5 Quasi-Experimental Design Examples
Dave Cornell (PhD)
Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.
Learn about our Editorial Process
Chris Drew (PhD)
This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.
Quasi-experimental design refers to a type of experimental design that uses pre-existing groups of people rather than random groups.
Because the groups of research participants already exist, they cannot be randomly assigned to a cohort . This makes inferring a causal relationship between the treatment and observed/criterion variable difficult.
Quasi-experimental designs are generally considered inferior to true experimental designs.
Limitations of Quasi-Experimental Design
Since participants cannot be randomly assigned to the grouping variable (male/female; high education/low education), the internal validity of the study is questionable.
Extraneous variables may exist that explain the results. For example, with quasi-experimental studies involving gender, there are numerous cultural and biological variables that distinguish males and females other than gender alone.
Each one of those variables may be able to explain the results without the need to refer to gender.
See More Research Limitations Here
Quasi-Experimental Design Examples
1. smartboard apps and math.
A school has decided to supplement their math resources with smartboard applications. The math teachers research the apps available and then choose two apps for each grade level. Before deciding on which apps to purchase, the school contacts the seller and asks for permission to demo/test the apps before purchasing the licenses.
The study involves having different teachers use the apps with their classes. Since there are two math teachers at each grade level, each teacher will use one of the apps in their classroom for three months. At the end of three months, all students will take the same math exams. Then the school can simply compare which app improved the students’ math scores the most.
The reason this is called a quasi-experiment is because the school did not randomly assign students to one app or the other. The students were already in pre-existing groups/classes.
Although it was impractical to randomly assign students to use one version or the other of the apps, it creates difficulty interpreting the results.
For instance, if students in teacher A’s class did better than the students in teacher B’s class, then can we really say the difference was due to the app? There may be other differences between the two teachers that account for the results. This poses a serious threat to the study’s internal validity.
2. Leadership Training
There is reason to believe that teaching entrepreneurs modern leadership techniques will improve their performance and shorten how long it takes for them to reach profitability. Team members will feel better appreciated and work harder, which should translate to increased productivity and innovation.
This hypothetical study took place in a third-world country in a mid-sized city. The researchers marketed the training throughout the city and received interest from 5 start-ups in the tech sector and 5 in the textile industry. The leaders of each company then attended six weeks of workshops on employee motivation, leadership styles, and effective team management.
At the end of one year, the researchers returned. They conducted a standard assessment of each start-up’s growth trajectory and administered various surveys to employees.
The results indicated that tech start-ups were further along in their growth paths than textile start-ups. The data also showed that tech work teams reported greater job satisfaction and company loyalty than textile work teams.
Although the results appear straightforward, because the researchers used a quasi-experimental design, they cannot say that the training caused the results.
The two groups may differ in ways that could explain the results. For instance, perhaps there is less growth potential in the textile industry in that city, or perhaps tech leaders are more progressive and willing to accept new leadership strategies.
3. Parenting Styles and Academic Performance
Psychologists are very interested in factors that affect children’s academic performance. Since parenting styles affect a variety of children’s social and emotional profiles, it stands to reason that it may affect academic performance as well. The four parenting styles under study are: authoritarian, authoritative, permissive, and neglectful/uninvolved.
To examine this possible relationship, researchers assessed the parenting style of 120 families with third graders in a large metropolitan city. Trained raters made two-hour home visits to conduct observations of parent/child interactions. That data was later compared with the children’s grades.
The results revealed that children raised in authoritative households had the highest grades of all the groups.
However, because the researchers were not able to randomly assign children to one of the four parenting styles, the internal validity is called into question.
There may be other explanations for the results other than parenting style. For instance, maybe parents that practice authoritative parenting also come from a higher SES demographic than the other parents.
Because they have higher income and education levels, they may put more emphasis on their child’s academic performance. Or, because they have greater financial resources, their children attend STEM camps, co-curricular and other extracurricular academic-orientated classes.
4. Government Reforms and Economic Impact
Government policies can have a tremendous impact on economic development. Making it easier for small businesses to open and reducing bank loans are examples of policies that can have immediate results. So, a third-world country decides to test policy reforms in two mid-sized cities. One city receives reforms directed at small businesses, while the other receives reforms directed at luring foreign investment.
The government was careful to choose two cities that were similar in terms of size and population demographics.
Over the next five years, economic growth data were collected at the end of each fiscal year. The measures consisted of housing sells, local GDP, and unemployment rates.
At the end of five years the results indicated that small business reforms had a much larger impact on economic growth than foreign investment. The city which received small business reforms saw an increase in housing sells and GDP, but a drop in unemployment. The other city saw stagnant sells and GDP, and a slight increase in unemployment.
On the surface, it appears that small business reform is the better way to go. However, a more careful analysis revealed that the economic improvement observed in the one city was actually the result of two multinational real estate firms entering the market. The two firms specialize in converting dilapidated warehouses into shopping centers and residential properties.
5. Gender and Meditation
Meditation can help relieve stress and reduce symptoms of depression and anxiety. It is a simple and easy to use technique that just about anyone can try. However, are the benefits real or is it just that people believe it can help? To find out, a team of counselors designed a study to put it to a test.
Since they believe that women are more likely to benefit than men, they recruit both males and females to be in their study.
Both groups were trained in meditation by a licensed professional. The training took place over three weekends. Participants were instructed to practice at home at least four times a week for the next three months and keep a journal each time they meditate.
At the end of the three months, physical and psychological health data were collected on all participants. For physical health, participants’ blood pressure was measured. For psychological health, participants filled out a happiness scale and the emotional tone of their diaries were examined.
The results showed that meditation worked better for women than men. Women had lower blood pressure, scored higher on the happiness scale, and wrote more positive statements in their diaries.
Unfortunately, the researchers noticed that men apparently did not actually practice meditation as much as they should. They had very few journal entries and in post-study interviews, a vast majority of men admitted that they only practiced meditation about half the time.
The lack of practice is an extraneous variable. Perhaps if men had adhered to the study instructions, their scores on the physical and psychological measures would have been higher than women’s measures.
The quasi-experiment is used when researchers want to study the effects of a variable/treatment on different groups of people. Groups can be defined based on gender, parenting style, SES demographics, or any number of other variables.
The problem is that when interpreting the results, even clear differences between the groups cannot be attributed to the treatment.
The groups may differ in ways other than the grouping variables. For example, leadership training in the study above may have improved the textile start-ups’ performance if the techniques had been applied at all. Similarly, men may have benefited from meditation as much as women, if they had just tried.
Baumrind, D. (1991). Parenting styles and adolescent development. In R. M. Lerner, A. C. Peterson, & J. Brooks-Gunn (Eds.), Encyclopedia of Adolescence (pp. 746–758). New York: Garland Publishing, Inc.
Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin.
Matthew L. Maciejewski (2020) Quasi-experimental design. Biostatistics & Epidemiology, 4 (1), 38-47. https://doi.org/10.1080/24709360.2018.1477468
Thyer, Bruce. (2012). Quasi-Experimental Research Designs . Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195387384.001.0001
- Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 23 Achieved Status Examples
- Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Defense Mechanisms Examples
- Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Theory of Planned Behavior Examples
- Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 18 Adaptive Behavior Examples
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 23 Achieved Status Examples
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Ableism Examples
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 25 Defense Mechanisms Examples
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Theory of Planned Behavior Examples
Leave a Comment Cancel Reply
Your email address will not be published. Required fields are marked *
- General Categories
- Mental Health
- IQ and Intelligence
- Bipolar Disorder
Quasi-Experimental Design in Psychology: Exploring Real-World Research Methods
Quasi-experimental designs, the unsung heroes of psychological research, offer a fascinating glimpse into the complex interplay between real-world settings and scientific inquiry. These research methods have carved out a unique niche in the field of psychology, bridging the gap between controlled laboratory experiments and the messy realities of human behavior in natural environments. But what exactly are quasi-experimental designs, and why do they hold such significance in psychological studies?
At its core, quasi-experimental research is a methodology that aims to establish cause-and-effect relationships without the luxury of random assignment. Unlike true experiments in psychology , which meticulously control every variable, quasi-experiments embrace the inherent complexities of real-world settings. They’re the rebellious cousins of traditional experiments, daring to venture beyond the sterile confines of the laboratory and into the wild, unpredictable realm of everyday life.
