that pop up in your line of work. Trying out different platforms to solve different problems helps you to keep an open mind and enables you to test out different techniques when looking to find solutions.

Read More : 12 Common Mistakes Keeping You From Landing Your First Developer Job

Arc Signup Call-to-Action Banner v.4

3. Be open to assistance from external sources

Part of being a good software developer comes with being able to ask for help and also accept all forms of feedback. You might need a different opinion or a new set of eyes to help find the most fitting solution to some problems. It makes sense to view building problem-solving skills as more of a team effort rather than a personal journey.

Have an open mind and heart to function not only as an individual but also as a collective. It’s a utopian working environment where everyone supports each other to become better versions of themselves. So if you come across an issue that keeps you stuck, get help! You may find someone who has a more refined framework or method you never knew existed or would have thought of using. You could then learn from them and add their solution to your toolkit.

Get feedback often, as well. This could be the catalyst to making improvements to your processes and evolving them into something truly refined.

4. Tackle new problems using lessons from past solutions

As you practice and finesse your ability to identify problems and find solutions, you’ll begin to notice patterns. It’s more like developing your toolbox armed with a wide range of solutions that have proved useful in the past. So when problems emerge, you will notice how easy it is to take some of those old solutions and apply them to the new problem.

The more you attempt to apply creativity in solving problems, the more you grow your skills. In the long run, that will help you find the right solutions faster and apply them to a wide range of problems more naturally. It’s all about improving the effectiveness and efficiency with which you tackle new problems while applying only the best possible solutions.

Read More : How to Stay Motivated at Work

3 Complementary Skills to Improve to Become a Good Problem Solver

Developing software is mostly about problem-solving at the very core before even writing your first lines of code. You have to identify problems that can be solved using software. Then you have to go on to understand how people try to solve such problems in real life.

It’s up to you to come up with a framework that allows you to take both the problem and the solution and convert them into computer code. And you have to do this in such a way that makes the software even more efficient and effective than a human.

While going through this process, developers also have to handle other problems such as deadline deliveries, checking for bugs and fixing them, and collaborate across teams. So, supporting skills must not be overlooked.

Software developers must build interpersonal skills and collaboration skills . Being able to empathize, accept feedback, handle criticism, listen intently, and show respect for others are all important characteristics and abilities necessary for teamwork, and, thus, necessary for solving problems on the job.

Read More : 5 Ways to Stand Out & Get Noticed in Your Current Development Job

Communication

No one is an island, and that’s true when you consider how software engineers work. Building software requires keeping up with clients and teammates and other departments. You can’t afford to be a Lone Ranger, at least not 100% of the time, and that’s why employers always look for good communication skills.

Being a good software developer also involves how well you can break down very complex concepts to laypeople. You want to be the kind of person who fixes a problem and is able to explain how you were able to do it. It’s all about your ability to be clear and articulate about every aspect of your work. And you want to be able to communicate not just verbally but also in written form.

To build your communication skills as a developer, you can learn from more experienced people and observe how they interact with their clients. And, don’t forget, with more and more companies becoming global enterprises and going remote, it’s important to brush up on your intercultural communication skills , as well.

Logical thinking

The difference between elite software developers and average ones is often said to be logical thinking. The ability to process thoughts logically is important, because you’ll often spend most of your time finding and fixing bugs rather than writing code.

Problems can show up from just about anywhere, even from what seems to be the most insignificant errors. So, your ability to detect software issues and solve these problems using deductive thought processes is a vital ingredient to your success as a software developer.

Read More : Questions to Ask at Interviews for Software Engineering Jobs

Problem-Solving Stages & Practices

There are countless problem-solving processes and various schools of thought regarding the best way to approach problems whenever they arise. To solve that problem, we’ve pooled some of these frameworks together to come up with a comprehensive approach to problem-solving.

Step 1 – Define the problem

You have to first start with problem identification. Knowing what you are dealing with is important, because you don’t want to risk spending valuable time applying wrong solutions. Avoid making automatic assumptions. Even when the symptoms look familiar, you want to investigate properly because such signs could be pointing to something else entirely.

Problems in software development come in different sizes and scopes. You could be having trouble getting some aspects of the product to respond in the desired way. Or maybe you’re having issues trying to decipher a codebase section where you can no longer communicate with the original developers. Sometimes, the problem could come in the form of an unfamiliar error message and you’re at loss.

Once you’re able to define the problem, make sure to document it.

Step 2 – Analyze the problem

Now it’s time to carry out problem analysis . Before deciding what problem resolution methods to adopt, it’s necessary to find out all there is to the issue, which builds on our first step. This will make it easier to come up with ideas and solutions later on.

Problem analysis isn’t always a walk in the park. There are times when the problem involves a very small mistake such as failing to import a package correctly or a small syntax error. Other times, however, it could be such a huge error, like the entire program acting differently than what you want. There might be no alarms or blinking red lights to tell you what the exact problem is.

If you encounter such situations, you can find answers by articulating the problem. Document what you intend to do, what you’ve done, the original intention for the program, and where you currently are. Communication comes in handy here, of course, not just in your documentation, but also in how you relay it to your teammates.

Read More : Got a Busy Developer Schedule? Here’s How to Keep Learning & Make Time

Step 3 – Brainstorm

This step has to do with generating ideas, and you can benefit from discussing the problem with a team and then coming up with ways to get it fixed. Keep in mind that problem-solving at work involves interacting with a diverse group of people where the individuals have unique skill sets and experiences.

Many developers tend to neglect the previous steps and rush straight into brainstorming. That’s definitely not a good way to go about problem-solving. The idea is not to skip the important steps in the process.

Once you get to the point where ideas need to be generated, do not discard any, because this step relies on a wide range of ideas. Only after gathering as many perspectives as possible should you then begin reviewing and narrowing down to the best possible solution.

Step 4 – Make a decision

At this point, all viable solutions have to be analyzed before selecting the most appropriate one to implement. Picking the best possible solution depends on its ability to meet certain criteria. It must be suitable, feasible, and then acceptable.

What it means is that the solution must be able to get the problem solved. It should also be easy to see how such a solution fits into the equation. And then every member of the team involved in the brainstorming process has to unanimously accept the solution.

Read More : How to Network as a Software Engineer

Step 5 – Implement

After identifying and choosing the solution, the next logical step is to plan out the implementation process and then execute it. Coming up with a detailed plan is crucial if the solution is to be a success.

Now this plan must detail all the necessary steps required to implement the solution. It will also explain the length of time and stages of work required. Once all of that is put in place, you can then move forward with the execution. The idea is not just to execute a solution but to do it the right way.

Implementation using automated tests can help to keep unexpected issues from arising in the future. Some other problem-solving practices or approaches begin the process with this step. So, whenever any changes are made to the project, tests asserting that the changes will perform as required will be written first before the changes are then made.

Step 6 – Evaluate

No problem-solving process can be deemed comprehensive enough if there is no room for evaluation. Whatever the solution may be, it has to undergo strict evaluation in order to see how it performs. That will also help determine whether the problem still exists and the extent to which such an issue keeps recurring.

In the event that the problem persists despite the implementation of a detailed plan, then the developer and team may even have to restart the problem-solving process. However discouraging that may sound, at least you’ll have caught it early enough. And, this also proves the process worked.

Read More : How to Become a Software Engineer: Education, Steps & Tips for Success

Arc Signup Call-to-Action Banner v.1

Final Thoughts

Developing problem-solving skills is quite necessary for software developers. To be a successful problem solver, you will need lots of years down the line to practice what you study.

Always remember that you are a problem solver first before anything else. There is more to building software than just understanding the tech behind it and writing lines of code. It’s all about improving your ability to identify problems and find solutions, and that will need lots of experience on your part.

Never shy away from problems, but learn to think critically and logically in any situation. By applying the six-step strategy for problem-solving at work discussed in this piece, you will be more equipped to come up with the most effective and efficient solutions.

We hope you enjoyed reading our guide on how to solve a problem as a software developer and ways to improve skills as a problem solver! If you have any questions, feedback, or other great problem-solving techniques or methods, let us know in the comments below 🙂

' src=

The Arc team publishes insightful articles and thought leadership pieces related to software engineering careers and remote work. From helping entry-level developers land their first junior role to assisting remote workers struggling with working from home to guiding mid-level programmers as they seek a leadership position, Arc covers it all and more!

Further reading

How to Move Into a More Senior Role as a Software Developer leader management or leadership position

Ready to Take On a Senior Role or Leadership Position as a Developer?

programmer problem solving skills

Here Are 43 of the Best Online Developer Communities to Join in 2024

how to improve analytical skills for developers

Key Analytical Skills for Developers (& How to Continually Improve Them)

How to know when you can consider yourself a senior software developer or engineer

Here’s When You Can TRULY Call Yourself a “Senior” Software Developer

how to improve time management skills for remote workers and managing time effectively as a software developer

Time Management Skills for Developers: Best Tips, Tools, and Strategies

Do I Need a Software Engineering Degree for Software Development Jobs?

Software Engineer Degree: Pros, Cons & Alternatives

code-practice

20 Code Challenges To Put What You’re Learning to the Test

Stephan-Miller.jpg?w=648

  • Share article on Twitter
  • Share article on Facebook
  • Share article on LinkedIn

Code challenges help you build problem-solving skills, better understand the programming language you use, and get to know algorithms you may not be familiar with. If you want to improve your skills in programming, there’s no better way than by writing code. In addition, coding challenges are convenient because they allow you to exercise your skills on a bite-sized problem and rarely require you to build a complete application, so you can usually complete them rather quickly.

Code challenges are also part of most coding interviews. Hiring managers may see the skills listed on your resume, and you may be able to talk like a programmer, but they also want to know that you can write code. By having you solve a coding challenge, they can assess your skills and be sure you can do the job. So working on coding challenges will also help you prepare for job interviews. We’ve collected 20 popular code challenges to get you started.

Learn something new for free

Intro to chatgpt, general programming challenges.

While most code challenges are small in scope, that doesn’t mean they won’t involve a complex solution, so it is best to choose a challenge that stretches your skills but isn’t completely out of your league. Below, we’ve ranked a few coding challenges by their complexity so you can find the best challenge for your skill level.

Basic code challenges

These are good beginner challenges. They may not actually show up in a coding interview, but everyone has to start somewhere. These challenges are good for practicing your skills at using a programming language.

  • Build a binary search tree .
  • Write a program that prints the numbers from 1 to 100. But for multiples of three, print Fizz instead of the number, and multiples of five, print Buzz. For numbers that are multiples of both three and five, print FizzBuzz .
  • Print Hello World in several different ways in a programming language .
  • Code in a new language .
  • Write a function that will take a given string and reverse the order of the words .
  • Write a function that will find the 50th number in the Fibonacci Sequence .
  • Write a function that tests if a number, n, is a prime number .

Intermediate code challenges

These code challenges are examples of what might be asked in interviews. There may be a big difference in difficulty compared to the basic challenges. If you get stuck on these, go back to the basics, practice more, and you will get there.

  • Write a function to check that a binary search tree is balanced .
  • Write a function to reverse the order of words that have punctuation and keep the punctuation in place .
  • Given two words (beginWord and endWord) and a dictionary’s word list, find the length of the shortest transformation sequence from beginWord to endWord .
  • Write a function that will find the nth number in the Fibonacci Sequence .
  • Write a function that will print out all prime numbers in a given string .

Hard code challenges

The point of these challenges is to challenge you, which will help you learn more. These will be similar to the type of work you’ll do on the job. Most of these challenges will be hard but use Big O notation and expect a certain type of performance. If you are struggling with these, search StackOverflow or Google for direction. Many developers have run into these types of problems and will help you find the solution. Just don’t cheat and copy the answer. What good would that do?

  • Write a function that inserts a list of n numbers into a binary search tree that runs at O(n log n) time .
  • Write a function to reverse the order of words with punctuation and keep the punctuation in place that runs at 0(n) time .
  • Write a function that will find the nth number in the Fibonacci Sequence and runs at O(n) time .
  • Write a function that tests if a number, n, is a prime number and a function that will print out all prime numbers in a given string as efficiently as possible .

Technology specific challenges

If you want to try some coding challenges that will test your skills on specific technologies, we have a few of those challenges.

Web development code challenges

  • Build a web page for your favorite band . A fun challenge can be creating a webpage for your favorite musical artist. Start by using only static HTML , and if you want to challenge yourself, even more, add CSS and JavaScript . Then, for extra credit, build it in a front-end framework like React and make it an interactive experience.
  • Recreate a magazine layout using Semantic HTML and CSS Flexbox . It is not always that easy to recreate a design. This code challenge will really test your skills with HTML and CSS by having you recreate a design from scratch on your own. Once you are a working web developer, you will be doing this daily.
  • Build a static portfolio site . Once you finish the first two web development challenges listed here, you will have demonstrated your skills in web development. So why not take it a step further and show off those skills to the world or a potential employer by building a portfolio site? With this challenge, you will do just that. You can use HTML and CSS and, if you want, JavaScript. If you need help creating a portfolio, watch the video below for a step-by-step tutorial. And if you want to learn how to use JavaScript to make it interactive, check out Part 2 .

Financial data analysis code challenges

Maximize stock trading profit . This is reportedly a question asked in a Google interview and will test your skills in analyzing financial data . There are three levels to this challenge:

  • Basic: Given the daily values of a stock, write a program that will find how you can gain the most with a single buy-sell-trade.
  • Intermediate: Given the daily values of a stock over several days n , write a program that will find how you can gain the most with a combination of buy-sell trades.
  • Hard: Complete both the basic and intermediate algorithms in the most efficient way possible.

Code challenges are a great way to practice your coding skills or keep yourself from getting rusty. Building complete applications will also teach you a lot, but they can take time to finish. On the other hand, a coding challenge can be completed in an evening and will expose you to new algorithms and programming concepts. They are also part of many coding interviews, so completing a few can help you prepare for a job interview. For more details on the code challenges we have, check out Essential Information on Code Challenges .

Whether you’re looking to break into a new career, build your technical skills, or just code for fun, we’re here to help every step of the way. Check out our blog post about how to choose the best Codecademy plan for you to learn about our structured courses, professional certifications, interview prep resources, career services, and more.

Related courses

Learn to code with blockly, choosing a programming language, choosing a career in tech, subscribe for news, tips, and more, related articles.

Group-2862.png?w=1024

What Is XML Used For?

XML stands for eXtensible Markup Language. You may run into it being used in a variety of programming languages. This article will show you what it is used for.

Group-2286.webp?w=1024

What Is Bash Used For?

The Bourne Again Shell (aka Bash) is used for numerous purposes, ranging from system administration to software testing. Here’s how it helps developers.

Cybersecurity_Blog_F_Cybersecurity_Thumbnail_01.png?w=1024

4 In-Demand Cybersecurity Skills That Will Help Get You Hired

Seize the job opportunities in cybersecurity by learning these key technical skills.

6-Small-Wins-To-Celebrate-On-Your-Journey-To-Becoming-A-Professional-Developer-1.png?w=1024

7 Small Wins To Celebrate On Your Journey To Becoming A Professional Developer

Having an end goal is important, but so is celebrating your progress. Here are some milestones to look forward to as you learn how to code.

6-Most-Popular-Programming-Languages-for-Game-Development.png?w=1024

7 Most Popular Programming Languages for Game Development

Learn the best languages for game development and why developers choose to use them. Discover how our classes can get you started with game design.

7-Organizations-Helping-Girls---Women-Build-Careers-in-Tech-1.jpg?w=1024

8 Organizations Helping Girls & Women Build Careers in Tech

There’s a gender gap in tech — but it’s getting smaller thanks to organizations like these.

staying-accountable-coding-goals.png?w=1024

5 Ways to Stay Accountable to Your Learning Goals in 2024

Planning to learn to code in 2024? We’ve put together a list of 6 tips and resources to help you stay accountable to your coding goals this year.

Tutorial Playlist

Programming tutorial, your guide to the best backend languages for 2024, an ultimate guide that helps you to start learn coding 2024, what is backend development: the ultimate guide for beginners, all you need to know for choosing the first programming language to learn, here’s all you need to know about coding, decoding, and reasoning with examples, understanding what is xml: the best guide to xml and its concepts., an ultimate guide to learn the importance of low-code and no-code development, top frontend languages that you should know about, top 75+ frontend developer interview questions and answers, the ultimate guide to learn typescript generics, the most comprehensive guide for beginners to know ‘what is typescript’.

The Ultimate Guide on Introduction to Competitive Programming

Top 60+ TCS NQT Interview Questions and Answers for 2024

Most commonly asked logical reasoning questions in an aptitude test, everything you need to know about advanced typescript concepts, an absolute guide to build c hello world program, a one-stop solution guide to learn how to create a game in unity, what is nat significance of nat for translating ip addresses in the network model, data science vs software engineering: key differences, a real-time chat application typescript project using node.js as a server, what is raspberry pi here’s the best guide to get started, what is arduino here’s the best beginners guide to get started, arduino vs. raspberry pi: which is the better board, the perfect guide for all you need to learn about mean stack, software developer resume: a comprehensive guide, here’s everything all you need to know about the programming roadmap, an ultimate guide that helps you to develop and improve problem solving in programming, the top 10 awesome arduino projects of all time, pyspark rdd: everything you need to know about pyspark rdd, wipro interview questions and answers that you should know before going for an interview, how to use typescript with nodejs: the ultimate guide, what is rust programming language why is it so popular, software terminologies, an ultimate guide that helps you to develop and improve problem solving in programming.

Lesson 27 of 33 By Hemant Deshpande

An Ultimate Guide That Helps You to Develop and Improve Problem Solving in Programming

Table of Contents

Coding and Programming skills hold a significant and critical role in implementing and developing various technologies and software. They add more value to the future and development. These programming and coding skills are essential for every person to improve problem solving skills. So, we brought you this article to help you learn and know the importance of these skills in the future. 

Want a Top Software Development Job? Start Here!

Want a Top Software Development Job? Start Here!

Topics covered in this problem solving in programming article are:

  • What is Problem Solving in Programming? 
  • Problem Solving skills in Programming
  • How does it impact your career ?
  • Steps involved in Problem Solving
  • Steps to improve Problem Solving in programming

What is Problem Solving in Programming?

Computers are used to solve various problems in day-to-day life. Problem Solving is an essential skill that helps to solve problems in programming. There are specific steps to be carried out to solve problems in computer programming, and the success depends on how correctly and precisely we define a problem. This involves designing, identifying and implementing problems using certain steps to develop a computer.

When we know what exactly problem solving in programming is, let us learn how it impacts your career growth.

How Does It Impact Your Career?

Many companies look for candidates with excellent problem solving skills. These skills help people manage the work and make candidates put more effort into the work, which results in finding solutions for complex problems in unexpected situations. These skills also help to identify quick solutions when they arise and are identified. 

People with great problem solving skills also possess more thinking and analytical skills, which makes them much more successful and confident in their career and able to work in any kind of environment. 

The above section gives you an idea of how problem solving in programming impacts your career and growth. Now, let's understand what problem solving skills mean.

Problem Solving Skills in Programming

Solving a question that is related to computers is more complicated than finding the solutions for other questions. It requires excellent knowledge and much thinking power. Problem solving in programming skills is much needed for a person and holds a major advantage. For every question, there are specific steps to be followed to get a perfect solution. By using those steps, it is possible to find a solution quickly.

The above section is covered with an explanation of problem solving in programming skills. Now let's learn some steps involved in problem solving.

Steps Involved in Problem Solving

Before being ready to solve a problem, there are some steps and procedures to be followed to find the solution. Let's have a look at them in this problem solving in programming article.

Basically, they are divided into four categories:

  • Analysing the problem
  • Developing the algorithm
  • Testing and debugging

Analysing the Problem

Every problem has a perfect solution; before we are ready to solve a problem, we must look over the question and understand it. When we know the question, it is easy to find the solution for it. If we are not ready with what we have to solve, then we end up with the question and cannot find the answer as expected. By analysing it, we can figure out the outputs and inputs to be carried out. Thus, when we analyse and are ready with the list, it is easy and helps us find the solution easily. 

Developing the Algorithm

It is required to decide a solution before writing a program. The procedure of representing the solution  in a natural language called an algorithm. We must design, develop and decide the final approach after a number of trials and errors, before actually writing the final code on an algorithm before we write the code. It captures and refines all the aspects of the desired solution.

Once we finalise the algorithm, we must convert the decided algorithm into a code or program using a dedicated programming language that is understandable by the computer to find a desired solution. In this stage, a wide variety of programming languages are used to convert the algorithm into code. 

Testing and Debugging

The designed and developed program undergoes several rigorous tests based on various real-time parameters and the program undergoes various levels of simulations. It must meet the user's requirements, which have to respond with the required time. It should generate all expected outputs to all the possible inputs. The program should also undergo bug fixing and all possible exception handling. If it fails to show the possible results, it should be checked for logical errors.

Industries follow some testing methods like system testing, component testing and acceptance testing while developing complex applications. The errors identified while testing are debugged or rectified and tested again until all errors are removed from the program.

The steps mentioned above are involved in problem solving in programming. Now let's see some more detailed information about the steps to improve problem solving in programming.

Steps to Improve Problem Solving in Programming

Right mindset.

The way to approach problems is the key to improving the skills. To find a solution, a positive mindset helps to solve problems quickly. If you think something is impossible, then it is hard to achieve. When you feel free and focus with a positive attitude, even complex problems will have a perfect solution.

Making Right Decisions

When we need to solve a problem, we must be clear with the solution. The perfect solution helps to get success in a shorter period. Making the right decisions in the right situation helps to find the perfect solution quickly and efficiently. These skills also help to get more command over the subject.

Keeping Ideas on Track

Ideas always help much in improving the skills; they also help to gain more knowledge and more command over things. In problem solving situations, these ideas help much and help to develop more skills. Give opportunities for the mind and keep on noting the ideas.

Learning from Feedbacks

A crucial part of learning is from the feedback. Mistakes help you to gain more knowledge and have much growth. When you have a solution for a problem, go for the feedback from the experienced or the professionals. It helps you get success within a shorter period and enables you to find other solutions easily.

Asking Questions

Questions are an incredible part of life. While searching for solutions, there are a lot of questions that arise in our minds. Once you know the question correctly, then you are able to find answers quickly. In coding or programming, we must have a clear idea about the problem. Then, you can find the perfect solution for it. Raising questions can help to understand the problem.

These are a few reasons and tips to improve problem solving in programming skills. Now let's see some major benefits in this article.

  • Problem solving in programming skills helps to gain more knowledge over coding and programming, which is a major benefit.
  • These problem solving skills also help to develop more skills in a person and build a promising career.
  • These skills also help to find the solutions for critical and complex problems in a perfect way.
  • Learning and developing problem solving in programming helps in building a good foundation.
  • Most of the companies are looking for people with good problem solving skills, and these play an important role when it comes to job opportunities 
Don't miss out on the opportunity to become a Certified Professional with Simplilearn's Post Graduate Program in Full Stack Web Development . Enroll Today!

Problem solving in programming skills is important in this modern world; these skills build a great career and hold a great advantage. This article on problem solving in programming provides you with an idea of how it plays a massive role in the present world. In this problem solving in programming article, the skills and the ways to improve more command on problem solving in programming are mentioned and explained in a proper way.

If you are looking to advance in your career. Simplilearn provides training and certification courses on various programming languages - Python , Java , Javascript , and many more. Check out our Full Stack Developer - MERN Stack course that will help you excel in your career.

If you have any questions for us on the problem solving in programming article. Do let us know in the comments section below; we have our experts answer it right away.

Find our Full Stack Developer - MERN Stack Online Bootcamp in top cities:

NameDatePlace
Cohort starts on 18th Sep 2024,
Weekend batch
Your City
Cohort starts on 9th Oct 2024,
Weekend batch
Your City
Cohort starts on 30th Oct 2024,
Weekend batch
Your City

About the Author

Hemant Deshpande

Hemant Deshpande, PMP has more than 17 years of experience working for various global MNC's. He has more than 10 years of experience in managing large transformation programs for Fortune 500 clients across verticals such as Banking, Finance, Insurance, Healthcare, Telecom and others. During his career he has worked across the geographies - North America, Europe, Middle East, and Asia Pacific. Hemant is an internationally Certified Executive Coach (CCA/ICF Approved) working with corporate leaders. He also provides Management Consulting and Training services. He is passionate about writing and regularly blogs and writes content for top websites. His motto in life - Making a positive difference.

Recommended Resources

Your One-Stop Solution to Understand Coin Change Problem

Your One-Stop Solution to Understand Coin Change Problem

Combating the Global Talent Shortage Through Skill Development Programs

Combating the Global Talent Shortage Through Skill Development Programs

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

One Stop Solution to All the Dynamic Programming Problems

One Stop Solution to All the Dynamic Programming Problems

The Ultimate Guide on Introduction to Competitive Programming

The Ultimate Guide to Top Front End and Back End Programming Languages for 2021

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

programmer problem solving skills

  • Latest Articles
  • Top Articles
  • Posting/Update Guidelines
  • Article Help Forum

programmer problem solving skills

  • View Unanswered Questions
  • View All Questions
  • View C# questions
  • View C++ questions
  • View Javascript questions
  • View Visual Basic questions
  • View .NET questions
  • CodeProject.AI Server
  • All Message Boards...
  • Running a Business
  • Sales / Marketing
  • Collaboration / Beta Testing
  • Work Issues
  • Design and Architecture
  • Artificial Intelligence
  • Internet of Things
  • ATL / WTL / STL
  • Managed C++/CLI
  • Objective-C and Swift
  • System Admin
  • Hosting and Servers
  • Linux Programming
  • .NET (Core and Framework)
  • Visual Basic
  • Web Development
  • Site Bugs / Suggestions
  • Spam and Abuse Watch
  • Competitions
  • The Insider Newsletter
  • The Daily Build Newsletter
  • Newsletter archive
  • CodeProject Stuff
  • Most Valuable Professionals
  • The Lounge  
  • The CodeProject Blog
  • Where I Am: Member Photos
  • The Insider News
  • The Weird & The Wonderful
  • What is 'CodeProject'?
  • General FAQ
  • Ask a Question
  • Bugs and Suggestions

programmer problem solving skills

The Beginner Programmer's guide to Problem Solving [With Example]

programmer problem solving skills

Have you got this feeling that you are able to grasp the concepts of programming and  you are able to understand what’s a variable, what’s a function, what are data types, etc. yet you find it difficult to solve problems in programming.  Every beginner gets this feeling.  I did too when starting out.

It is important to overcome this feeling at the earliest, otherwise it can form a mental block for you.

Image 1

How it can be a mental block to you?  Common sense says that the more you practice a certain skill, you get better at that skill as time progresses.  Same goes with problem solving too.  The more problems you solve, the better you become at problem solving.  But when you get a feel that you are trying hard and still unable to solve a problem or find it extremely difficult, your confidence lowers.  At this stage, either you stop solving problems or try to solve lesser number of problems.

The point is your curriculum or your professional work is generally designed in such a manner that the order of difficulty increases as time progresses.  So, you are in a situation where you feel less confident in solving small problems but now tasked with solving bigger problems.  And the cycle continues till it becomes a permanent mental block in you.

Is it too late to start solving problems?

No.  If you have come to the realization that you need to improve your problem solving skills, you have made that good first step.  Quite often our egos don’t let us accept the obvious.  It is good to accept certain truth because that is the only way that we can improve ourselves.

What can I do to become better at solving problems?

Remove the mental block first – exercise your mind.

Your mind is your most powerful weapon.  So you have to think you can actually solve the problem.  So from today, think positively that you can solve any problem.  But you will obviously start with small problems and go on to solve bigger problems.

As with every aspect in life, it starts with conditioning the mind.  So, starting today, tell yourselves the following:

  • I can solve any problem that is put at me
  • I will commit at least 1-2 hours per day on solving problems alone for the next 30 days
  • I will never give up on any problem that is put at me, I will ask for help if required.1

Understand the basic approach to problem solving

Do you know one of the reasons for your struggle with problem solving?  One reason might be due to lack of practice.  But the main reason is because you have not understood the basics of problem solving especially in programming.  Once you understand the approach to problem solving to the smallest of things, you can go ahead and solve bigger and more complex problems with confidence.1

Ever wondered how top tech companies like Google, Amazon solved the internet’s biggest & hardest problems?  The answer is simplicity.  They solved problems at the basic level and then went on to solve bigger and bigger problems.  You can do it too.  But you need to be good at the basics.