Imagine, if you will, a psychologist attempting to study the effects of a new teaching method on student performance. In an ideal world, they’d randomly assign students to different classrooms, controlling for every possible variable. But in reality, schools don’t work that way. Enter the quasi-experiment, allowing researchers to study existing groups and draw meaningful conclusions despite the lack of random assignment.
The importance of quasi-experimental designs in psychological studies cannot be overstated. They provide a crucial middle ground between the rigorous control of true experiments and the observational nature of descriptive methods in psychology . This balance allows researchers to investigate phenomena that would be impractical, unethical, or downright impossible to study in a traditional experimental setting.
Key Characteristics: The Quasi-Experimental Fingerprint
What sets quasi-experimental designs apart from their more tightly controlled counterparts? Let’s dive into the key characteristics that give these research methods their unique flavor.
First and foremost, the lack of random assignment is the hallmark of quasi-experimental design. Unlike random assignment in psychology , where participants are randomly allocated to different conditions, quasi-experiments work with pre-existing groups. This could mean studying students in different classrooms, employees in various departments, or patients receiving different treatments based on their doctors’ decisions.
But don’t be fooled – the absence of random assignment doesn’t mean researchers throw caution to the wind. Quasi-experiments still involve the manipulation of independent variables. Researchers carefully select which variables to manipulate and measure, even if they can’t control all aspects of the study environment.
Control groups and comparison groups play a crucial role in quasi-experimental designs, albeit in a slightly different way than in true experiments. Instead of creating artificial control groups, researchers often use naturally occurring comparison groups. For instance, a study on the effectiveness of a new therapy might compare patients receiving the treatment to those on a waiting list.
Perhaps the most exciting aspect of quasi-experimental designs is their emphasis on natural settings and real-world applications. These studies embrace the messiness of reality, acknowledging that human behavior is influenced by a myriad of factors that can’t always be controlled or isolated. It’s like studying animals in their natural habitat rather than in a zoo – you might not have as much control, but you’ll likely get a more authentic picture of their behavior.
A Smorgasbord of Quasi-Experimental Designs
Just as there’s more than one way to bake a cake, there’s more than one type of quasi-experimental design. Let’s explore some of the most common flavors researchers use to satisfy their scientific appetites.
Nonequivalent group designs are the bread and butter of quasi-experimental research. These studies compare two or more groups that aren’t equivalent at the outset. For example, a researcher might compare the academic performance of students in two different schools, one that implemented a new curriculum and one that didn’t. The challenge here is to account for pre-existing differences between the groups that might influence the results.
Time-series designs are like watching a long-running TV series, but with data instead of drama. Researchers collect multiple observations of a group over time, both before and after introducing an intervention. This allows them to track changes and trends that might not be apparent in a single snapshot. It’s particularly useful for studying the effects of policy changes or large-scale interventions.
Regression discontinuity designs are the Sherlock Holmes of quasi-experimental methods, looking for clues in the data to infer causality. These studies exploit a cut-off point in a continuous variable to create comparison groups. For instance, a study might compare students who just barely qualified for a scholarship to those who just missed the cut-off, assuming these two groups are essentially equivalent except for the scholarship.
Interrupted time-series designs are like time-series designs with a plot twist. Researchers collect data over time, but there’s a clear “interruption” – the introduction of an intervention or event. This allows them to compare trends before and after the interruption, potentially revealing its impact. It’s a bit like studying the effects of a new traffic law by comparing accident rates before and after its implementation.
The Perks of Going Quasi
Now that we’ve got a handle on what quasi-experimental designs are, let’s explore why researchers might choose to use them. What advantages do these methods offer over traditional experiments?
First and foremost, quasi-experiments boast impressive ecological validity. By studying phenomena in their natural contexts, researchers can be more confident that their findings reflect real-world behavior. This is crucial in fields like field study psychology , where the goal is to understand how people think and behave in their everyday environments.
Quasi-experimental designs also allow researchers to study phenomena that cannot be manipulated ethically. Consider a study on the psychological effects of natural disasters. It would be unethical (not to mention impractical) to randomly assign people to experience a hurricane or earthquake. Quasi-experiments provide a way to study these events without crossing ethical boundaries.
The applicability to real-world situations is another feather in the cap of quasi-experimental research. These studies often have direct implications for policy and practice, as they’re conducted in the very contexts where the findings will be applied. This makes them particularly valuable in fields like educational psychology and organizational behavior.
Lastly, quasi-experiments can be more cost-effective and practical than true experiments. They often require less resources and can be conducted more quickly, allowing researchers to respond to emerging issues and opportunities in a timely manner.
The Flip Side: Challenges and Limitations
Of course, no research method is without its drawbacks. Quasi-experimental designs face several challenges that researchers must grapple with.
The most significant hurdle is threats to internal validity. Without random assignment, it’s harder to rule out alternative explanations for observed effects. Researchers must be vigilant in identifying and controlling for potential confounding variables.
Selection bias is another thorn in the side of quasi-experimental research. Since participants aren’t randomly assigned to conditions, there may be systematic differences between groups that influence the results. For example, in a study comparing two schools, differences in student achievement might be due to factors like socioeconomic status rather than the intervention being studied.
Establishing causality can be a tricky business in quasi-experimental designs. While these studies can reveal strong associations, pinpointing cause and effect is more challenging than in randomized controlled trials in psychology . Researchers must use sophisticated statistical techniques and careful reasoning to make causal inferences.
Potential confounding variables are the bane of quasi-experimental researchers’ existence. These are factors that might influence the outcome but aren’t part of the study design. For instance, a study on the effects of a new teaching method might be confounded by differences in teacher experience or classroom resources.
Real-World Applications: Quasi-Experiments in Action
Despite these challenges, quasi-experimental designs have found numerous applications across various branches of psychology. Let’s explore some areas where these methods shine.
In educational psychology research, quasi-experiments are often used to evaluate the effectiveness of new teaching methods or interventions. For example, a researcher might compare reading scores between classrooms using a new literacy program and those using traditional methods. While not as controlled as a laboratory experiment, this approach provides valuable insights into what works in real educational settings.
Clinical psychology interventions frequently rely on quasi-experimental designs. Ethical considerations often prevent random assignment of patients to different treatments, so researchers must find creative ways to study treatment effectiveness. A study might compare outcomes for patients who chose different therapy options, using statistical techniques to account for pre-existing differences between groups.
Organizational psychology studies often employ quasi-experimental methods to investigate workplace phenomena. For instance, a researcher might study the effects of a new management style by comparing employee satisfaction and productivity before and after its implementation across different departments.
Social psychology field experiments frequently use quasi-experimental designs to study behavior in natural settings. A classic example is Piliavin’s subway experiment, which examined helping behavior by staging emergencies on subway trains. While not a true experiment, this study provided valuable insights into real-world prosocial behavior.
The Road Ahead: Future Directions and Concluding Thoughts
As we wrap up our journey through the world of quasi-experimental designs, it’s worth considering the future of this research method in psychology. The growing emphasis on experimental realism in psychology suggests that quasi-experiments will continue to play a crucial role in bridging the gap between laboratory findings and real-world applications.
One of the key challenges moving forward will be balancing internal and external validity. While quasi-experiments excel at capturing real-world complexity, they must also strive for rigorous control to establish causal relationships. Advances in statistical techniques and research design may help address some of the disadvantages of experiments in psychology , allowing for more robust quasi-experimental studies.
The future may also see an increased integration of quasi-experimental methods with other research approaches. For instance, combining quasi-experiments with qualitative methods could provide a more comprehensive understanding of psychological phenomena. Similarly, advances in technology may allow for more sophisticated data collection in natural settings, enhancing the power of quasi-experimental designs.
In conclusion, quasi-experimental designs represent a vital tool in the psychologist’s research toolkit. They offer a unique blend of real-world relevance and scientific rigor, allowing researchers to tackle questions that might otherwise remain unanswered. While they come with their own set of challenges, the insights gained from quasi-experiments have significantly advanced our understanding of human behavior and cognition.
As psychology continues to evolve, quasi-experimental designs will undoubtedly play a crucial role in shaping our understanding of the human mind and behavior. By embracing the complexity of real-world settings while striving for scientific rigor, these methods offer a compelling approach to psychological research. So the next time you encounter a quasi-experiment, remember: you’re witnessing the delicate dance between scientific inquiry and the messy realities of human life – and that’s where some of the most fascinating discoveries are made.
References:
1. Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin.
2. Reichardt, C. S. (2009). Quasi-experimental design. The SAGE handbook of quantitative methods in psychology, 46-71.
3. Christensen, L. B., Johnson, R. B., & Turner, L. A. (2014). Research methods, design, and analysis (12th ed.). Pearson.
4. Gribbons, B., & Herman, J. (1997). True and quasi-experimental designs. Practical Assessment, Research, and Evaluation, 5(1), 14.
5. Gopalan, M., Rosinger, K., & Ahn, J. B. (2020). Use of quasi-experimental research designs in education research: Growth, promise, and challenges. Review of Research in Education, 44(1), 218-243.
6. Thyer, B. A. (2012). Quasi-experimental research designs. Oxford University Press.
7. Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design and analysis issues for field settings. Houghton Mifflin.
8. Remler, D. K., & Van Ryzin, G. G. (2014). Research methods in practice: Strategies for description and causation. Sage Publications.
9. Handley, M. A., Lyles, C. R., McCulloch, C., & Cattamanchi, A. (2018). Selecting and improving quasi-experimental designs in effectiveness and implementation research. Annual Review of Public Health, 39, 5-25.
10. Dunning, T. (2012). Natural experiments in the social sciences: A design-based approach. Cambridge University Press.
Was this article helpful?
Would you like to add any comments (optional), leave a reply cancel reply.
Your email address will not be published. Required fields are marked *
Save my name, email, and website in this browser for the next time I comment.
Post Comment
Related Resources
Psychological Evaluation Examples: A Comprehensive Guide to Mental Health Assessments
Psychology Riddles: Unraveling the Mind’s Mysteries Through Puzzles
Range in Psychology: Definition, Applications, and Significance
Ordinal Scale in Psychology: Measuring and Analyzing Ranked Data
Quantitative Data in Psychology: Definition, Types, and Applications
Research Methods in Psychology: Essential Approaches for Scientific Inquiry
Psychological Evaluation Questions: A Comprehensive Guide to Mental Health Assessments
The Open Psychology Journal: Advancing Psychological Research Through Open Access
Psychology Trivia: Fascinating Facts and Mind-Bending Questions
Psychology Tools: Essential Resources for Mental Health Professionals and Individuals
Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.
7.3 Quasi-Experimental Research
Learning objectives.
- Explain what quasi-experimental research is and distinguish it clearly from both experimental and correlational research.
- Describe three different types of quasi-experimental research designs (nonequivalent groups, pretest-posttest, and interrupted time series) and identify examples of each one.
The prefix quasi means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979). Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem. But because participants are not randomly assigned—making it likely that there are other differences between conditions—quasi-experimental research does not eliminate the problem of confounding variables. In terms of internal validity, therefore, quasi-experiments are generally somewhere between correlational studies and true experiments.
Quasi-experiments are most likely to be conducted in field settings in which random assignment is difficult or impossible. They are often conducted to evaluate the effectiveness of a treatment—perhaps a type of psychotherapy or an educational intervention. There are many different kinds of quasi-experiments, but we will discuss just a few of the most common ones here.
Nonequivalent Groups Design
Recall that when participants in a between-subjects experiment are randomly assigned to conditions, the resulting groups are likely to be quite similar. In fact, researchers consider them to be equivalent. When participants are not randomly assigned to conditions, however, the resulting groups are likely to be dissimilar in some ways. For this reason, researchers consider them to be nonequivalent. A nonequivalent groups design , then, is a between-subjects design in which participants have not been randomly assigned to conditions.
Imagine, for example, a researcher who wants to evaluate a new method of teaching fractions to third graders. One way would be to conduct a study with a treatment group consisting of one class of third-grade students and a control group consisting of another class of third-grade students. This would be a nonequivalent groups design because the students are not randomly assigned to classes by the researcher, which means there could be important differences between them. For example, the parents of higher achieving or more motivated students might have been more likely to request that their children be assigned to Ms. Williams’s class. Or the principal might have assigned the “troublemakers” to Mr. Jones’s class because he is a stronger disciplinarian. Of course, the teachers’ styles, and even the classroom environments, might be very different and might cause different levels of achievement or motivation among the students. If at the end of the study there was a difference in the two classes’ knowledge of fractions, it might have been caused by the difference between the teaching methods—but it might have been caused by any of these confounding variables.
Of course, researchers using a nonequivalent groups design can take steps to ensure that their groups are as similar as possible. In the present example, the researcher could try to select two classes at the same school, where the students in the two classes have similar scores on a standardized math test and the teachers are the same sex, are close in age, and have similar teaching styles. Taking such steps would increase the internal validity of the study because it would eliminate some of the most important confounding variables. But without true random assignment of the students to conditions, there remains the possibility of other important confounding variables that the researcher was not able to control.
Pretest-Posttest Design
In a pretest-posttest design , the dependent variable is measured once before the treatment is implemented and once after it is implemented. Imagine, for example, a researcher who is interested in the effectiveness of an antidrug education program on elementary school students’ attitudes toward illegal drugs. The researcher could measure the attitudes of students at a particular elementary school during one week, implement the antidrug program during the next week, and finally, measure their attitudes again the following week. The pretest-posttest design is much like a within-subjects experiment in which each participant is tested first under the control condition and then under the treatment condition. It is unlike a within-subjects experiment, however, in that the order of conditions is not counterbalanced because it typically is not possible for a participant to be tested in the treatment condition first and then in an “untreated” control condition.
If the average posttest score is better than the average pretest score, then it makes sense to conclude that the treatment might be responsible for the improvement. Unfortunately, one often cannot conclude this with a high degree of certainty because there may be other explanations for why the posttest scores are better. One category of alternative explanations goes under the name of history . Other things might have happened between the pretest and the posttest. Perhaps an antidrug program aired on television and many of the students watched it, or perhaps a celebrity died of a drug overdose and many of the students heard about it. Another category of alternative explanations goes under the name of maturation . Participants might have changed between the pretest and the posttest in ways that they were going to anyway because they are growing and learning. If it were a yearlong program, participants might become less impulsive or better reasoners and this might be responsible for the change.
Another alternative explanation for a change in the dependent variable in a pretest-posttest design is regression to the mean . This refers to the statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion. For example, a bowler with a long-term average of 150 who suddenly bowls a 220 will almost certainly score lower in the next game. Her score will “regress” toward her mean score of 150. Regression to the mean can be a problem when participants are selected for further study because of their extreme scores. Imagine, for example, that only students who scored especially low on a test of fractions are given a special training program and then retested. Regression to the mean all but guarantees that their scores will be higher even if the training program has no effect. A closely related concept—and an extremely important one in psychological research—is spontaneous remission . This is the tendency for many medical and psychological problems to improve over time without any form of treatment. The common cold is a good example. If one were to measure symptom severity in 100 common cold sufferers today, give them a bowl of chicken soup every day, and then measure their symptom severity again in a week, they would probably be much improved. This does not mean that the chicken soup was responsible for the improvement, however, because they would have been much improved without any treatment at all. The same is true of many psychological problems. A group of severely depressed people today is likely to be less depressed on average in 6 months. In reviewing the results of several studies of treatments for depression, researchers Michael Posternak and Ivan Miller found that participants in waitlist control conditions improved an average of 10 to 15% before they received any treatment at all (Posternak & Miller, 2001). Thus one must generally be very cautious about inferring causality from pretest-posttest designs.
Does Psychotherapy Work?