What do I need to understand before even trying to solve the problem?

Understand the problem clearly – the power of clarity.

You need to understand your problem clearly before even trying to solve it1.  Lack of clarity at this stage will put you down.  So make a conscious effort in understanding the problem more clearly.  Ask questions like What, Why, When, Where, What if and How.  Not all questions might be applicable to your problem, but it is important to ask questions to yourself at this stage before you go ahead trying to solve the problem.

Visualize – The Power of visualization

I am sure everyone of you is aware of what visualization is.  Trying to picturize your thoughts.  Have you ever imagined how some people can solve extra ordinary problems just by looking into those problems and they will instantly have a solution to it?  And we don’t even understand the problem fully?  It is because they do it with their mind.  They visualize the problem in their minds and they solve it in their minds itself.  Visualization is a powerful tool in your mind.

But in order to get to that state, first you need to visualize the problem externally.  That is where a pen and a paper/notebook (or) a white board comes into play1.  Try to visualize the problem at hand and try to picturize the problem.  That is also one of the steps to make sure that you understand the problem clearly.

There was a situation when I and my dear friend & colleague were discussing about a problem and we were literally going nowhere.  This was actually when we each had around 7 years of experience in the industry.  At that point, my friend said “Let’s put our points in board.  If we don’t put it on the board, we will never get started”.  And we started putting things on board.  Things started to get more clear and raised more questions and ultimately became more clear.

That is the power of visualization.  It really helps us to get started with our thinking. This visual thing works.  Just try it out.

Your next question might be “I kinda get it, but I don’t.  How do I visualize? What exactly do I visualize?”.  Please read on to find out the answers.

What is the basic approach to problem solving

Step 1:  identify small problems.

The major trick in problem solving is to identify and solve the smallest problem and then moving ahead with bigger ones.  So how do you do it?

The answer is division of responsibility.  Simply put, we need to identify parts that can stand on its own and identify a sequence in those responsibilities.  And once you start breaking down the problems into smaller ones, then you can go ahead with the next step.

Step 2:  Solve the smaller problems one at a time

Now that you have identified the smaller problems, try to solve them.  While solving them, make sure that you are focussing only on one problem at a time.  That makes life much simpler for us.  If you feel that this smaller problem is too big to solve on its own, try to break it down further.  You need to iterate steps 1 to step 3 for each smaller problem.  But for now, ignore the bigger problem and solve the rest of the problems.

  • It is ok to assume that other problems are solved
  • It is ok to hardcode when coding a particular problem, but later you will resolve it in step 3.
  • Solve the easier problems first, that will give you confidence and momentum until you get the confidence to solve the hardest problem first.

Step 3: Connect the dots (Integration)

You have solved individual problems.  Now it is time to connect the dots by connecting the individual solution.  Identify those steps which will make the solution or the program complete.  Typically in programming, the dots are connected by passing data that is stored in variables.

Step 4: Try to optimize each step & across steps

Once you are completed with a working solution, try to optimize the solution with the best code that you can write.  This comes only with practice.  This trick can make a difference between a good programmer and a great programmer.  But to get to this step, you need to be first good at steps 1 to 3.

Let’s take an example & walkthrough the problem solving approach

Problem:  check if a user given string is a palindrome or not.

I will be using Python for this exercise (Although I have experience in1 C# and JAVA, I am also a Python beginner, so pardon any bad code).  Let’s iterate through our steps:

Let’s call this as Level 1:

Step 1:  Identify smaller problems:

Image 2

Step 2: Solve the small problems

So each small problem will map to its corresponding solution as below:

Image 3

Note: When solving the step (3.  Compare the variables), I am doing 2 things:

  • I am making an assumption that reversed is the variable name of the reversed string.
  • I am hardcoding the variable name reversed to ‘madam’ to avoid compile time error
  • If you execute the program at this state, you can input ‘madam’ and check if it is printing ‘The given string is a palindrome’ (And) you can input something else like ‘dog’ and check if it is printing ‘The given string is not a palindrome’

When we are trying to connect the dots, the only thing that is missing now is the variable reversed is hardcoded.  For that to be set to the correct value, we need to break the small problem (Reverse the user input and store in a separate variable) into further smaller problems.  Till that point we need to mark it as incomplete.

2 things still remain unsolved in Level 1:

  • Solution for step 2 in the diagram (Reverse the user input and store in a separate variable)
  • Connecting the dots once the solution for step 2 is found

Iterating small problem 2 through our problem solving steps:

Let’s call this Level 2:

Step 1: Identify smaller problems

Image 4

Step 3: Connect the dots

Here, we have already connected the dots.  So we need not do anything extra in this step.

Now we have solved the smaller problems, which means Level 2 is over.  Now we need to come back to Level 1.

If you remember, 2 things remain in Level 1.  One is solution for step 2 which we have found now.  Two is connecting the dots.

Now if we substitute the small problem 2 with the solution that we derived just now, we get something like this:

Image 6

The thing that remains is connecting the dots.

So if we see what is the missing connection, the variable reversed is set twice.  One to the solution of step 2 and another is hardcoded in step 3.  So we can now remove the hardcoded value in step 3, in which case our code will become like this

Image 7

If you see, we have actually solved our problem.

We are left with step 4 – Optimize each step and across steps

Step 4: Try to optimize each step and across steps

As you can see, there are many things that needs to be optimized for this code.  I would leave you to optimize the code further.  Come on, put on your thinking cap and try different solutions.

BONUS STEP 5:  Make the code robust

By robust I mean,

  • Adding error & exception handling
  • Using better variable names
  • Adding user defined functions
  • Adding comments where necessary

Again, I would leave you to figure out how to do this step.

  • We saw just how we can solve problems using a step by step approach
  • By solving smaller problems, I get into a momentum for solving bigger & tougher problems
  • By focussing one problem at a time, I am eliminating distractions, thus allowing to better direct your efforts for that one problem rather than getting confused with many small problems at hand.
  • If you understand this approach and practice, you will definitely go on to solve bigger problems and your confidence will raise.
  • Beauty about breaking down the problem is that we can further convert each problem and sub problem into separate functions/modules thus making the code more modularized and maintainable.

Wait, You can’t leave yet:

Now dear beginner programmers, take any problem and try to apply this approach.  See the results for yourselves.  Now, describe the following in the comments section:

  • What problem you are solving?
  • How did you break it down? (Even a snap of your notebook page or board will do!)
  • The final code
  • How did you feel and what did you learn from this exercise?

Also remember, I am challenging you for the 30 day problem solving challenge.

If you liked this blog post, please feel free to share it with your circles in social media.

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

Twitter

Comments and Discussions

to use this message board.
  Layout   Per page    
First Prev Next
21-Sep-15 0:33 21-Sep-15 0:33 
First note that there are some typos ('1' characters all over the place). I presume this happened on each place where you wanted to write an exclamation mark.

For example:

3. I will never give up on any problem that is put at me, I will ask for help if required.

Once you understand the approach to problem solving to the smallest of things, you can go ahead and solve bigger and more complex problems with confidence.

You need to understand your problem clearly before even trying to solve it .

Etc...

Nevertheless it is a nice read and I absolutely agree with you.
The whole "trick" to solving any given problem is understanding it, breaking it down to a smaller portions and tackling each portion separately one at the time.

This should feel quite natural to any OOP developer, essentially that is what object-oriented is all about. Now I don't know about any mental block, but what I noticed is that if a person has difficulties with problem solving he also has difficulties with object-oriented paradigm.
I've observed this with many of our newcomers, the problem is that without a real life problems and their solutions typically the newcomers have difficulties in picturing the required objects and their relationship and how should they communicate with each other.
But this skill set can be fairly easily acquired, it all comes down to experience, as you mentioned the more problems you solve the better you become. That is why I like to assign our newcomers with some "homework" tests for practising, for example something like ( ). I really encourage anyone that is working on improving his problem solving skills to practice with small programming challenges. Each challenge defines a small portion so this will help to identify what the portion is in any bigger, more complex, problem.


·  
30-Oct-14 21:24 30-Oct-14 21:24 
I'm new to C# and I'm currently having difficulties with my new job. Thank you for this, now I can maximize my time thinking about how to solve my problems!
·  
30-Oct-14 21:31 30-Oct-14 21:31 
Thank you mariecrisbetis. Glad my article is helping you out.

In fact, this is exactly my dream and vision for starting my .

Every beginner programmer should get off the blocks as quickly as possibly.
·  
30-Oct-14 21:34 30-Oct-14 21:34 
That is a good website for beginners like me. Thank you again for posting these kind of useful articles. You're great!
·  
30-Oct-14 21:37 30-Oct-14 21:37 
Thanks and welcome mate.
·  
29-Oct-14 23:24 29-Oct-14 23:24 
Interesting article.
I started programming in the COBOL area (yes I am that old).
My professor at that time learned us analysing the the problem using the the JSP methodiology.
The mean philosophy of JSP (Jackson Structured Programming)is that the structure of the problem is the structure of the program.
It started by describing the inpu and output in terma of sequences, iteration and selections (Dijkstra's concepts). Once you have that, the program is strucured such that the mapping beteem input and output structures can be reached...
·  
30-Oct-14 21:36 30-Oct-14 21:36 
Hi marc,

Thanks for your comments.

Yeah, I was just looking at JSP. Seems like an excellent approach to problem solving. In fact, I am from a Non-CS background, hence I had to form mental models (for concepts, problem solving, programming, etc.) on my own rather than studying these proven theories. It has turned out good so far.
·  
30-Oct-14 22:20 30-Oct-14 22:20 
Hello Rajaraman,

I started from a non-CS backgroud as well (I studied applied Economics and specialized later in Busines Informatics). Recently (last 5 years) I returned to psychology: I took an NLP course which is most of communication and our learning process. The leaning process in NLP is modelling and here we come back to your article. Quite amazing how everything is connected to everything.

Thanks for your feedback!

Regards,
Marc
·  
30-Oct-14 22:24 30-Oct-14 22:24 
Haha... That's true Marc. Everything in this world seemed connected in some way... (But we need to carefully analyze to figure out the connection).

I am also interested in learning psychology, but I dont think I can go for a full time course. Are you aware of any MOOCs for psychology that are good?
·  
30-Oct-14 23:22 30-Oct-14 23:22 
As a matter of fact I am involved in a project of social deprivation. In the project, the intention is to have budies for some unpreviledges. Those buddies need to be supported and have an education. There are some MOOCs in development to give that education. On one of them I quite intensively collaborated. Unfortunately they are in Dutch.

For NLP, a good starting point is 'NLP for dummies'.

Regards,
Marc
·  
31-Oct-14 2:53 31-Oct-14 2:53 
Oh ok.. Do let me know once they are in English. I would be interested.
·  
29-Oct-14 21:22 29-Oct-14 21:22 
my vote of 5.
Thanks Rajaraman sir..
·  
29-Oct-14 21:46 29-Oct-14 21:46 
Thank you Aarif
·  
29-Oct-14 9:01 29-Oct-14 9:01 
Rajarnam,

Thanks so much! This is great material and it reminds me that everyone struggles, but there is a solution.

Thanks again,
Steve
·  
29-Oct-14 21:45 29-Oct-14 21:45 
You're welcome Steve. And thanks for taking time to read.
·  
31-Oct-14 2:48 31-Oct-14 2:48 
Yes, I really enjoyed the article and learned a lot.

I give you a vote of 100!
·  
31-Oct-14 2:51 31-Oct-14 2:51 
Thank you mate !!
·  
28-Oct-14 23:45 28-Oct-14 23:45 
Good One
·  
Thank you Shememsha.
·  
Last Visit: 31-Dec-99 18:00     Last Update: 31-Aug-24 2:38

Use Ctrl+Left/Right to switch messages, Ctrl+Up/Down to switch threads, Ctrl+Shift+Left/Right to switch pages.

programmer problem solving skills

The 10 Most Popular Coding Challenge Websites [Updated for 2021]

Daniel Borowski

A great way to improve your skills when learning to code is by solving coding challenges. Solving different types of challenges and puzzles can help you become a better problem solver, learn the intricacies of a programming language, prepare for job interviews, learn new algorithms, and more.

Below is a list of some popular coding challenge websites with a short description of what each one offers.

1. TopCoder

MTryRL4uVza1V87ERWY26L4cFeqD2rgAnW1f

TopCoder is one of the original platforms for competitive programming online. It provides a list of algorithmic challenges from the past that you can complete on your own directly online using their code editor. Their popular Single Round Matches are offered a few times per month at a specific time where you compete against others to solve challenges the fastest with the best score.

The top ranked users on TopCoder are very good competitive programmers and regularly compete in programming competitions. The top ranked user maintains his own blog titled Algorithms weekly by Petr Mitrichev where he writes about coding competitions, algorithms, math, and more.

2. Coderbyte

sP6ow4n2alliqp5L-p5fVRQC9W0GTws1B9Ig

Coderbyte provides 200+ coding challenges you can solve directly online in one of 10 programming languages (check out this example ). The challenges range from easy (finding the largest word in a string) to hard (print the maximum cardinality matching of a graph).

They also provide a collection of algorithm tutorials , introductory videos, and interview preparation courses . Unlike HackerRank and other similar websites, you are able to view the solutions other users provide for any challenge aside from the official solutions posted by Coderbyte.

3. Project Euler

plhA-E3btLLYRvc4hi3WxmUpAhu3aoef1o0V

Project Euler provides a large collection of challenges in the domain of computer science and mathematics. The challenges typically involve writing a small program to figure out the solution to a clever mathematical formula or equation, such as finding the sum of digits of all numbers preceding each number in a series.

You cannot directly code on the website in an editor, so you would need to write a solution on your own computer and then provide the solution on their website.

4. HackerRank

dOpMtufto0gLZiyDOHZ4BVF58S-z393wRlcu

HackerRank provides challenges for several different domains such as Algorithms, Mathematics, SQL, Functional Programming, AI, and more. You can solve all the challenge directly online (check out this example ).