Early studies on the effectiveness of psychotherapy tended to use pretest-posttest designs. In a classic 1952 article, researcher Hans Eysenck summarized the results of 24 such studies showing that about two thirds of patients improved between the pretest and the posttest (Eysenck, 1952). But Eysenck also compared these results with archival data from state hospital and insurance company records showing that similar patients recovered at about the same rate without receiving psychotherapy. This suggested to Eysenck that the improvement that patients showed in the pretest-posttest studies might be no more than spontaneous remission. Note that Eysenck did not conclude that psychotherapy was ineffective. He merely concluded that there was no evidence that it was, and he wrote of “the necessity of properly planned and executed experimental studies into this important field” (p. 323). You can read the entire article here:
http://psychclassics.yorku.ca/Eysenck/psychotherapy.htm
Fortunately, many other researchers took up Eysenck’s challenge, and by 1980 hundreds of experiments had been conducted in which participants were randomly assigned to treatment and control conditions, and the results were summarized in a classic book by Mary Lee Smith, Gene Glass, and Thomas Miller (Smith, Glass, & Miller, 1980). They found that overall psychotherapy was quite effective, with about 80% of treatment participants improving more than the average control participant. Subsequent research has focused more on the conditions under which different types of psychotherapy are more or less effective.
In a classic 1952 article, researcher Hans Eysenck pointed out the shortcomings of the simple pretest-posttest design for evaluating the effectiveness of psychotherapy.
Wikimedia Commons – CC BY-SA 3.0.
Interrupted Time Series Design
A variant of the pretest-posttest design is the interrupted time-series design . A time series is a set of measurements taken at intervals over a period of time. For example, a manufacturing company might measure its workers’ productivity each week for a year. In an interrupted time series-design, a time series like this is “interrupted” by a treatment. In one classic example, the treatment was the reduction of the work shifts in a factory from 10 hours to 8 hours (Cook & Campbell, 1979). Because productivity increased rather quickly after the shortening of the work shifts, and because it remained elevated for many months afterward, the researcher concluded that the shortening of the shifts caused the increase in productivity. Notice that the interrupted time-series design is like a pretest-posttest design in that it includes measurements of the dependent variable both before and after the treatment. It is unlike the pretest-posttest design, however, in that it includes multiple pretest and posttest measurements.
Figure 7.5 “A Hypothetical Interrupted Time-Series Design” shows data from a hypothetical interrupted time-series study. The dependent variable is the number of student absences per week in a research methods course. The treatment is that the instructor begins publicly taking attendance each day so that students know that the instructor is aware of who is present and who is absent. The top panel of Figure 7.5 “A Hypothetical Interrupted Time-Series Design” shows how the data might look if this treatment worked. There is a consistently high number of absences before the treatment, and there is an immediate and sustained drop in absences after the treatment. The bottom panel of Figure 7.5 “A Hypothetical Interrupted Time-Series Design” shows how the data might look if this treatment did not work. On average, the number of absences after the treatment is about the same as the number before. This figure also illustrates an advantage of the interrupted time-series design over a simpler pretest-posttest design. If there had been only one measurement of absences before the treatment at Week 7 and one afterward at Week 8, then it would have looked as though the treatment were responsible for the reduction. The multiple measurements both before and after the treatment suggest that the reduction between Weeks 7 and 8 is nothing more than normal week-to-week variation.
Figure 7.5 A Hypothetical Interrupted Time-Series Design
The top panel shows data that suggest that the treatment caused a reduction in absences. The bottom panel shows data that suggest that it did not.
Combination Designs
A type of quasi-experimental design that is generally better than either the nonequivalent groups design or the pretest-posttest design is one that combines elements of both. There is a treatment group that is given a pretest, receives a treatment, and then is given a posttest. But at the same time there is a control group that is given a pretest, does not receive the treatment, and then is given a posttest. The question, then, is not simply whether participants who receive the treatment improve but whether they improve more than participants who do not receive the treatment.
Imagine, for example, that students in one school are given a pretest on their attitudes toward drugs, then are exposed to an antidrug program, and finally are given a posttest. Students in a similar school are given the pretest, not exposed to an antidrug program, and finally are given a posttest. Again, if students in the treatment condition become more negative toward drugs, this could be an effect of the treatment, but it could also be a matter of history or maturation. If it really is an effect of the treatment, then students in the treatment condition should become more negative than students in the control condition. But if it is a matter of history (e.g., news of a celebrity drug overdose) or maturation (e.g., improved reasoning), then students in the two conditions would be likely to show similar amounts of change. This type of design does not completely eliminate the possibility of confounding variables, however. Something could occur at one of the schools but not the other (e.g., a student drug overdose), so students at the first school would be affected by it while students at the other school would not.
Finally, if participants in this kind of design are randomly assigned to conditions, it becomes a true experiment rather than a quasi experiment. In fact, it is the kind of experiment that Eysenck called for—and that has now been conducted many times—to demonstrate the effectiveness of psychotherapy.
Key Takeaways
- Quasi-experimental research involves the manipulation of an independent variable without the random assignment of participants to conditions or orders of conditions. Among the important types are nonequivalent groups designs, pretest-posttest, and interrupted time-series designs.
- Quasi-experimental research eliminates the directionality problem because it involves the manipulation of the independent variable. It does not eliminate the problem of confounding variables, however, because it does not involve random assignment to conditions. For these reasons, quasi-experimental research is generally higher in internal validity than correlational studies but lower than true experiments.
- Practice: Imagine that two college professors decide to test the effect of giving daily quizzes on student performance in a statistics course. They decide that Professor A will give quizzes but Professor B will not. They will then compare the performance of students in their two sections on a common final exam. List five other variables that might differ between the two sections that could affect the results.
Discussion: Imagine that a group of obese children is recruited for a study in which their weight is measured, then they participate for 3 months in a program that encourages them to be more active, and finally their weight is measured again. Explain how each of the following might affect the results:
- regression to the mean
- spontaneous remission
Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin.
Eysenck, H. J. (1952). The effects of psychotherapy: An evaluation. Journal of Consulting Psychology, 16 , 319–324.
Posternak, M. A., & Miller, I. (2001). Untreated short-term course of major depression: A meta-analysis of studies using outcomes from studies using wait-list control groups. Journal of Affective Disorders, 66 , 139–146.
Smith, M. L., Glass, G. V., & Miller, T. I. (1980). The benefits of psychotherapy . Baltimore, MD: Johns Hopkins University Press.
Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.
Quasi-Experiment: Understand What It Is, Types & Examples
Discover the concept of quasi-experiment, its various types, real-world examples, and how QuestionPro aids in conducting these studies.
Quasi-experimental research designs have gained significant recognition in the scientific community due to their unique ability to study cause-and-effect relationships in real-world settings. Unlike true experiments, quasi-experiment lack random assignment of participants to groups, making them more practical and ethical in certain situations. In this article, we will delve into the concept, applications, and advantages of quasi-experiments, shedding light on their relevance and significance in the scientific realm.
What Is A Quasi-Experiment Research Design?
Quasi-experimental research designs are research methodologies that resemble true experiments but lack the randomized assignment of participants to groups. In a true experiment, researchers randomly assign participants to either an experimental group or a control group, allowing for a comparison of the effects of an independent variable on the dependent variable. However, in quasi-experiments, this random assignment is often not possible or ethically permissible, leading to the adoption of alternative strategies.
Types Of Quasi-Experimental Designs
There are several types of quasi-experiment designs to study causal relationships in specific contexts. Some common types include:
Non-Equivalent Groups Design
This design involves selecting pre-existing groups that differ in some key characteristics and comparing their responses to the independent variable. Although the researcher does not randomly assign the groups, they can still examine the effects of the independent variable.
Regression Discontinuity
This design utilizes a cutoff point or threshold to determine which participants receive the treatment or intervention. It assumes that participants on either side of the cutoff are similar in all other aspects, except for their exposure to the independent variable.
Interrupted Time Series Design
This design involves measuring the dependent variable multiple times before and after the introduction of an intervention or treatment. By comparing the trends in the dependent variable, researchers can infer the impact of the intervention.
Natural Experiments
Natural experiments take advantage of naturally occurring events or circumstances that mimic the random assignment found in true experiments. Participants are exposed to different conditions in situations identified by researchers without any manipulation from them.
Application of the Quasi-Experiment Design
Quasi-experimental research designs find applications in various fields, ranging from education to public health and beyond. One significant advantage of quasi-experiments is their feasibility in real-world settings where randomization is not always possible or ethical.
Ethical Reasons
Ethical concerns often arise in research when randomizing participants to different groups could potentially deny individuals access to beneficial treatments or interventions. In such cases, quasi-experimental designs provide an ethical alternative, allowing researchers to study the impact of interventions without depriving anyone of potential benefits.