They provide a discussion and leaderboard for every challenge, and most challenges come with an editorial that explains more about the challenge and how to approach it to come up with a solution.

Currently, if you don't solve the problem, then you can't see the solution of others. If you also try to check the editorial before solving the problem, then you won't get the point for solving the problem at all.

As an example, here I haven't solved the problem, and I am trying to check others' submissions:

problem-not-solved-yet

And here, I haven't solved the problem, and I am trying to check the editorial:

problem-not-solved-lost-point

HackerRank also provides the ability for users to submit applications and apply to jobs by solving company-sponsored coding challenges.

5. CodeChef

81eunsDYPAqBSC8KwPpBxhPFTHiqGXp70kMa

CodeChef is an Indian-based competitive programming website that provides hundreds of challenges. You are able to write code in their online editor and view a collections of challenges that are separated into different categories depending on your skill level (check out this example ). They have a large community of coders that contribute to the forums, write tutorials , and take part in CodeChef’s coding competitions .

6. Exercism.io

Screen-Shot-2019-12-11-at-8.14.45-AM

Exercism is a coding challenge website that offers 3100+ challenges spanning 52 different programming languages. After picking a language that you'd like to master, you tackle the coding challenges right on your machine (Exercism has their own command line interface that you can download from GitHub).

It is a bit different from other challenge websites, however, because you work with a mentor after completing each challenge. The mentor reviews your answers online and helps you improve them if needed. Once your answers have been approved and submitted, you unlock more challenges.

7. Codewars

QR7cVhZ7FGb6HjaEDu4N5Co1eTMNTbo1JFzq

Codewars provides a large collection of coding challenges submitted and edited by their own community. You can solve the challenges directly online in their editor in one of several languages. You can view a discussion for each challenges as well as user solutions.

8. LeetCode

RzWKVwPaLY2SRsWFWk93ZNlzcg8V0Yeav5t7

LeetCode is a popular Online Judge that provides a list of 190+ challenges that can help you prepare for technical job interviews. You can solve the challenges directly online in one of 9 programming languages. You are not able to view other users' solutions, but you are provided statistics for your own solutions such as how fast your code ran when compared to other users' code.

They also have a Mock Interview section that is specifically for job interview preparation, they host their own coding contests , and they have a section for articles to help you better understand certain problems.

MF3wP06V24C7jal2f8NRvAVhS-tAA2vbNDTL

Sphere Online Judge (SPOJ) is an online judge that provides over 20k coding challenges. You are able to submit your code in an online editor . SPOJ also hosts their own contests and has an area for users to discuss coding challenges. They do not currently provide any official solutions or editorials like some other websites do, though.

10. CodinGame

6l08ZCKDOaoY1TH-PHHHac26McA-c1tIDOPU

CodinGame is a bit different from the other websites, because instead of simply solving coding challenges in an editor, you actually take part in writing the code for games that you play directly online. You can see a list of games currently offered here and an example of one here . The game comes with a problem description, test cases, and an editor where you can write your code in one of 20+ programming languages.

Although this website is different than typical competitive programming websites such as the ones mentioned above, it is still popular amongst programmers who enjoy solving challenges and taking part in contests.

This list was based on a few things: my own experiences using the websites, some Google searches , Quora posts , and articles such as this one and this one . I also frequented some forums and subreddits such as r/learnprogramming to see what websites were usually recommended by the users there. Disclaimer: I work at Coderbyte which is one of the websites mentioned above.

CEO & Founder at Coderbyte.

If this article was helpful, share it .

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

15 Common Problem-Solving Interview Questions

HackerRank AI Promotion

In an interview for a big tech company, I was asked if I’d ever resolved a fight — and the exact way I went about handling it. I felt blindsided, and I stammered my way through an excuse of an answer.

It’s a familiar scenario to fellow technical job seekers — and one that risks leaving a sour taste in our mouths. As candidate experience becomes an increasingly critical component of the hiring process, recruiters need to ensure the problem-solving interview questions they prepare don’t dissuade talent in the first place. 

Interview questions designed to gauge a candidate’s problem-solving skills are more often than not challenging and vague. Assessing a multifaceted skill like problem solving is tricky — a good problem solver owns the full solution and result, researches well, solves creatively and takes action proactively. 

It’s hard to establish an effective way to measure such a skill. But it’s not impossible.

We recommend taking an informed and prepared approach to testing candidates’ problem-solving skills . With that in mind, here’s a list of a few common problem-solving interview questions, the science behind them — and how you can go about administering your own problem-solving questions with the unique challenges of your organization in mind.

Key Takeaways for Effective Problem-Solving Interview Questions

  • Problem solving lies at the heart of programming. 
  • Testing a candidate’s problem-solving skills goes beyond the IDE. Problem-solving interview questions should test both technical skills and soft skills.
  • STAR, SOAR and PREP are methods a candidate can use to answer some non-technical problem-solving interview questions.
  • Generic problem-solving interview questions go a long way in gauging a candidate’s fit. But you can go one step further by customizing them according to your company’s service, product, vision, and culture. 

Technical Problem-Solving Interview Question Examples

Evaluating a candidates’ problem-solving skills while using coding challenges might seem intimidating. The secret is that coding challenges test many things at the same time — like the candidate’s knowledge of data structures and algorithms, clean code practices, and proficiency in specific programming languages, to name a few examples.

Problem solving itself might at first seem like it’s taking a back seat. But technical problem solving lies at the heart of programming, and most coding questions are designed to test a candidate’s problem-solving abilities.

Here are a few examples of technical problem-solving questions:

1. Mini-Max Sum  

This well-known challenge, which asks the interviewee to find the maximum and minimum sum among an array of given numbers, is based on a basic but important programming concept called sorting, as well as integer overflow. It tests the candidate’s observational skills, and the answer should elicit a logical, ad-hoc solution.

2. Organizing Containers of Balls  

This problem tests the candidate’s knowledge of a variety of programming concepts, like 2D arrays, sorting and iteration. Organizing colored balls in containers based on various conditions is a common question asked in competitive examinations and job interviews, because it’s an effective way to test multiple facets of a candidate’s problem-solving skills.

3. Build a Palindrome

This is a tough problem to crack, and the candidate’s knowledge of concepts like strings and dynamic programming plays a significant role in solving this challenge. This problem-solving example tests the candidate’s ability to think on their feet as well as their ability to write clean, optimized code.

4. Subarray Division

Based on a technique used for searching pairs in a sorted array ( called the “two pointers” technique ), this problem can be solved in just a few lines and judges the candidate’s ability to optimize (as well as basic mathematical skills).

5. The Grid Search 

This is a problem of moderate difficulty and tests the candidate’s knowledge of strings and searching algorithms, the latter of which is regularly tested in developer interviews across all levels.

Common Non-Technical Problem-Solving Interview Questions 

Testing a candidate’s problem-solving skills goes beyond the IDE . Everyday situations can help illustrate competency, so here are a few questions that focus on past experiences and hypothetical situations to help interviewers gauge problem-solving skills.

1. Given the problem of selecting a new tool to invest in, where and how would you begin this task? 

Key Insight : This question offers insight into the candidate’s research skills. Ideally, they would begin by identifying the problem, interviewing stakeholders, gathering insights from the team, and researching what tools exist to best solve for the team’s challenges and goals. 

2. Have you ever recognized a potential problem and addressed it before it occurred? 

Key Insight: Prevention is often better than cure. The ability to recognize a problem before it occurs takes intuition and an understanding of business needs. 

3. A teammate on a time-sensitive project confesses that he’s made a mistake, and it’s putting your team at risk of missing key deadlines. How would you respond?

Key Insight: Sometimes, all the preparation in the world still won’t stop a mishap. Thinking on your feet and managing stress are skills that this question attempts to unearth. Like any other skill, they can be cultivated through practice.

4. Tell me about a time you used a unique problem-solving approach. 

Key Insight: Creativity can manifest in many ways, including original or novel ways to tackle a problem. Methods like the 10X approach and reverse brainstorming are a couple of unique approaches to problem solving. 

5. Have you ever broken rules for the “greater good?” If yes, can you walk me through the situation?

Key Insight: “Ask for forgiveness, not for permission.” It’s unconventional, but in some situations, it may be the mindset needed to drive a solution to a problem.

6. Tell me about a weakness you overcame at work, and the approach you took. 

Key Insight: According to Compass Partnership , “self-awareness allows us to understand how and why we respond in certain situations, giving us the opportunity to take charge of these responses.” It’s easy to get overwhelmed when faced with a problem. Candidates showing high levels of self-awareness are positioned to handle it well.

7. Have you ever owned up to a mistake at work? Can you tell me about it?

Key Insight: Everybody makes mistakes. But owning up to them can be tough, especially at a workplace. Not only does it take courage, but it also requires honesty and a willingness to improve, all signs of 1) a reliable employee and 2) an effective problem solver.

8. How would you approach working with an upset customer?

Key Insight: With the rise of empathy-driven development and more companies choosing to bridge the gap between users and engineers, today’s tech teams speak directly with customers more frequently than ever before. This question brings to light the candidate’s interpersonal skills in a client-facing environment.

9. Have you ever had to solve a problem on your own, but needed to ask for additional help? How did you go about it? 

Key Insight: Knowing when you need assistance to complete a task or address a situation is an important quality to have while problem solving. This questions helps the interviewer get a sense of the candidate’s ability to navigate those waters. 

10. Let’s say you disagree with your colleague on how to move forward with a project. How would you go about resolving the disagreement?

Key Insight: Conflict resolution is an extremely handy skill for any employee to have; an ideal answer to this question might contain a brief explanation of the conflict or situation, the role played by the candidate and the steps taken by them to arrive at a positive resolution or outcome. 

Strategies for Answering Problem-Solving Questions

If you’re a job seeker, chances are you’ll encounter this style of question in your various interview experiences. While problem-solving interview questions may appear simple, they can be easy to fumble — leaving the interviewer without a clear solution or outcome. 

It’s important to approach such questions in a structured manner. Here are a few tried-and-true methods to employ in your next problem-solving interview.

1. Shine in Interviews With the STAR Method

S ituation, T ask, A ction, and R esult is a great method that can be employed to answer a problem-solving or behavioral interview question. Here’s a breakdown of these steps:

  • Situation : A good way to address almost any interview question is to lay out and define the situation and circumstances. 
  • Task : Define the problem or goal that needs to be addressed. Coding questions are often multifaceted, so this step is particularly important when answering technical problem-solving questions.
  • Action : How did you go about solving the problem? Try to be as specific as possible, and state your plan in steps if you can.
  • Result : Wrap it up by stating the outcome achieved. 

2. Rise above difficult questions using the SOAR method

A very similar approach to the STAR method, SOAR stands for S ituation, O bstacle, A ction, and R esults .

  • Situation: Explain the state of affairs. It’s important to steer clear of stating any personal opinions in this step; focus on the facts.
  • Obstacle: State the challenge or problem you faced.
  • Action: Detail carefully how you went about overcoming this obstacle.
  • Result: What was the end result? Apart from overcoming the obstacle, did you achieve anything else? What did you learn in the process? 

3. Do It the PREP Way

Traditionally used as a method to make effective presentations, the P oint, R eason, E xample, P oint method can also be used to answer problem-solving interview questions.  

  • Point : State the solution in plain terms. 
  • Reasons: Follow up the solution by detailing your case — and include any data or insights that support your solution. 
  • Example: In addition to objective data and insights, drive your answer home by contextualizing the solution in a real-world example.
  • Point : Reiterate the solution to make it come full circle.

How to Customize Problem-Solving Interview Questions 

Generic problem-solving interview questions go a long way in gauging a candidate’s skill level, but recruiters can go one step further by customizing these problem-solving questions according to their company’s service, product, vision, or culture. 

Here are some tips to do so:

  • Break down the job’s responsibilities into smaller tasks. Job descriptions may contain ambiguous responsibilities like “manage team projects effectively.” To formulate an effective problem-solving question, envision what this task might look like in a real-world context and develop a question around it.  
  • Tailor questions to the role at hand. Apart from making for an effective problem-solving question, it gives the candidate the impression you’re an informed technical recruiter. For example, an engineer will likely have attended many scrums. So, a good question to ask is: “Suppose you notice your scrums are turning unproductive. How would you go about addressing this?” 
  • Consider the tools and technologies the candidate will use on the job. For example, if Jira is the primary project management tool, a good problem-solving interview question might be: “Can you tell me about a time you simplified a complex workflow — and the tools you used to do so?”
  • If you don’t know where to start, your company’s core values can often provide direction. If one of the core values is “ownership,” for example, consider asking a question like: “Can you walk us through a project you owned from start to finish?” 
  • Sometimes, developing custom content can be difficult even with all these tips considered. Our platform has a vast selection of problem-solving examples that are designed to help recruiters ask the right questions to help nail their next technical interview.

Get started with HackerRank

Over 2,500 companies and 40% of developers worldwide use HackerRank to hire tech talent and sharpen their skills.

programmer problem solving skills

  • Prep Courses
  • Coding Questions
  • Behavioral Questions
  • Build Your Portfolio
  • Goal-Setting
  • Productivity
  • Start a Blog
  • Software Engineer
  • Game Development
  • Blockchain Developer
  • Cloud Computing
  • Web3 Developer
  • The Complete Software Developer’s Career Guide
  • 10 Steps to Learn Anything Quickly
  • How to Market Yourself as a Software Developer
  • Create a Blog That Boosts Your Career
  • 10 Ways to Make Money From Your Blog
  • Best Coding Hardware
  • Blockchain Languages

How to Solve Programming Problems

Text Only 02

Written By John Sonmez

Right before the holidays, I said that you had better learn how to solve programming problems .

This time I am going to try and give you some good tools to enable you to get good at solving programming problems.  (Really algorithm type problems specifically.)

Common mistakes

lolcatthink

When most programmers are given a programming problem in an interview, they make several key mistakes.  The most severe of those is the improper allocation of time.

If you have heard the saying “measure twice and cut once,” then you are probably familiar with the idea of spending upfront time to make sure something is done right, rather than diving right in.

The most common mistake I see when conducting interviews or watching someone try to solve a programming problem is they try to start writing code as soon as possible.

You must resist this urge.

You really want to make sure you take enough time to understand the problem completely before attempting to solve it.

Another big mistake is trying to over solve the solution on the first iteration.  Keep it simple, don’t try to get fancy.

A simple set of steps

I am going to give you a simple set of steps to follow which you can use for any algorithm type programming problem.

  • Read the problem completely twice.
  • Solve the problem manually with 3 sets of sample data.
  • Optimize the manual steps.
  • Write the manual steps as comments or pseudo-code.
  • Replace the comments or pseudo-code with real code.
  • Optimize the real code.

As much as 70% of our time should be spent in steps 1-3.

Let’s look at each step.

Read the problem completely twice

This is the single most important step.  You may even want to read the problem 3 or 4 times.

You want to make sure you completely understand the problem.  A good test of this is whether or not you can explain the problem to someone else.

I cannot over-emphasize how important this step is!

If you don’t understand the problem, you cannot solve it.  Do not worry about wasting time here, because the better you understand the problem, the easier it will be to solve it.

If you are given any examples along with the problem, make sure you have worked through the examples and understand why the answers are correct for each one.

Solve the problem manually

I am going to tell you perhaps the biggest secret in programming.

“Nothing can be automated that cannot be done manually!”

Programming is automation plain and simple.  You may have the ability to skip the manual steps and jump directly to code, but there is a manual process which is the foundation of any code you write.

It is very important to solve the problem manually first, so that you know what you are going to automate, otherwise you are just slinging code around.  Which while can be fun, will make you look like an idiot in a programming interview and will probably cause you to sweat profusely.

I recommend that you solve the problem with at least three different inputs to make sure you really understand your solution and that it will work for more than one case.

I often use a Mathematical Induction approach if possible.  Using this approach I might try and solve for 1 first, then for 2, then for n.

Also don’t forget to look for corner cases and edge cases and do any examples for those kind of cases you can think of.

It’s very important that when you solve a problem manually, you recognize what your brain is actually doing to solve the problem.  You may need to write out all the things you are normally storing in your head.  You want to be aware of each step, it is easy to gloss over them.

Let’s look at a very basic example, reversing a string.

If I give you a string “Zebra”, and ask you to reverse it, most people will do the following manual steps.

  • Write “Zebra” down.
  • Start a new word, and put “a” as the first letter.  (Why –> because it is the last letter, we want to start here)
  • Put “r” down as the 2nd letter.  (Why –> because it is the next letter backwards from the last letter we copied)
  • Put “b” down as the 3rd letter.  (Why –> same as above)

Notice how I write down each little step and why.

Optimize the manual solution

People often don’t realize how valuable this step is.  It is much easier to rearrange and reconstruct and idea or algorithm in your head than it is in code.

It’s well worth the effort to try and optimize the actual solution or simplify it when it is still in the most easily malleable state.

What you want to do here is figure out if there is another way you can solve the problem easier, or if there are some steps you can cut our or simplify.

Let’s look at our string reversal example and see if we can simplify the steps.

We should be able to immediately recognize that we can use a loop here to reduce the manual steps.  Our duplicate why’s for most of our steps tell us that we are doing the same thing over and over for each step, just with different data.

  • Start at the last letter in the word and create a new empty word.
  • Append the current letter to the new word
  • If there is a previous letter, make the previous letter the current letter and start back at 3.

Look how close we are getting to code at this point.  You should be tempted to actually write the code for this.  That is good, it tells you that you have solved and simplified the problem well.  Writing code should now become very easy.

Write pseudo-code or comments

Many times you can skip this step if you have a really good handle on the problem or your previous steps already created a detailed enough description of the solution that coding it is already a 1 to 1 translation.

If you are a beginner or struggle with these kinds of problems, I would go ahead and take the time to do this step anyway though.

What we want to do here is capture all the steps we created and now either put them into our editor as comments or write them as psuedo-code that we can translate to real code.

By doing this, we can know exactly what the structure of the code we are going to write is going to look like which makes the job of filling in the actual code later trivial.

Let’s look at some psudeo-code for reversing a string.

// NewWord = “” // Loop backwards through word to reverse //   NewWord += CurrentLetter // Return NewWord

Pretty simple, but the key thing we have done here is outlined the structure of the code we will write to solve the problem.

Replace comments with real code

This step should be extremely easy at this point.  If you have done all the other steps, this step involves no problem solving at all.

All we do here is take each comment and convert it into a real line of code.

Taking the string reversal, we might end up with something like this.

1 for 1 translation of the comments we created above for real code.

If you struggle here, there are usually two possible reasons:

  • You didn’t break down the problem into small enough steps
  • You don’t know your programming language well enough to do the conversion

If you didn’t break the problem down enough, try going back to the second step and being as meticulous as possible.  Write out each and every single step.  I know it is a pain, but do it, believe me it will be worth the effort.

If you don’t know your programming language well enough to do the translation, you may need to brush up here on some basic constructs.  Any language you expect to be able to solve algorithm type problems in, you should know how to do the following things:

  • Create a list
  • Sort a list or array
  • Create a map or dictionary
  • Loop through a list, or dictionary
  • Parse strings
  • Convert from string to int, int to string, etc

If you don’t know how to do all of these things.  Stop what you are doing now and learn them. It’s not a very long list, and the benefits will be profound.

Optimize the real code

Sometimes this step isn’t necessary, but it’s worth taking a look at your code and figuring out if you can cut out a few lines or do something simpler.

This is also a good place to make sure all your variables are named with long meaningful names.  I cannot stress enough how important having good names for your variables and methods is for helping the person evaluating your code to understand what you were trying to do.  This is especially important when you make a mistake!

I won’t give an optimization for our trivial example of a string reversal, but a word of advice here is not to get too tricky.  Just try to mainly simplify your code and get rid of duplication.

A few final tips

If you follow this template for solving algorithm type problem, you should do very well in programming interviews, but the key to doing so is having confidence in this process.

The only way you are going to have confidence in this process is to practice it.  It takes a good amount of faith to believe that spending 70% of your 30 minutes to solve a problem just thinking about the problem and not writing any code is the right approach, so make sure you have that faith when you need it.

I’ve talked about using TopCoder to become a better programmer before, and I still recommend it.  Codility.com is another great site I have recently been introduced to.

There is one important step I did not include in the outline above, because I didn’t want to make the process any more complicated than it needed to be.

Many times you will find that a problem itself involves multiple large steps or is very complicated.  In those instances, you will want to try and find a way to cut the problem directly in half and then following the process above for each half.

This method of tackling a problem is called “divide and conquer” and is quite effective.  A good way to know where to break a problem in half is to think about what part of the problem if already given to you would make solving the rest easy.

The programming interview is merely one battle in a larger war: marketing yourself. For the full lowdown, take a look at my course: How to Market Yourself as a Software Developer .

programmer problem solving skills

  • Computers & Technology
  • Programming

Sorry, there was a problem.

Kindle app logo image

Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required .

Read instantly on your browser with Kindle for Web.

Using your mobile phone camera - scan the code below and download the Kindle app.

QR code to download the Kindle App

Image Unavailable

40 Algorithms Every Programmer Should Know: Hone your problem-solving skills by learning different algorithms and their implementation in Python

  • To view this video download Flash Player

Follow the author

Imran Ahmad

40 Algorithms Every Programmer Should Know: Hone your problem-solving skills by learning different algorithms and their implementation in Python Illustrated Edition

Learn algorithms for solving classic computer science problems with this concise guide covering everything from fundamental algorithms, such as sorting and searching, to modern algorithms used in machine learning and cryptography

Key Features

  • Learn the techniques you need to know to design algorithms for solving complex problems
  • Become familiar with neural networks and deep learning techniques
  • Explore different types of algorithms and choose the right data structures for their optimal implementation

Book Description

Algorithms have always played an important role in both the science and practice of computing. Beyond traditional computing, the ability to use algorithms to solve real-world problems is an important skill that any developer or programmer must have. This book will help you not only to develop the skills to select and use an algorithm to solve real-world problems but also to understand how it works.

You'll start with an introduction to algorithms and discover various algorithm design techniques, before exploring how to implement different types of algorithms, such as searching and sorting, with the help of practical examples. As you advance to a more complex set of algorithms, you'll learn about linear programming, page ranking, and graphs, and even work with machine learning algorithms, understanding the math and logic behind them. Further on, case studies such as weather prediction, tweet clustering, and movie recommendation engines will show you how to apply these algorithms optimally. Finally, you'll become well versed in techniques that enable parallel processing, giving you the ability to use these algorithms for compute-intensive tasks.

By the end of this book, you'll have become adept at solving real-world computational problems by using a wide range of algorithms.

What you will learn

  • Explore existing data structures and algorithms found in Python libraries
  • Implement graph algorithms for fraud detection using network analysis
  • Work with machine learning algorithms to cluster similar tweets and process Twitter data in real time
  • Predict the weather using supervised learning algorithms
  • Use neural networks for object detection
  • Create a recommendation engine that suggests relevant movies to subscribers
  • Implement foolproof security using symmetric and asymmetric encryption on Google Cloud Platform (GCP)

Who this book is for

This book is for the serious programmer! Whether you are an experienced programmer looking to gain a deeper understanding of the math behind the algorithms or have limited programming or data science knowledge and want to learn more about how you can take advantage of these battle-tested algorithms to improve the way you design and write code, you'll find this book useful. Experience with Python programming is a must, although knowledge of data science is helpful but not necessary.

  • ISBN-10 1789801214
  • ISBN-13 978-1789801217
  • Edition Illustrated
  • Publisher Packt Publishing
  • Publication date June 12, 2020
  • Language English
  • Dimensions 9.25 x 7.52 x 0.8 inches
  • Print length 382 pages
  • See all details

Editorial Reviews

About the author.

Imran Ahmad is a certified Google Instructor and has been teaching for Google and Learning Tree for the last many years. The topics Imran teaches include Python, Machine Learning, Algorithms, Big Data and Deep Learning. In his PhD, he proposed a new linear programming based algorithm called ATSRA , which can be used to optimally assign resources in a cloud computing environment. For the last 4 years, Imran is working in a high-profile machine learning project at the advanced analytics lab of the Canadian Federal Government. The project is to develop machine learning algorithms that can automate the process of immigration. Imran is currently working on developing algorithms to use GPUs optimally to train complex machine learning models.

Product details

  • Publisher ‏ : ‎ Packt Publishing; Illustrated edition (June 12, 2020)
  • Language ‏ : ‎ English
  • Paperback ‏ : ‎ 382 pages
  • ISBN-10 ‏ : ‎ 1789801214
  • ISBN-13 ‏ : ‎ 978-1789801217
  • Item Weight ‏ : ‎ 1.47 pounds
  • Dimensions ‏ : ‎ 9.25 x 7.52 x 0.8 inches
  • #308 in Software Design Tools
  • #868 in Enterprise Applications
  • #1,318 in Python Programming

About the author

Imran ahmad.

"Imran has been a part of cutting-edge research about Algorithms and Machine Learning for the last many years. He completed his PhD in 2010 in which he proposed a new Linear Programming based algorithm which can be used to optimally assign resources in a large scale cloud computing environment. In 2017, Imran developed a realtime analytics framework named StreamSensing. He has since authored multiple research papers that use StreamSensing to process multimedia data for various Machine Learning Algorithms. Imran is currently working at Advanced Analytics Solution Center (A2SC) at Canadian Federal Government as a Data Scientist where he is using Machine Learning Algorithms for critical use-cases. Imran is a visiting professor at Carleton University, Ottawa. Imran has also been teaching for Google and Learning Tree for the last many years. The topics Imran teaches include Algorithms, Cloud Computing and Deep Learning. Over his career, Imran has written many research papers and a couple of his recent papers have won the best paper award. Imran also regularly writes blogs on selected IT topics. In addition to his professional work, Imran is into Nature Photography. Over the years he has taken thousands of photos about nature. Imran's passion is to find a way to make technology work for the betterment of humanity. This passion is the main motivation behind his research."

Customer reviews

  • 5 star 4 star 3 star 2 star 1 star 5 star 65% 17% 9% 3% 6% 65%
  • 5 star 4 star 3 star 2 star 1 star 4 star 65% 17% 9% 3% 6% 17%
  • 5 star 4 star 3 star 2 star 1 star 3 star 65% 17% 9% 3% 6% 9%
  • 5 star 4 star 3 star 2 star 1 star 2 star 65% 17% 9% 3% 6% 3%
  • 5 star 4 star 3 star 2 star 1 star 1 star 65% 17% 9% 3% 6% 6%

Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.

To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.

Customers say

Customers find the book easy to read and provides a decent overview. They also disagree on the content depth, with some finding it good and practical, while others say it lacks depth. Opinions differ on the writing quality, with customers finding it well-written and easy to learn from, while other find typos in very critical points.

AI-generated from the text of customer reviews

Customers find the book easy to understand, to the point, and enjoyable. They also say it's a good refresher for programmers and has many algorithms.

"...Imran writes in a style that is easy to understand , to the point and enjoyable...." Read more

"This book is true to its name and has so many algorithms and presents them well...." Read more

"...just listing the algorithms and the implementation - it provides complexity analysis . How to keep ML safe? ......" Read more

" Good refresher for programmers who do not remember everything from their computer science class (like myself)." Read more

Customers have mixed opinions about the content depth of the book. Some find the content good, practical, and meaningful, while others say it lacks depth.

"...Imran writes in a style that is easy to understand, to the point and enjoyable...." Read more

"...the topic choices were made correctly, unfortunately the depth was very limited . Also, there are lots of typos in very critical points...." Read more

"...I would call this book both practical and meaningful for anyone wishing to use python for any purpose...." Read more

"For analytical professionals, this is a good reference book to use which aligns the use cases in different business areas and proper algorithms." Read more

Customers are mixed about the writing quality. Some mention that the book is well-written, well-presented, and easy to learn from. However, some readers also find typos, ambiguous language, poor editing, and example code output that is completely wrong.