Examples Of Quasi-Experimental Design
Let’s explore a few examples of quasi-experimental designs to understand their application in different contexts.
Design Of Non-Equivalent Groups
Determining the effectiveness of math apps in supplementing math classes.
Imagine a study aiming to determine the effectiveness of math apps in supplementing traditional math classes in a school. Randomly assigning students to different groups might be impractical or disrupt the existing classroom structure. Instead, researchers can select two comparable classes, one receiving the math app intervention and the other continuing with traditional teaching methods. By comparing the performance of the two groups, researchers can draw conclusions about the app’s effectiveness.
To conduct a quasi-experiment study like the one mentioned above, researchers can utilize QuestionPro , an advanced research platform that offers comprehensive survey and data analysis tools. With QuestionPro, researchers can design surveys to collect data, analyze results, and gain valuable insights for their quasi-experimental research.
How QuestionPro Helps In Quasi-Experimental Research?
QuestionPro’s powerful features, such as random assignment of participants, survey branching, and data visualization, enable researchers to efficiently conduct and analyze quasi-experimental studies. The platform provides a user-friendly interface and robust reporting capabilities, empowering researchers to gather data, explore relationships, and draw meaningful conclusions.
In some cases, researchers can leverage natural experiments to examine causal relationships.
Determining The Effectiveness Of Teaching Modern Leadership Techniques In Start-Up Businesses
Consider a study evaluating the effectiveness of teaching modern leadership techniques in start-up businesses. Instead of artificially assigning businesses to different groups, researchers can observe those that naturally adopt modern leadership techniques and compare their outcomes to those of businesses that have not implemented such practices.
Advantages and Disadvantages Of The Quasi-Experimental Design
Quasi-experimental designs offer several advantages over true experiments, making them valuable tools in research:
- Scope of the research : Quasi-experiments allow researchers to study cause-and-effect relationships in real-world settings, providing valuable insights into complex phenomena that may be challenging to replicate in a controlled laboratory environment.
- Regression Discontinuity : Researchers can utilize regression discontinuity to evaluate the effects of interventions or treatments when random assignment is not feasible. This design leverages existing data and naturally occurring thresholds to draw causal inferences.
Disadvantage
Lack of random assignment : Quasi-experimental designs lack the random assignment of participants, which introduces the possibility of confounding variables affecting the results. Researchers must carefully consider potential alternative explanations for observed effects.
What Are The Different Quasi-Experimental Study Designs?
Quasi-experimental designs encompass various approaches, including nonequivalent group designs, interrupted time series designs, and natural experiments. Each design offers unique advantages and limitations, providing researchers with versatile tools to explore causal relationships in different contexts.
Example Of The Natural Experiment Approach
Researchers interested in studying the impact of a public health campaign aimed at reducing smoking rates may take advantage of a natural experiment. By comparing smoking rates in a region that has implemented the campaign to a similar region that has not, researchers can examine the effectiveness of the intervention.
Differences Between Quasi-Experiments And True Experiments
Quasi-experiments and true experiments differ primarily in their ability to randomly assign participants to groups. While true experiments provide a higher level of control, quasi-experiments offer practical and ethical alternatives in situations where randomization is not feasible or desirable.
Example Comparing A True Experiment And Quasi-Experiment
In a true experiment investigating the effects of a new medication on a specific condition, researchers would randomly assign participants to either the experimental group, which receives the medication, or the control group, which receives a placebo. In a quasi-experiment, researchers might instead compare patients who voluntarily choose to take the medication to those who do not, examining the differences in outcomes between the two groups.
Quasi-Experiment: A Quick Wrap-Up
Quasi-experimental research designs play a vital role in scientific inquiry by allowing researchers to investigate cause-and-effect relationships in real-world settings. These designs offer practical and ethical alternatives to true experiments, making them valuable tools in various fields of study. With their versatility and applicability, quasi-experimental designs continue to contribute to our understanding of complex phenomena.
Turn Your Data Into Easy-To-Understand And Dynamic Stories
When you wish to explain any complex data, it’s always advised to break it down into simpler visuals or stories. This is where Mind the Graph comes in. It is a platform that helps researchers and scientists to turn their data into easy-to-understand and dynamic stories, helping the audience understand the concepts better. Sign Up now to explore the library of scientific infographics.
Subscribe to our newsletter
Exclusive high quality content about effective visual communication in science.
Sign Up for Free
Try the best infographic maker and promote your research with scientifically-accurate beautiful figures
no credit card required
Content tags
Definition of Quasi Experimental Design
Quasi Experimental Design is a research method used in social sciences and other fields to study cause-and-effect relationships between different variables. It is called “quasi” experimental because it resembles an experimental design but lacks some key elements, such as random assignment.
Characteristics of Quasi Experimental Design
- Comparison Groups: Quasi experimental design involves at least two groups that are compared to determine the impact of an independent variable on the dependent variable. These groups can be pre-existing or created by the researchers, but they are not randomly assigned.
- Independent Variable: The researcher manipulates or selects an independent variable to observe its effect on the dependent variable.
- Dependent Variable: The variable that is measured or observed to determine changes or differences caused by the independent variable.
- Lack of Randomization: Unlike experimental designs, quasi experimental designs do not involve random assignment of participants to groups. Instead, participants are assigned based on criteria such as convenience, availability, or pre-existing characteristics.
- Real-World Settings: Quasi experimental designs are often conducted in real-world settings, such as schools, communities, or organizations, where it may be difficult or impractical to control all variables.
- Data Collection: Researchers collect data using various methods, such as surveys, observations, or existing records, to evaluate the impact of the independent variable.
- Data Analysis: Statistical techniques, such as regression analysis or analysis of variance (ANOVA), are commonly employed to analyze the data and determine the relationship between the independent and dependent variables.
Advantages and Limitations of Quasi Experimental Design
Advantages:
- Allows researchers to study cause-and-effect relationships that may be unethical or impractical to investigate through experimental designs.
- Provides a middle ground between experimental and purely observational designs.
- Offers high external validity as it can be conducted in real-world settings.
Limitations:
- Lack of randomization limits the ability to establish strong causal relationships.
- Potential for selection bias, as participants are not randomly assigned.
- Difficulty in ruling out alternative explanations for observed results.
- May be less precise due to the absence of control over all variables.
Have a language expert improve your writing
Run a free plagiarism check in 10 minutes, automatically generate references for free.
- Knowledge Base
- Methodology
- Quasi-Experimental Design | Definition, Types & Examples
Quasi-Experimental Design | Definition, Types & Examples
Published on 11 April 2022 by Lauren Thomas . Revised on 22 January 2024.
Like a true experiment , a quasi-experimental design aims to establish a cause-and-effect relationship between an independent and dependent variable .
However, unlike a true experiment, a quasi-experiment does not rely on random assignment . Instead, subjects are assigned to groups based on non-random criteria.
Quasi-experimental design is a useful tool in situations where true experiments cannot be used for ethical or practical reasons.
Table of contents
Differences between quasi-experiments and true experiments, types of quasi-experimental designs, when to use quasi-experimental design, advantages and disadvantages, frequently asked questions about quasi-experimental design.
There are several common differences between true and quasi-experimental designs.
Example of a true experiment vs a quasi-experiment
However, for ethical reasons, the directors of the mental health clinic may not give you permission to randomly assign their patients to treatments. In this case, you cannot run a true experiment.
Instead, you can use a quasi-experimental design.
You can use these pre-existing groups to study the symptom progression of the patients treated with the new therapy versus those receiving the standard course of treatment.
Prevent plagiarism, run a free check.
Many types of quasi-experimental designs exist. Here we explain three of the most common types: nonequivalent groups design, regression discontinuity, and natural experiments.
Nonequivalent groups design
In nonequivalent group design, the researcher chooses existing groups that appear similar, but where only one of the groups experiences the treatment.
In a true experiment with random assignment , the control and treatment groups are considered equivalent in every way other than the treatment. But in a quasi-experiment where the groups are not random, they may differ in other ways – they are nonequivalent groups .
When using this kind of design, researchers try to account for any confounding variables by controlling for them in their analysis or by choosing groups that are as similar as possible.