"...Also, there are lots of typos in very critical points ...." Read more

"...Excellent book, well-written , well-presented, and easy to learn from." Read more

"...There are also instances of ambiguous language that can definitely lead the reader to incorrectly understand the data structures and algorithms..." Read more

"Good content, but poor editing ..." Read more

Reviews with images

Customer Image

Very readable and for analysts, data scientists as well as advanced programmers

Customer Image

  • Sort reviews by Top reviews Most recent Top reviews

Top reviews from the United States

There was a problem filtering reviews right now. please try again later..

programmer problem solving skills

Top reviews from other countries

  • About Amazon
  • Investor Relations
  • Amazon Devices
  • Amazon Science
  • Sell products on Amazon
  • Sell on Amazon Business
  • Sell apps on Amazon
  • Become an Affiliate
  • Advertise Your Products
  • Self-Publish with Us
  • Host an Amazon Hub
  • › See More Make Money with Us
  • Amazon Business Card
  • Shop with Points
  • Reload Your Balance
  • Amazon Currency Converter
  • Amazon and COVID-19
  • Your Account
  • Your Orders
  • Shipping Rates & Policies
  • Returns & Replacements
  • Manage Your Content and Devices
 
 
 
 
  • Conditions of Use
  • Privacy Notice
  • Consumer Health Data Privacy Disclosure
  • Your Ads Privacy Choices

programmer problem solving skills

Get the Reddit app

A subreddit for all questions related to programming in any language.

How Can I Improve Problem-Solving Skills as an Aspiring Software Developer?

By continuing, you agree to our User Agreement and acknowledge that you understand the Privacy Policy .

Enter the 6-digit code from your authenticator app

You’ve set up two-factor authentication for this account.

Enter a 6-digit backup code

Create your username and password.

Reddit is anonymous, so your username is what you’ll go by here. Choose wisely—because once you get a name, you can’t change it.

Reset your password

Enter your email address or username and we’ll send you a link to reset your password

Check your inbox

An email with a link to reset your password was sent to the email address associated with your account

Choose a Reddit account to continue

thecleverprogrammer

How to Develop Problem Solving Skills in Programming?

Aman Kharwal

  • February 13, 2021
  • C++ , Machine Learning

Developing problem solving skills in programming is very important because the success of any task assigned to you depends on how accurately you define the problem to design and implement a solution. So in this article, I will tell you how to develop problem solving skills in programming.

Why do We Need to Have Problem Solving Skills?

In programming, problem solving means the process of understanding a problem to design a solution for the identified problem and then implementing the solution by writing a program using a programming language to tell the computer how to deal with the identified problem.

Also, Read – Python Projects with Source Code: Solved and Explained.

When we are assigned a task, the first step is to understand what problem we need to solve because when we write a program to design a solution, the computer gives us an output that is completely dependent on the input. So that the accuracy of the output given by our program depends entirely on the accuracy of the input provided by us.

So, to provide correct input and receive accurate output, it is very important to understand the problem and then design an algorithm to solve the problem. This is why we need to develop problem solving skills in programming.

So how do you develop problem solving skills in programming? Let’s understand by an example. Suppose you are driving and your car suddenly starts to make noise. So you might not know how to fix this kind of problem, but the first thing you will do is check where the noise is coming from and then take the car to the mechanic.

Then the mechanic will understand the problem with the car by analyzing the problem and understanding the source of the noise, then he will determine what to do and begin to make a plan on what he needs and how he will do it. In the end, he will start to implement the plan to fix the car.

So, from the example above, it is clear that to develop problem solving skills in programming, you need to go through a series of steps. Here are the steps to follow to resolve a problem:

programmer problem solving skills

  • Analyze the problem
  • Develop an algorithm

Now let’s go through all the steps mentioned above to understand how to develop problem solving skills in programming.

Analyze the Problem:

It is very important to understand the problem before designing a solution. If you don’t know what the problem is, you may end up writing a good program, but that won’t help solve the problem. So it is very important to read and analyze the problem statement to create a plan to solve the problem.

Thus, analyzing the problem will help determine what should be an input to the program that will give the correct output to resolve the problem.

Develop an Algorithm:

An algorithm is a set of instructions to follow to solve a problem. So after you understand the problem statement, it is very important to write a set of steps that you will take to solve this problem which is nothing but an algorithm.

You can think of an algorithm as the steps or procedure to complete a task. It’s good to create more than one algorithm to solve a problem so that you can pick the best one out of all the plans you have made to solve a problem.

So after selecting the best algorithm, you need to implement it using a programming language. When you have a set of instructions with you that you need to follow to solve a problem, trust me, it will help you with any complex problem.

The only thing to learn is that you need to master the fundamentals of the programming language you are using to solve the problem.

So to develop problem solving skills in programming you need to start by understanding the problem, then developing an algorithm and then start writing code by following the steps as per your algorithm. I hope you liked this article on how to develop problem solving skills in programming. Feel free to ask your valuable questions in the comments section below.

Aman Kharwal

Aman Kharwal

Data Strategist at Statso. My aim is to decode data science for the real world in the most simple words.

Recommended For You

How Much Python is Required for Data Science

How Much Python is Required for Data Science

  • June 7, 2023

Best Courses for Coding Interview Preparation

Best Courses for Coding Interview Preparation

  • October 28, 2022

How to Install MySQL on MacBook

Here’s How to Install MySQL on MacBook

  • September 1, 2022

Examples of the Applications of Python

Examples of the Applications of Python

  • June 17, 2022

Leave a Reply Cancel reply

Discover more from thecleverprogrammer.

Subscribe now to keep reading and get access to the full archive.

Type your email…

Continue reading

PW Skills | Blog

75 Basic Programming Problems and Tutorials for Practice

' src=

Varun Saharawat is a seasoned professional in the fields of SEO and content writing. With a profound knowledge of the intricate aspects of these disciplines, Varun has established himself as a valuable asset in the world of digital marketing and online content creation.

Solving Basic Programming Problems is the key to achieve success in coding challenges. Students must practice these basic programming problems!

basic programming problems

Basic Programming Problems: Engaging in code challenges offers many benefits, serving as a dynamic tool to enhance problem-solving proficiency, deepen your comprehension of the programming language you work with, and acquaint yourself with diverse algorithms. If you aspire to elevate your programming skills, immersing yourself in coding is the most effective avenue.

The beauty of basic programming problems lies in their convenience—they provide a platform to hone your abilities through bite-sized problems, often eliminating the need to construct entire applications. This characteristic allows you to conquer these challenges swiftly, fostering a sense of accomplishment.

Moreover, code challenges are integral components of many coding interviews.

While your resume may showcase your skills and ability to articulate programming concepts, employers want to validate your practical coding capabilities. Tackling coding challenges during interviews becomes a testament to your proficiency and showcases your competence for the role.

Therefore, incorporating coding challenges into your routine sharpens your skills and is an invaluable preparation strategy for job interviews. To kickstart your coding journey, we have curated a collection of popular basic programming problems to pave the way for your continued growth.

Table of Contents

Recommended Technical Course

  • Full Stack Development Course
  • Generative AI Course
  • DSA C++ Course
  • Data Analytics Course
  • Python DSA Course
  • DSA Java Course

Basic Programming Problems Overview

Basic programming problems provide an essential foundation for individuals learning to code, offering a practical and hands-on approach to mastering fundamental concepts in programming.

These problems are designed to introduce beginners to the core coding principles, gradually building their problem-solving skills and comprehension of programming logic.

Whether you are a novice looking to embark on your coding journey or an experienced programmer aiming to reinforce your foundational knowledge, engaging with basic programming problems is a valuable practice.

These problems typically cover essential topics such as data types, loops, conditionals, functions, and basic algorithms, providing a well-rounded introduction to the key building blocks of programming.

The significance of basic programming problems extends beyond mere skill development; it serves as a stepping stone for individuals aspiring to pursue more advanced coding challenges and projects.

By grappling with these foundational problems, learners can cultivate a solid understanding of programming fundamentals, laying the groundwork for future exploration and mastery of more complex coding concepts. Basic programming problems are the cornerstone of a programmer’s educational journey, fostering a strong and resilient coding skill set.

Basic Programming Problems for Beginners

Starting your career in the programming field is  exciting and challenging. For beginners, mastering the basics is crucial, and what better way to do so than by solving basic programming problems ?

1 Hello World: Print “Hello, World!” to the console.
2 Sum of Two Numbers: Add two numbers and print the result.
3 Factorial of a Number: Calculate the factorial of a number.
4 Check Even or Odd: Determine if a number is even or odd.
5 Reverse a String: Reverse the characters in a given string.
6 Fibonacci Series: Generate the Fibonacci series.
7 Check Prime Number: Check if a number is prime.
8 Find Maximum Element: Find the maximum element in an array.
9 Palindrome Check: Check if a string is a palindrome.
10 Simple Calculator: Implement a basic calculator.
11 Find Minimum Element: Find the minimum element in an array.

Basic Programming Problems Java

Here are some of the basic programming problems JAVA :

1) Hello World:

public class HelloWorld {

    public static void main(String[] args) {

        System.out.println(“Hello, World!”);

2) The sum of Two Numbers:

Add two numbers and print the result.

public class Sum {

        int num1 = 5, num2 = 10, sum;

        sum = num1 + num2;

        System.out.println(“Sum: ” + sum);

3) Factorial of a Number:

Calculate the factorial of a number.

public class Factorial {

        int num = 5;

        long factorial = 1;

        for (int i = 1; i <= num; ++i) {

            factorial *= i;

        System.out.println(“Factorial: ” + factorial);

4) Check Even or Odd:

Determine if a number is even or odd.

public class EvenOdd {

        int num = 8;

        if (num % 2 == 0) {

            System.out.println(num + ” is even.”);

        } else {

            System.out.println(num + ” is odd.”);

5) Reverse a String:

Reverse the characters in a given string.

public class ReverseString {

        String str = “Hello”;

        StringBuilder reversed = new StringBuilder(str).reverse();

        System.out.println(“Reversed String: ” + reversed);

Here are some theory-based basic programming problems Java:

1) Differences Between C++ and Java

  • C++: Not platform-independent, follows “write once, compile anywhere.”
  • Java: Platform-independent byte code allows programs to run on any machine.

Languages Compatibility:

  • C++: Compatible with most high-level languages.
  • Java: Incompatible with most languages, comparable to C and C++.

Interaction with the Library:

  • C++: Direct access to native system libraries, suitable for system-level programming.
  • Java: Requires Java Native Interface or library access, not direct call support.

Characteristics:

  • C++: Combines features of procedural and object-oriented languages.
  • Java: Known for automatic garbage collection, lacks support for destructors.

Semantics of the Type:

  • C++: Consistent semantics for primitive and object types.
  • Java: Inconsistent semantics between primitive and object types and classes.

Compiler and Interpreter:

  • Java: Compiled and interpreted language, source code compiles into platform-independent bytecode.
  • C++: Purely compiled language, source program compiles into object code, further executed.

2) Features of the Java Programming Language:

  • Easy: Java is considered easy to learn, with fundamental Object-Oriented Programming (OOP) concepts.
  • Secured Feature: Java provides a secured feature, ensuring the development of virus-free and tamper-free systems.
  • OOP: Java follows Object-Oriented Programming, treating everything as an object.
  • Independent Platform: Java compiles into platform-independent bytecode, interpreted by the Virtual Machine.

3) ClassLoader in Java:

  • A ClassLoader in Java is a subsystem of the Java Virtual Machine responsible for loading class files during program execution.
  • It is the first to load the executable file and includes Bootstrap, Extension, and Application classloaders.

4) Differences Between Heap and Stack Memory in Java:

  • Stack Memory: Allocated to each individual program. Fixed memory space.
  • Heap Memory: Not assigned to Java code initially but available during runtime. Used as needed by the Java code.

Embark on a transformative journey with our comprehensive course, “ Decode Java+DSA 1.0 ,” meticulously designed to empower you with the skills needed to excel in programming. This course seamlessly integrates Core Java and Data Structures and Algorithms (DSA), offering a holistic learning experience that lays a robust foundation for your programming journey.

Key Features:

  • Comprehensive Java Coverage: Delve into the intricacies of Core Java, unraveling the language’s syntax, features, and object-oriented programming concepts. From basic constructs to advanced topics, this course ensures a thorough understanding of Java.
  • Powerful Problem-Solving with DSA: Unlock the potential of Data Structures and Algorithms to efficiently solve complex problems. Acquire the essential tools and strategies to approach real-world challenges with confidence and precision.
  • Hands-On Learning: Immerse yourself in practical, hands-on exercises that reinforce theoretical concepts. Through coding exercises and projects, you’ll apply your knowledge, fostering a deeper understanding of both Java and DSA.
  • Expert Guidance: Benefit from expert guidance provided by seasoned instructors with extensive industry experience. Learn industry best practices and gain insights into the practical applications of Java and DSA.

Who Should Enroll:

  • Programming Enthusiasts
  • Students Pursuing Computer Science or Related Fields
  • Professionals Seeking to Strengthen Core Java and DSA Skills

Upon completion of “ Decode Java+DSA 1.0 ,” by PW you’ll emerge as a proficient programmer equipped with the skills to tackle diverse programming challenges. Whether you’re aiming to kickstart your programming career, enhance your academic pursuits, or upskill for professional growth, this course is your gateway to mastering Java and DSA. Elevate your programming prowess and embark on a journey of continuous learning and innovation.

Basic Programming Problems in C

The table below shows the basic programming problems in C :

1.

Hello World

Print “Hello, World!” to the console. Output: Hello, World!
2.

Sum of Two Numbers

Take two numbers and print their sum. Input: 5, 7; Output: 12
3.

Factorial Calculation

Calculate and print the factorial of a number. Input: 5; Output: 120
4.

Check Even or Odd

Determine if a number is even or odd. Input: 8; Output: Even
5.

Swap Two Numbers

Take two numbers and swap their values. Input: 3, 7; Output: 7, 3
6.

Prime Number Check

Check if a number is prime or not. Input: 11; Output: Prime
7.

Reverse a Number

Reverse the digits of a number. Input: 123; Output: 321
8.

Palindrome Check

Check if a number is a palindrome. Input: 121; Output: Palindrome
9.

Fibonacci Series

Print Fibonacci series. Input: 5; Output: 0, 1, 1, 2, 3
10.

Leap Year Check

Check if a year is a leap year. Input: 2020; Output: Leap Year

Put your learning into action with hands-on projects that simulate real-world scenarios with Decode Full Stack Web Dev 1.0 by PW . From designing responsive user interfaces to implementing robust server-side functionalities, you’ll gain practical experience that enhances your proficiency.

Learn essential tools like Git for version control, ensuring collaborative and efficient development. Explore deployment strategies to showcase your applications to the world, covering platforms like Heroku.

Who Should Enroll

  • Aspiring Web Developers 
  • Computer Science Students 
  • Professionals Transitioning to Web Development 
  • Entrepreneurs Looking to Build Web Applications

Basic Programming Problems in Python

In addition to introducing you to Python’s syntax and structure, tackling basic programming problems in Python helps you improve your problem-solving skills. With tasks ranging from basic logic puzzles to intricate algorithmic difficulties, these issues offer an interactive method of learning Python and put you on the route to becoming a skilled programmer.

Hello World Write a program that prints “Hello, World!” to the console.
Variables and Data Types Create variables of different data types (integers, floats, strings) and perform basic operations on them.
Conditional Statements Use if, elif, and else statements to implement basic conditional logic.
Loops Implement loops (for, while) to iterate through lists, perform a certain action, or solve iterative problems.
Lists and Arrays Manipulate lists and arrays: create, access, modify, and traverse elements.
Functions Define and call functions with parameters and return values.
File Handling Read from and write to files, handle exceptions for file operations.
Exception Handling Use try, except, finally blocks to handle exceptions and errors gracefully.
Basic Algorithms Implement basic algorithms such as sorting (e.g., bubble sort) searching (e.g., linear search)
Recursion Solve problems using recursive functions.
Object-Oriented Programming (OOP) Create classes, objects, and methods; implement inheritance and encapsulation.
Regular Expressions Use regular expressions for pattern matching and text manipulation.
List Comprehensions Write concise and expressive code using list comprehensions.
Lambda Functions Define anonymous functions using lambda expressions.
Error Handling and Logging Handle errors effectively and implement logging for debugging.
Basic Input/Output Take user input and display output using input() and print().
Virtual Environment and Packages Create virtual environments and install external packages using pip.

Basic Programming Problems in Javascript

Whether you aim to enhance your web development skills or explore the vast world of JavaScript applications, these problems cater to beginners, guiding them through the foundational aspects of programming in this versatile language. Below table showcases the basic programming problems in Javascript :

Hello World Write a program that prints “Hello, World!” to the console.
Variables and Data Types Create variables of different data types (numbers, strings, booleans) and perform basic operations on them.
Conditional Statements Use if, else if, and else statements to implement basic conditional logic.
Loops Implement loops (for, while) to iterate through arrays, perform a certain action, or solve iterative problems.
Arrays Manipulate arrays: create, access, modify, and iterate through elements.
Functions Define and call functions with parameters and return values.
Error Handling Use try, catch, and finally blocks to handle exceptions and errors gracefully.
Callbacks and Asynchronous Programming Understand and implement callbacks, handle asynchronous operations using callbacks.
Promises Use promises to handle asynchronous operations and manage asynchronous code more effectively.
JSON Parse and stringify JSON data.
DOM Manipulation Interact with the Document Object Model (DOM) to dynamically update HTML and respond to user events.
Event Handling Handle browser events such as click, submit, etc., using event listeners.
AJAX and Fetch API Make asynchronous HTTP requests using the Fetch API or XMLHttpRequest.
Local Storage and Cookies Store and retrieve data locally using local storage and cookies.
Basic Algorithms Implement basic algorithms such as sorting (e.g., bubble sort) and searching (e.g., linear search).
Recursion Solve problems using recursive functions.
Object-Oriented Programming (OOP) Create objects, classes, and methods; implement inheritance and encapsulation.
ES6 Features Use ES6 features such as arrow functions, destructuring, template literals, and the let/const keywords.
Promises and Async/Await Refactor asynchronous code using promises and the async/await syntax.

Embark on a transformative learning experience with our comprehensive course, “Building MicroServices in Java for Cloud .”

Key Highlights

  • Microservices Fundamentals: Gain a solid understanding of microservices architecture, learning how to decompose large applications into smaller, independently deployable services. Explore the principles and benefits that drive the adoption of microservices in modern software development.
  • Java for Microservices : Leverage the power of Java to build robust microservices. Explore Java frameworks and libraries that facilitate the development of scalable and efficient microservices, ensuring seamless integration with cloud platforms.
  • Communication Strategies: Delve into various communication patterns and protocols essential for microservices interactions. Learn about RESTful APIs, messaging queues, and other communication mechanisms used to establish seamless communication between microservices.
  • Software Developers and Engineers
  • System Architects
  • Cloud Enthusiasts
  • Java Developers Exploring Microservices

Basic Programming Problems and Solutions

Here are 10 basic programming problems along with their solutions:

  • Hello World:

Problem: Write a program that prints “Hello, World!” to the console.

Solution (Python):

print(“Hello, World!”)

  • Sum of Two Numbers:

Problem: Write a program that inputs two numbers and prints their sum.

Solution (Java):

import java.util.Scanner;

public class SumOfTwoNumbers {

        Scanner scanner = new Scanner(System.in);

        System.out.print(“Enter first number: “);

        int num1 = scanner.nextInt();

        System.out.print(“Enter second number: “);

        int num2 = scanner.nextInt();

        int sum = num1 + num2;

  • Factorial of a Number:

Problem: Write a program to calculate the factorial of a given number.

Solution (C++):

#include <iostream>

using namespace std;

int factorial(int n) {

    if (n == 0 || n == 1)

        return 1;

        return n * factorial(n – 1);

int main() {

    int num;

    cout << “Enter a number: “;

    cin >> num;

    cout << “Factorial: ” << factorial(num) << endl;

    return 0;

  • Check Even or Odd:

Problem: Write a program that checks if a given number is even or odd.

Solution (JavaScript):

let number = 7;

if (number % 2 === 0) {

    console.log(number + ” is even”);

    console.log(number + ” is odd”);

  • Reverse a String:

Problem: Write a program to reverse a given string.

original_string = “Hello, World!”

reversed_string = original_string[::-1]

print(“Reversed String:”, reversed_string)

  • Fibonacci Series:

Problem: Generate the Fibonacci series up to a specific limit.

public class FibonacciSeries {

        int limit = 10;

        int firstTerm = 0, secondTerm = 1;

        System.out.println(“Fibonacci Series up to ” + limit + ” terms:”);

        for (int i = 1; i <= limit; ++i) {

            System.out.print(firstTerm + “, “);

            int nextTerm = firstTerm + secondTerm;

            firstTerm = secondTerm;

            secondTerm = nextTerm;

  • Check Prime Number:

Problem: Write a program to check if a given number is prime.

def is_prime(number):

    if number > 1:

        for i in range(2, int(number / 2) + 1):

            if (number % i) == 0:

                return False

        else:

            return True

        return False

if is_prime(num):

    print(num, “is a prime number.”)

    print(num, “is not a prime number.”)

  • Find Maximum Element:

Problem: Write a program to find the maximum element in an array.

int findMax(int arr[], int size) {

    int max = arr[0];

    for (int i = 1; i < size; ++i) {

        if (arr[i] > max) {

            max = arr[i];

    return max;

    int numbers[] = {5, 8, 2, 10, 3};

    int size = sizeof(numbers) / sizeof(numbers[0]);

    cout << “Maximum Element: ” << findMax(numbers, size) << endl;

  • Palindrome Check:

Problem: Write a program to check if a given string is a palindrome.

public class PalindromeCheck {

        String str = “level”;

        String reversedStr = new StringBuilder(str).reverse().toString();

        if (str.equals(reversedStr)) {

            System.out.println(str + ” is a palindrome.”);

            System.out.println(str + ” is not a palindrome.”);

  • Count Vowels and Consonants:

Problem: Write a program to count the number of vowels and consonants in a given string.

text = “Hello, World!”

vowels = “AEIOU

Benefits of Solving Basic Programming Problems

Solving basic programming problems offers numerous benefits for individuals looking to enhance their programming skills. Here are some key advantages:

Skill Development:

  • Coding Proficiency: Regular problem-solving helps improve your coding skills and fluency in programming languages.
  • Algorithmic Thinking: It fosters the development of algorithmic thinking, enabling you to devise efficient solutions to various problems.

Logical Thinking:

  • Problem Decomposition: Breaking down problems into smaller components and solving them enhances logical thinking and problem-solving abilities.
  • Pattern Recognition: Regular problem-solving helps in recognizing patterns and similarities between different problems, leading to more efficient solutions.

Learning New Concepts:

  • Exposure to Diverse Topics: Programming problems often cover a wide range of concepts, exposing you to different areas of computer science and software development.
  • New Algorithms and Data Structures: Exploring various problems introduces you to new algorithms and data structures, expanding your knowledge base.

Preparation for Interviews:

  • Technical Interviews: Many technical interviews for programming roles involve solving algorithmic and coding problems. Regular practice prepares you for such interviews and boosts your confidence.
  • Coding Challenges: Familiarity with common coding challenges often encountered in interviews is an asset.

Building a Portfolio:

  • Showcasing Skills: Solving problems allows you to build a portfolio of solutions that you can showcase to potential employers or on coding platforms.
  • GitHub Contributions: Uploading your solutions to platforms like GitHub demonstrates your coding proficiency and problem-solving ability.

Enhanced Efficiency:

  • Code Optimization: Regular practice encourages optimization, leading to more efficient and cleaner code.
  • Time Complexity Awareness: Problem-solving helps in understanding and considering time complexity, contributing to the creation of scalable solutions.

Community Engagement:

  • Online Communities: Engaging in online coding communities allows you to discuss problems, learn from others, and gain insights into alternative solutions.
  • Peer Learning: Collaborating with peers on coding challenges can provide different perspectives and foster a collaborative learning environment.

Career Advancement:

  • Competitive Edge: Building strong problem-solving skills sets you apart in a competitive job market, enhancing your employability.
  • Adaptability: A wide range of problem-solving experiences makes you more adaptable to different tasks and projects.

Personal Satisfaction:

  • Sense of Achievement: Successfully solving programming problems brings a sense of accomplishment, boosting confidence and motivation.
  • Continuous Learning: It fosters a mindset of continuous learning, crucial in a rapidly evolving field like programming.

In summary, regular practice of solving basic programming problems contributes significantly to skill development, logical thinking, and overall proficiency in the field of programming.

For Latest Tech Related Information, Join Our Official Free Telegram Group : PW Skills Telegram Group

  • Top Web Developer Skills You Must Have

web developer skills

Web developer skills are essential for crafting modern websites and applications. Read this article to discover the top must-know abilities…

  • HTML CSS – Difference between HTML and CSS

html css

HTML CSS are two major web frameworks used to define the structure and layout of the web page. While both…

  • What is Backend Development? Skills, Salary, Roles & More

back end

Backend development refers to the server-side programming that powers a website or application. It involves handling server logic, databases, APIs,…

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

right adv

Related Articles

  • HTML Code Example For Beginners
  • Types Of CSS: How To Use In HTML Documents
  • Bootstrap Examples – Everything You Need To Know
  • What are The Three Cloud Computing Basics?
  • Front End Developer Career – The Frontend Developer Career Path
  • Inline CSS – How to add CSS
  • PHP Developer-Salary, Job Profile, Skills

bottom banner

  • Trending Now
  • Foundational Courses
  • Data Science
  • Practice Problem
  • Machine Learning
  • System Design
  • DevOps Tutorial

Basic Programming Problems

Learn Programming – How To Code

In the world of programming , mastering the fundamentals is key to becoming a proficient developer. In this article, we will explore a variety of basic programming problems that are essential for every aspiring coder to understand. By delving into these foundational challenges, you will gain valuable insights into problem-solving techniques and build a strong foundation for your programming journey. Whether you’re a novice programmer or looking to refresh your skills, this guide will provide you with a solid introduction to essential programming problems

Why to Start with Basics Programming Problems?

Starting with basics is important because it helps you build a strong foundation. When you understand the basics well, it becomes easier to learn more advanced things later on. It’s like building a solid base for a tall building – if the base is strong, the building will be strong too. Mastering the basics also helps you become better at solving problems, which is really important in programming and other technical areas.

Benefits of Starting with Basic Programming Problems:

Foundation Building: Establishes a strong foundation in coding by introducing fundamental concepts.

  • Improve Problem-Solving: Enhances problem-solving skills, preparing for more complex challenges.
  • Language Proficiency: Fosters proficiency in a programming language, facilitating expression of thoughts and implementation of solutions.
  • Debugging Skills: Provides practice in debugging techniques and understanding common errors.
  • Algorithmic Thinking: Encourages efficient and optimized thinking, laying the groundwork for advanced problem-solving.
  • Confidence Building: Boosts confidence in coding and problem-solving abilities through successful progression.
  • Get Ready for Interviews: Prepares for coding job interviews by mastering fundamental concepts commonly assessed.

Basic Programming Problems:

Problem

Practice

Solve

Solve

































Related Article:

  • What is Programming? A Handbook for Beginners
  • What is a Code in Programming?
  • What Is Coding and What Is It Used For?
  • How to Learn Programming?

Please Login to comment...

Similar reads.

  • Programming
  • Best 10 IPTV Service Providers in Germany
  • Python 3.13 Releases | Enhanced REPL for Developers
  • IPTV Anbieter in Deutschland - Top IPTV Anbieter Abonnements
  • Best SSL Certificate Providers in 2024 (Free & Paid)
  • Content Improvement League 2024: From Good To A Great Article

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  • Latest News

Logo

  • Cryptocurrencies
  • White Papers

Boost Your C++ Skills with These Top 10 Projects

Boost Your C++ Skills with These Top 10 Projects

C++ is a truly powerful and versatile language that has been used to build everything from operating systems to games and scientific simulations. Working on projects is one of the best ways to hone problem-solving skills and deepen your understanding of C++. Here are ten C++ projects that will aid in building your coding skills, not to mention your portfolio.

1. Calculator

Description:

A general academic exercise for learners would be to design a simple calculator, able to add, subtract, multiply, and divide.

Skills Acquired:

Introduction to basic C++.