This is the most common type of quasi-experimental design.
Regression discontinuity
Many potential treatments that researchers wish to study are designed around an essentially arbitrary cutoff, where those above the threshold receive the treatment and those below it do not.
Near this threshold, the differences between the two groups are often so minimal as to be nearly nonexistent. Therefore, researchers can use individuals just below the threshold as a control group and those just above as a treatment group.
However, since the exact cutoff score is arbitrary, the students near the threshold – those who just barely pass the exam and those who fail by a very small margin – tend to be very similar, with the small differences in their scores mostly due to random chance. You can therefore conclude that any outcome differences must come from the school they attended.
Natural experiments
In both laboratory and field experiments, researchers normally control which group the subjects are assigned to. In a natural experiment, an external event or situation (‘nature’) results in the random or random-like assignment of subjects to the treatment group.
Even though some use random assignments, natural experiments are not considered to be true experiments because they are observational in nature.
Although the researchers have no control over the independent variable, they can exploit this event after the fact to study the effect of the treatment.
However, as they could not afford to cover everyone who they deemed eligible for the program, they instead allocated spots in the program based on a random lottery.
Although true experiments have higher internal validity , you might choose to use a quasi-experimental design for ethical or practical reasons.
Sometimes it would be unethical to provide or withhold a treatment on a random basis, so a true experiment is not feasible. In this case, a quasi-experiment can allow you to study the same causal relationship without the ethical issues.
The Oregon Health Study is a good example. It would be unethical to randomly provide some people with health insurance but purposely prevent others from receiving it solely for the purposes of research.
However, since the Oregon government faced financial constraints and decided to provide health insurance via lottery, studying this event after the fact is a much more ethical approach to studying the same problem.
True experimental design may be infeasible to implement or simply too expensive, particularly for researchers without access to large funding streams.
At other times, too much work is involved in recruiting and properly designing an experimental intervention for an adequate number of subjects to justify a true experiment.
In either case, quasi-experimental designs allow you to study the question by taking advantage of data that has previously been paid for or collected by others (often the government).
Quasi-experimental designs have various pros and cons compared to other types of studies.
- Higher external validity than most true experiments, because they often involve real-world interventions instead of artificial laboratory settings.
- Higher internal validity than other non-experimental types of research, because they allow you to better control for confounding variables than other types of studies do.
- Lower internal validity than true experiments – without randomisation, it can be difficult to verify that all confounding variables have been accounted for.
- The use of retrospective data that has already been collected for other purposes can be inaccurate, incomplete or difficult to access.
A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference between this and a true experiment is that the groups are not randomly assigned.
In experimental research, random assignment is a way of placing participants from your sample into different groups using randomisation. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.
Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .
Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity as they can use real-world interventions instead of artificial laboratory settings.
Cite this Scribbr article
If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.
Thomas, L. (2024, January 22). Quasi-Experimental Design | Definition, Types & Examples. Scribbr. Retrieved 5 November 2024, from https://www.scribbr.co.uk/research-methods/quasi-experimental/
Is this article helpful?
Lauren Thomas
Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.
Chapter 7: Nonexperimental Research
Quasi-Experimental Research
Learning Objectives
- Explain what quasi-experimental research is and distinguish it clearly from both experimental and correlational research.
- Describe three different types of quasi-experimental research designs (nonequivalent groups, pretest-posttest, and interrupted time series) and identify examples of each one.
The prefix quasi means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979). [1] Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem. But because participants are not randomly assigned—making it likely that there are other differences between conditions—quasi-experimental research does not eliminate the problem of confounding variables. In terms of internal validity, therefore, quasi-experiments are generally somewhere between correlational studies and true experiments.
Quasi-experiments are most likely to be conducted in field settings in which random assignment is difficult or impossible. They are often conducted to evaluate the effectiveness of a treatment—perhaps a type of psychotherapy or an educational intervention. There are many different kinds of quasi-experiments, but we will discuss just a few of the most common ones here.
Nonequivalent Groups Design
Recall that when participants in a between-subjects experiment are randomly assigned to conditions, the resulting groups are likely to be quite similar. In fact, researchers consider them to be equivalent. When participants are not randomly assigned to conditions, however, the resulting groups are likely to be dissimilar in some ways. For this reason, researchers consider them to be nonequivalent. A nonequivalent groups design , then, is a between-subjects design in which participants have not been randomly assigned to conditions.
Imagine, for example, a researcher who wants to evaluate a new method of teaching fractions to third graders. One way would be to conduct a study with a treatment group consisting of one class of third-grade students and a control group consisting of another class of third-grade students. This design would be a nonequivalent groups design because the students are not randomly assigned to classes by the researcher, which means there could be important differences between them. For example, the parents of higher achieving or more motivated students might have been more likely to request that their children be assigned to Ms. Williams’s class. Or the principal might have assigned the “troublemakers” to Mr. Jones’s class because he is a stronger disciplinarian. Of course, the teachers’ styles, and even the classroom environments, might be very different and might cause different levels of achievement or motivation among the students. If at the end of the study there was a difference in the two classes’ knowledge of fractions, it might have been caused by the difference between the teaching methods—but it might have been caused by any of these confounding variables.
Of course, researchers using a nonequivalent groups design can take steps to ensure that their groups are as similar as possible. In the present example, the researcher could try to select two classes at the same school, where the students in the two classes have similar scores on a standardized math test and the teachers are the same sex, are close in age, and have similar teaching styles. Taking such steps would increase the internal validity of the study because it would eliminate some of the most important confounding variables. But without true random assignment of the students to conditions, there remains the possibility of other important confounding variables that the researcher was not able to control.
Pretest-Posttest Design
In a pretest-posttest design , the dependent variable is measured once before the treatment is implemented and once after it is implemented. Imagine, for example, a researcher who is interested in the effectiveness of an antidrug education program on elementary school students’ attitudes toward illegal drugs. The researcher could measure the attitudes of students at a particular elementary school during one week, implement the antidrug program during the next week, and finally, measure their attitudes again the following week. The pretest-posttest design is much like a within-subjects experiment in which each participant is tested first under the control condition and then under the treatment condition. It is unlike a within-subjects experiment, however, in that the order of conditions is not counterbalanced because it typically is not possible for a participant to be tested in the treatment condition first and then in an “untreated” control condition.
If the average posttest score is better than the average pretest score, then it makes sense to conclude that the treatment might be responsible for the improvement. Unfortunately, one often cannot conclude this with a high degree of certainty because there may be other explanations for why the posttest scores are better. One category of alternative explanations goes under the name of history . Other things might have happened between the pretest and the posttest. Perhaps an antidrug program aired on television and many of the students watched it, or perhaps a celebrity died of a drug overdose and many of the students heard about it. Another category of alternative explanations goes under the name of maturation . Participants might have changed between the pretest and the posttest in ways that they were going to anyway because they are growing and learning. If it were a yearlong program, participants might become less impulsive or better reasoners and this might be responsible for the change.
Another alternative explanation for a change in the dependent variable in a pretest-posttest design is regression to the mean . This refers to the statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion. For example, a bowler with a long-term average of 150 who suddenly bowls a 220 will almost certainly score lower in the next game. Her score will “regress” toward her mean score of 150. Regression to the mean can be a problem when participants are selected for further study because of their extreme scores. Imagine, for example, that only students who scored especially low on a test of fractions are given a special training program and then retested. Regression to the mean all but guarantees that their scores will be higher even if the training program has no effect. A closely related concept—and an extremely important one in psychological research—is spontaneous remission . This is the tendency for many medical and psychological problems to improve over time without any form of treatment. The common cold is a good example. If one were to measure symptom severity in 100 common cold sufferers today, give them a bowl of chicken soup every day, and then measure their symptom severity again in a week, they would probably be much improved. This does not mean that the chicken soup was responsible for the improvement, however, because they would have been much improved without any treatment at all. The same is true of many psychological problems. A group of severely depressed people today is likely to be less depressed on average in 6 months. In reviewing the results of several studies of treatments for depression, researchers Michael Posternak and Ivan Miller found that participants in waitlist control conditions improved an average of 10 to 15% before they received any treatment at all (Posternak & Miller, 2001) [2] . Thus one must generally be very cautious about inferring causality from pretest-posttest designs.