Program input and output operations.

The arithmetic operation.

Why is the student doing it?

The project introduces the student to the very basics of programming calculations using C++. The student gets to learn how to code for user input and base calculations.

Extensions:

You can also extend this project with the inclusion of exponents, square roots, and trigonometric functions.

2. Tic Tac Toe Game

This is a simple game played between two players, wherein at each player's turn, one will mark space on a 3x3 grid.

Learning Skills:

Control structures - Loops and Conditionals

Basic game logic

Why It Is Important:

The project will familiarize you with the ways to use arrays and control structures as you implement the key constructs in a game developer's tool kit.

Include a GUI for the game, or add an opponent to play against the user.

3. Hangman Game

The Hangman is to guess a word letter by letter within guesses of a certain number.

Skills Learned:

String manipulation

Control structures

Random number generation

Why It's Important:

This project helps you practice string manipulation and control structures, some of the most central skills in C++ programming.

Improvements to the game could be made by creating a more graphical user interface or even extending towards implementing a database of words to make the game smoother and more interesting.

4. Library Management System

Library management system where users can manage the books. Users can add, delete, and also search for books available.

Skills Gained:

File handling

Data structure: arrays, linked lists.

Object-oriented programming: OOP

Why it is useful:

This will make you get acquainted with file handling and data structures, which become very important while dealing with real applications involving data.

You can add functionality to the project by implementing user authentication through GUI or by integrating it with a database.

5. Snake Game

Snake is a game wherein the player controls his snake to eat without running into walls or running into itself.

Game development concepts

Graphics programming

This project now starts to reveal certain aspects of Game Development and Graphics Programming tied in with creating an interactive application.

Include multiple levels, power-ups, or a high-score system.

6. Text-based Adventure Game

Description:  

A text-based adventure game is one in which a user advances through a story based on choices they can make.

Telling a story via code

This will let you practice string manipulation and control structures, or you can turn it into an extended creative writing exercise.

Add more sophisticated plot lines, more options for endings, or a graphical interface.

7. Image Processing Software

Image processing applications give the user the ability to resize, crop, or even filter images.

Image processing algorithms

Why is this important?

This project will familiarize you with graphics programming and the corresponding algorithms- something very important in writing general application software that manipulates visual data.

Work on more advanced image processing methods for edge detection, color correction, image segmentation, etc.

8. Online Banking System

Online banking system-the term says it all. This program enables users to administer and handle bank accounts by checking account balances, transferring money, and paying bills.

Data structures

Why to Do It:

The module leads you to very efficient and careful handling of data, which is important for any application development related to finance.

Add user authentication, encryption for secure transactions, or a GUI for the enhancement of the user experience.

9. Traffic Simulation System

The traffic simulation system models the flow of traffic through a network of roads and intersections.

Skills Learned

Simulation techniques

This project is going to introduce the student to simulation techniques and algorithms in general, so that, by themselves, students can develop applications modeling most real-life systems.

More complex patterns of traffic, including real-time data, or developing a graphical interface to display the simulation.

Related Stories

logo

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

Navigation Menu

Search code, repositories, users, issues, pull requests..., provide feedback.

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly.

To see all available qualifiers, see our documentation .

  • Notifications You must be signed in to change notification settings

NPTEL Assignment Answers and Solutions 2024 (July-Dec). Get Answers of Week 1 2 3 4 5 6 7 8 8 10 11 12 for all courses. This guide offers clear and accurate answers for your all assignments across various NPTEL courses

progiez/nptel-assignment-answers

Folders and files.

NameName
164 Commits

Repository files navigation

Nptel assignment answers 2024 with solutions (july-dec), how to use this repo to see nptel assignment answers and solutions 2024.

If you're here to find answers for specific NPTEL courses, follow these steps:

Access the Course Folder:

  • Navigate to the folder of the course you are interested in. Each course has its own folder named accordingly, such as cloud-computing or computer-architecture .

Locate the Weekly Assignment Files:

  • Inside the course folder, you will find files named week-01.md , week-02.md , and so on up to week-12.md . These files contain the assignment answers for each respective week.

Select the Week File:

  • Click on the file corresponding to the week you are interested in. For example, if you need answers for Week 3, open the week-03.md file.

Review the Answers:

  • Each week-XX.md file provides detailed solutions and explanations for that week’s assignments. Review these files to find the information you need.

By following these steps, you can easily locate and use the assignment answers and solutions for the NPTEL courses provided in this repository. We hope this resource assists you in your studies!

List of Courses

Here's a list of courses currently available in this repository:

  • Artificial Intelligence Search Methods for Problem Solving
  • Cloud Computing
  • Computer Architecture
  • Cyber Security and Privacy
  • Data Science for Engineers
  • Data Structure and Algorithms Using Java
  • Database Management System
  • Deep Learning for Computer Vision
  • Deep Learning IIT Ropar
  • Digital Circuits
  • Ethical Hacking
  • Introduction to Industry 4.0 and Industrial IoT
  • Introduction to Internet of Things
  • Introduction to Machine Learning IIT KGP
  • Introduction to Machine Learning
  • Introduction to Operating Systems
  • ML and Deep Learning Fundamentals and Applications
  • Problem Solving Through Programming in C
  • Programming DSA Using Python
  • Programming in Java
  • Programming in Modern C
  • Python for Data Science
  • Soft Skill Development
  • Soft Skills
  • Software Engineering
  • Software Testing
  • The Joy of Computation Using Python
  • Theory of Computation

Note: This repository is intended for educational purposes only. Please use the provided answers as a guide to better understand the course material.

📧 Contact Us

For any queries or support, feel free to reach out to us at [email protected] .

🌐 Connect with Progiez

Website

⭐️ Follow Us

Stay updated with our latest content and updates by following us on our social media platforms!

🚀 About Progiez

Progiez is an online educational platform aimed at providing solutions to various online courses offered by NPTEL, Coursera, LinkedIn Learning, and more. Explore our resources for detailed answers and solutions to enhance your learning experience.

Disclaimer: This repository is intended for educational purposes only. All content is provided for reference and should not be submitted as your own work.

Contributors 3

@raveshrawal

IMAGES

  1. Problem Solving In Programming

    programmer problem solving skills

  2. 6 Ways to Improve Your Programming Problem Solving

    programmer problem solving skills

  3. Problem Solving in Programming

    programmer problem solving skills

  4. Tips to Improve Problem-Solving Skills in Programming

    programmer problem solving skills

  5. Problem Solving

    programmer problem solving skills

  6. Problem Solving Skills in Java Programming

    programmer problem solving skills

VIDEO

  1. How To Develop Analytical & Problem Solving Skills ?

  2. How to Tell if You're a Good Programmer

  3. Problem-Solving skills for UX Designers #uxdesign

  4. Learn logic building in programming Intro

  5. Problem Solving for Developers

  6. Most Asked Number Reasoning and Sequences Questions part # 01| FAST NUCES ENTRY TEST PREPARATION

COMMENTS

  1. How to think like a programmer

    Problem-solving skills are almost unanimously the most important qualification that employers look for….more than programming languages proficiency, debugging, and system design. Demonstrating computational thinking or the ability to break down large, complex problems is just as valuable (if not more so) than the baseline technical skills ...

  2. 18 Skills All Programmers Need to Have

    Problem Solving: Problem-solving skills are just as important for programmers as technical ability. As Dominique Simoneau-Ritchie, the Director of Engineering at Lever, wrote for HackerNoon , "The more senior you are, the more you'll be expected to take on complex, poorly defined problems, often with very little context.

  3. Problem-Solving Skills for Software Developers: Why & How to Improve

    To train the problem-solving side of your brain, these four tips and strategies can help you improve your abilities: 1. Make problem-solving a part of your life. Never restrict yourself to working on problems only during work hours. Don't make it a chore, but, instead, do things that make problem-solving look fun.

  4. 20 Code Challenges To Put What You're Learning to the Test

    Code challenges help you build problem-solving skills, better understand the programming language you use, and get to know algorithms you may not be familiar with. If you want to improve your skills in programming, there's no better way than by writing code. In addition, coding challenges are convenient because they allow you to exercise your ...

  5. How to Develop Problem Solving Skills in Programming

    It requires excellent knowledge and much thinking power. Problem solving in programming skills is much needed for a person and holds a major advantage. For every question, there are specific steps to be followed to get a perfect solution. By using those steps, it is possible to find a solution quickly. The above section is covered with an ...

  6. How to Solve Coding Problems with a Simple Four Step Method

    In this post, we've gone over the four-step problem-solving strategy for solving coding problems. Let's review them here: Step 1: understand the problem. Step 2: create a step-by-step plan for how you'll solve it. Step 3: carry out the plan and write the actual code.

  7. 5 Ways to Improve Problem-solving Skills for Software Developers

    Intro. As mentioned in my previous article, a good programmer needs to have strong problem-solving skills. Now, I'd like to delve deeper into this topic and provide more information. Practice ...

  8. The Beginner Programmer's guide to Problem Solving [With Example]

    Step 3: Connect the dots (Integration) You have solved individual problems. Now it is time to connect the dots by connecting the individual solution. Identify those steps which will make the solution or the program complete. Typically in programming, the dots are connected by passing data that is stored in variables.

  9. Strategies for Effective Problem-Solving in Programming

    Problem-Solving Skills in Programming. Problem-solving skills are of utmost importance in the field of programming. Whether it's debugging code, optimizing algorithms, or designing solutions, computer programmers rely heavily on their problem-solving abilities to tackle challenges and create efficient and effective solutions.

  10. The 10 Most Popular Coding Challenge Websites [Updated for 2021]

    A great way to improve your skills when learning to code is by solving coding challenges. Solving different types of challenges and puzzles can help you become a better problem solver, learn the intricacies of a programming language, prepare for job interviews, learn new algorithms, and more. Below is a

  11. 15 Common Problem-Solving Interview Questions

    Here are a few examples of technical problem-solving questions: 1. Mini-Max Sum. This well-known challenge, which asks the interviewee to find the maximum and minimum sum among an array of given numbers, is based on a basic but important programming concept called sorting, as well as integer overflow.

  12. Online Coding Practice Problems & Challenges

    Use these practice problems and challenges to prove your coding skills. Practice over 5000+ problems in coding languages like Python, Java, JavaScript, C++, SQL and HTML. Start with beginner friendly challenges and solve hard problems as you become better. Use these practice problems and challenges to prove your coding skills.

  13. How to Solve Programming Problems

    A simple set of steps. I am going to give you a simple set of steps to follow which you can use for any algorithm type programming problem. Read the problem completely twice. Solve the problem manually with 3 sets of sample data. Optimize the manual steps. Write the manual steps as comments or pseudo-code. Replace the comments or pseudo-code ...

  14. 15 Tips to Improve Logic Building Skills in Programming

    Mathematics is an important aspect of programming and understanding properly will help you in making numerous visuals or graphs, coding in applications, simulation, problem-solving applications, design of algorithms, etc. 13. Build Projects. Project building is another task that will enhance your logical building skills in programming.

  15. 40 Algorithms Every Programmer Should Know: Hone your problem-solving

    Imran Ahmad is a certified Google Instructor and has been teaching for Google and Learning Tree for the last many years. The topics Imran teaches include Python, Machine Learning, Algorithms, Big Data and Deep Learning. In his PhD, he proposed a new linear programming based algorithm called ATSRA , which can be used to optimally assign resources in a cloud computing environment.

  16. How Can I Improve Problem-Solving Skills as an Aspiring ...

    As you get better at both you will combine methods and get much faster. For example if the problem is to "sum a list of numbers." Top down would be: You have a list of numbers: 1,2,3. I look at first number, 1, and add it to a sum. Sum starts with 0. Look at second number, 2, and add that to sum which is now 3.

  17. Programming Tutorial

    Question 3: What are 3 important things to know about programming? Answer: Problem Solving: Programming is fundamentally about solving problems. Logic and Algorithms: Understanding logical thinking and creating efficient algorithms is crucial. Practice: Regular practice and hands-on coding improve skills and understanding.

  18. How to Develop Problem Solving Skills in Programming?

    Process of Solving a programming problem. Analyze the problem. Develop an algorithm. Code. Now let's go through all the steps mentioned above to understand how to develop problem solving skills in programming. Analyze the Problem: It is very important to understand the problem before designing a solution.

  19. 75 Basic Programming Problems And Tutorials For Practice

    Basic Programming Problems: Engaging in code challenges offers many benefits, serving as a dynamic tool to enhance problem-solving proficiency, deepen your comprehension of the programming language you work with, and acquaint yourself with diverse algorithms. If you aspire to elevate your programming skills, immersing yourself in coding is the most effective avenue.

  20. Basic Programming Problems

    Benefits of Starting with Basic Programming Problems: Foundation Building: Establishes a strong foundation in coding by introducing fundamental concepts. Improve Problem-Solving: Enhances problem-solving skills, preparing for more complex challenges. Language Proficiency: Fosters proficiency in a programming language, facilitating expression of ...

  21. Top 10 C++ Projects to Hone Your Problem-Solving Skills

    C++ projects will enhance your problem-solving skills and give you a deeper understanding of the language. In each of the projects listed, you'll find different problems and learning curves when it comes to building a solid foundation in the C++ programming language for a beginner or an advanced developer.

  22. Session 2 (pptx)

    Computer-science document from University of Alberta, 47 pages, CSE 1701 Problem Solving and Programming Dr. A. Nayeemulla Khan Skills Required for a Software Engineer Technical Skills - Software Design - Coding - Testing Problem Solving Skills - logical and analytical thinking Soft Skills - Communication - Team Work

  23. 7 Problem-Solving Skills That Can Help You Be a More ...

    Improve your problem-solving skills. Problem-solving is an important skill for managers, and it involves analysing the situation, communicating effectively, and coming up with creative solutions. As a current or future manager looking to build your problem-solving skills, it is often helpful to take a professional course.

  24. NPTEL Assignment Answers 2024 with Solutions (July-Dec)

    Problem Solving Through Programming in C; Programming DSA Using Python; Programming in Java; Programming in Modern C; Python for Data Science; Soft Skill Development; Soft Skills; Software Engineering; Software Testing; The Joy of Computation Using Python; Theory of Computation