Does Psychotherapy Work?
Early studies on the effectiveness of psychotherapy tended to use pretest-posttest designs. In a classic 1952 article, researcher Hans Eysenck summarized the results of 24 such studies showing that about two thirds of patients improved between the pretest and the posttest (Eysenck, 1952) [3] . But Eysenck also compared these results with archival data from state hospital and insurance company records showing that similar patients recovered at about the same rate without receiving psychotherapy. This parallel suggested to Eysenck that the improvement that patients showed in the pretest-posttest studies might be no more than spontaneous remission. Note that Eysenck did not conclude that psychotherapy was ineffective. He merely concluded that there was no evidence that it was, and he wrote of “the necessity of properly planned and executed experimental studies into this important field” (p. 323). You can read the entire article here: Classics in the History of Psychology .
Fortunately, many other researchers took up Eysenck’s challenge, and by 1980 hundreds of experiments had been conducted in which participants were randomly assigned to treatment and control conditions, and the results were summarized in a classic book by Mary Lee Smith, Gene Glass, and Thomas Miller (Smith, Glass, & Miller, 1980) [4] . They found that overall psychotherapy was quite effective, with about 80% of treatment participants improving more than the average control participant. Subsequent research has focused more on the conditions under which different types of psychotherapy are more or less effective.
Interrupted Time Series Design
A variant of the pretest-posttest design is the interrupted time-series design . A time series is a set of measurements taken at intervals over a period of time. For example, a manufacturing company might measure its workers’ productivity each week for a year. In an interrupted time series-design, a time series like this one is “interrupted” by a treatment. In one classic example, the treatment was the reduction of the work shifts in a factory from 10 hours to 8 hours (Cook & Campbell, 1979) [5] . Because productivity increased rather quickly after the shortening of the work shifts, and because it remained elevated for many months afterward, the researcher concluded that the shortening of the shifts caused the increase in productivity. Notice that the interrupted time-series design is like a pretest-posttest design in that it includes measurements of the dependent variable both before and after the treatment. It is unlike the pretest-posttest design, however, in that it includes multiple pretest and posttest measurements.
Figure 7.3 shows data from a hypothetical interrupted time-series study. The dependent variable is the number of student absences per week in a research methods course. The treatment is that the instructor begins publicly taking attendance each day so that students know that the instructor is aware of who is present and who is absent. The top panel of Figure 7.3 shows how the data might look if this treatment worked. There is a consistently high number of absences before the treatment, and there is an immediate and sustained drop in absences after the treatment. The bottom panel of Figure 7.3 shows how the data might look if this treatment did not work. On average, the number of absences after the treatment is about the same as the number before. This figure also illustrates an advantage of the interrupted time-series design over a simpler pretest-posttest design. If there had been only one measurement of absences before the treatment at Week 7 and one afterward at Week 8, then it would have looked as though the treatment were responsible for the reduction. The multiple measurements both before and after the treatment suggest that the reduction between Weeks 7 and 8 is nothing more than normal week-to-week variation.
Combination Designs
A type of quasi-experimental design that is generally better than either the nonequivalent groups design or the pretest-posttest design is one that combines elements of both. There is a treatment group that is given a pretest, receives a treatment, and then is given a posttest. But at the same time there is a control group that is given a pretest, does not receive the treatment, and then is given a posttest. The question, then, is not simply whether participants who receive the treatment improve but whether they improve more than participants who do not receive the treatment.
Imagine, for example, that students in one school are given a pretest on their attitudes toward drugs, then are exposed to an antidrug program, and finally are given a posttest. Students in a similar school are given the pretest, not exposed to an antidrug program, and finally are given a posttest. Again, if students in the treatment condition become more negative toward drugs, this change in attitude could be an effect of the treatment, but it could also be a matter of history or maturation. If it really is an effect of the treatment, then students in the treatment condition should become more negative than students in the control condition. But if it is a matter of history (e.g., news of a celebrity drug overdose) or maturation (e.g., improved reasoning), then students in the two conditions would be likely to show similar amounts of change. This type of design does not completely eliminate the possibility of confounding variables, however. Something could occur at one of the schools but not the other (e.g., a student drug overdose), so students at the first school would be affected by it while students at the other school would not.
Finally, if participants in this kind of design are randomly assigned to conditions, it becomes a true experiment rather than a quasi experiment. In fact, it is the kind of experiment that Eysenck called for—and that has now been conducted many times—to demonstrate the effectiveness of psychotherapy.
Key Takeaways
- Quasi-experimental research involves the manipulation of an independent variable without the random assignment of participants to conditions or orders of conditions. Among the important types are nonequivalent groups designs, pretest-posttest, and interrupted time-series designs.
- Quasi-experimental research eliminates the directionality problem because it involves the manipulation of the independent variable. It does not eliminate the problem of confounding variables, however, because it does not involve random assignment to conditions. For these reasons, quasi-experimental research is generally higher in internal validity than correlational studies but lower than true experiments.
- Practice: Imagine that two professors decide to test the effect of giving daily quizzes on student performance in a statistics course. They decide that Professor A will give quizzes but Professor B will not. They will then compare the performance of students in their two sections on a common final exam. List five other variables that might differ between the two sections that could affect the results.
- regression to the mean
- spontaneous remission
Image Descriptions
Figure 7.3 image description: Two line graphs charting the number of absences per week over 14 weeks. The first 7 weeks are without treatment and the last 7 weeks are with treatment. In the first line graph, there are between 4 to 8 absences each week. After the treatment, the absences drop to 0 to 3 each week, which suggests the treatment worked. In the second line graph, there is no noticeable change in the number of absences per week after the treatment, which suggests the treatment did not work. [Return to Figure 7.3]
- Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin. ↵
- Posternak, M. A., & Miller, I. (2001). Untreated short-term course of major depression: A meta-analysis of studies using outcomes from studies using wait-list control groups. Journal of Affective Disorders, 66 , 139–146. ↵
- Eysenck, H. J. (1952). The effects of psychotherapy: An evaluation. Journal of Consulting Psychology, 16 , 319–324. ↵
- Smith, M. L., Glass, G. V., & Miller, T. I. (1980). The benefits of psychotherapy . Baltimore, MD: Johns Hopkins University Press. ↵
A between-subjects design in which participants have not been randomly assigned to conditions.
The dependent variable is measured once before the treatment is implemented and once after it is implemented.
A category of alternative explanations for differences between scores such as events that happened between the pretest and posttest, unrelated to the study.
An alternative explanation that refers to how the participants might have changed between the pretest and posttest in ways that they were going to anyway because they are growing and learning.
The statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion.
The tendency for many medical and psychological problems to improve over time without any form of treatment.
A set of measurements taken at intervals over a period of time that are interrupted by a treatment.
Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.
Share This Book
Reference Library
Collections
- See what's new
- All Resources
- Student Resources
- Assessment Resources
- Teaching Resources
- CPD Courses
- Livestreams
Study notes, videos, interactive activities and more!
Psychology news, insights and enrichment
Currated collections of free resources
Browse resources by topic
- All Psychology Resources
Resource Selections
Currated lists of resources
Quasi Experiment
Quasi-experiments contain a naturally occurring IV. However, in a quasi-experiment the naturally occurring IV is a difference between people that already exists (i.e. gender, age). The researcher examines the effect of this variable on the dependent variable (DV).
- Share on Facebook
- Share on Twitter
- Share by Email
Types of Experiment: Overview
Study Notes
Research Methods: MCQ Revision Test 1 for AQA A Level Psychology
Topic Videos
Example Answers for Research Methods: A Level Psychology, Paper 2, June 2018 (AQA)
Exam Support
A Level Psychology Topic Quiz - Research Methods
Quizzes & Activities
Our subjects
- › Criminology
- › Economics
- › Geography
- › Health & Social Care
- › Psychology
- › Sociology
- › Teaching & learning resources
- › Student revision workshops
- › Online student courses
- › CPD for teachers
- › Livestreams
- › Teaching jobs
Boston House, 214 High Street, Boston Spa, West Yorkshire, LS23 6AD Tel: 01937 848885
- › Contact us
- › Terms of use
- › Privacy & cookies
© 2002-2024 Tutor2u Limited. Company Reg no: 04489574. VAT reg no 816865400.
Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.
Quasi-Experimental Research
Learning objectives.
- Explain what quasi-experimental research is and distinguish it clearly from both experimental and correlational research.
- Describe three different types of quasi-experimental research designs (nonequivalent groups, pretest-posttest, and interrupted time series) and identify examples of each one.
The prefix quasi means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979) [1] . Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem. But because participants are not randomly assigned—making it likely that there are other differences between conditions—quasi-experimental research does not eliminate the problem of confounding variables. In terms of internal validity, therefore, quasi-experiments are generally somewhere between correlational studies and true experiments.
Quasi-experiments are most likely to be conducted in field settings in which random assignment is difficult or impossible. They are often conducted to evaluate the effectiveness of a treatment—perhaps a type of psychotherapy or an educational intervention. There are many different kinds of quasi-experiments, but we will discuss just a few of the most common ones here.
Nonequivalent Groups Design
Recall that when participants in a between-subjects experiment are randomly assigned to conditions, the resulting groups are likely to be quite similar. In fact, researchers consider them to be equivalent. When participants are not randomly assigned to conditions, however, the resulting groups are likely to be dissimilar in some ways. For this reason, researchers consider them to be nonequivalent. A nonequivalent groups design , then, is a between-subjects design in which participants have not been randomly assigned to conditions.
Imagine, for example, a researcher who wants to evaluate a new method of teaching fractions to third graders. One way would be to conduct a study with a treatment group consisting of one class of third-grade students and a control group consisting of another class of third-grade students. This design would be a nonequivalent groups design because the students are not randomly assigned to classes by the researcher, which means there could be important differences between them. For example, the parents of higher achieving or more motivated students might have been more likely to request that their children be assigned to Ms. Williams’s class. Or the principal might have assigned the “troublemakers” to Mr. Jones’s class because he is a stronger disciplinarian. Of course, the teachers’ styles, and even the classroom environments, might be very different and might cause different levels of achievement or motivation among the students. If at the end of the study there was a difference in the two classes’ knowledge of fractions, it might have been caused by the difference between the teaching methods—but it might have been caused by any of these confounding variables.
Of course, researchers using a nonequivalent groups design can take steps to ensure that their groups are as similar as possible. In the present example, the researcher could try to select two classes at the same school, where the students in the two classes have similar scores on a standardized math test and the teachers are the same sex, are close in age, and have similar teaching styles. Taking such steps would increase the internal validity of the study because it would eliminate some of the most important confounding variables. But without true random assignment of the students to conditions, there remains the possibility of other important confounding variables that the researcher was not able to control.
Pretest-Posttest Design
In a pretest-posttest design , the dependent variable is measured once before the treatment is implemented and once after it is implemented. Imagine, for example, a researcher who is interested in the effectiveness of an antidrug education program on elementary school students’ attitudes toward illegal drugs. The researcher could measure the attitudes of students at a particular elementary school during one week, implement the antidrug program during the next week, and finally, measure their attitudes again the following week. The pretest-posttest design is much like a within-subjects experiment in which each participant is tested first under the control condition and then under the treatment condition. It is unlike a within-subjects experiment, however, in that the order of conditions is not counterbalanced because it typically is not possible for a participant to be tested in the treatment condition first and then in an “untreated” control condition.
If the average posttest score is better than the average pretest score, then it makes sense to conclude that the treatment might be responsible for the improvement. Unfortunately, one often cannot conclude this with a high degree of certainty because there may be other explanations for why the posttest scores are better. One category of alternative explanations goes under the name of history . Other things might have happened between the pretest and the posttest. Perhaps an antidrug program aired on television and many of the students watched it, or perhaps a celebrity died of a drug overdose and many of the students heard about it. Another category of alternative explanations goes under the name of maturation . Participants might have changed between the pretest and the posttest in ways that they were going to anyway because they are growing and learning. If it were a yearlong program, participants might become less impulsive or better reasoners and this might be responsible for the change.
Another alternative explanation for a change in the dependent variable in a pretest-posttest design is regression to the mean . This refers to the statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion. For example, a bowler with a long-term average of 150 who suddenly bowls a 220 will almost certainly score lower in the next game. Her score will “regress” toward her mean score of 150. Regression to the mean can be a problem when participants are selected for further study because of their extreme scores. Imagine, for example, that only students who scored especially low on a test of fractions are given a special training program and then retested. Regression to the mean all but guarantees that their scores will be higher even if the training program has no effect. A closely related concept—and an extremely important one in psychological research—is spontaneous remission . This is the tendency for many medical and psychological problems to improve over time without any form of treatment. The common cold is a good example. If one were to measure symptom severity in 100 common cold sufferers today, give them a bowl of chicken soup every day, and then measure their symptom severity again in a week, they would probably be much improved. This does not mean that the chicken soup was responsible for the improvement, however, because they would have been much improved without any treatment at all. The same is true of many psychological problems. A group of severely depressed people today is likely to be less depressed on average in 6 months. In reviewing the results of several studies of treatments for depression, researchers Michael Posternak and Ivan Miller found that participants in waitlist control conditions improved an average of 10 to 15% before they received any treatment at all (Posternak & Miller, 2001) [2] . Thus one must generally be very cautious about inferring causality from pretest-posttest designs.
Does Psychotherapy Work?
Early studies on the effectiveness of psychotherapy tended to use pretest-posttest designs. In a classic 1952 article, researcher Hans Eysenck summarized the results of 24 such studies showing that about two thirds of patients improved between the pretest and the posttest (Eysenck, 1952) [3] . But Eysenck also compared these results with archival data from state hospital and insurance company records showing that similar patients recovered at about the same rate without receiving psychotherapy. This parallel suggested to Eysenck that the improvement that patients showed in the pretest-posttest studies might be no more than spontaneous remission. Note that Eysenck did not conclude that psychotherapy was ineffective. He merely concluded that there was no evidence that it was, and he wrote of “the necessity of properly planned and executed experimental studies into this important field” (p. 323). You can read the entire article here:
The Effects of Psychotherapy: An Evaluation
Fortunately, many other researchers took up Eysenck’s challenge, and by 1980 hundreds of experiments had been conducted in which participants were randomly assigned to treatment and control conditions, and the results were summarized in a classic book by Mary Lee Smith, Gene Glass, and Thomas Miller (Smith, Glass, & Miller, 1980) [4] . They found that overall psychotherapy was quite effective, with about 80% of treatment participants improving more than the average control participant. Subsequent research has focused more on the conditions under which different types of psychotherapy are more or less effective.
Interrupted Time Series Design
A variant of the pretest-posttest design is the interrupted time-series design . A time series is a set of measurements taken at intervals over a period of time. For example, a manufacturing company might measure its workers’ productivity each week for a year. In an interrupted time series-design, a time series like this one is “interrupted” by a treatment. In one classic example, the treatment was the reduction of the work shifts in a factory from 10 hours to 8 hours (Cook & Campbell, 1979) [5] . Because productivity increased rather quickly after the shortening of the work shifts, and because it remained elevated for many months afterward, the researcher concluded that the shortening of the shifts caused the increase in productivity. Notice that the interrupted time-series design is like a pretest-posttest design in that it includes measurements of the dependent variable both before and after the treatment. It is unlike the pretest-posttest design, however, in that it includes multiple pretest and posttest measurements.
Figure 7.3 shows data from a hypothetical interrupted time-series study. The dependent variable is the number of student absences per week in a research methods course. The treatment is that the instructor begins publicly taking attendance each day so that students know that the instructor is aware of who is present and who is absent. The top panel of Figure 7.3 shows how the data might look if this treatment worked. There is a consistently high number of absences before the treatment, and there is an immediate and sustained drop in absences after the treatment. The bottom panel of Figure 7.3 shows how the data might look if this treatment did not work. On average, the number of absences after the treatment is about the same as the number before. This figure also illustrates an advantage of the interrupted time-series design over a simpler pretest-posttest design. If there had been only one measurement of absences before the treatment at Week 7 and one afterward at Week 8, then it would have looked as though the treatment were responsible for the reduction. The multiple measurements both before and after the treatment suggest that the reduction between Weeks 7 and 8 is nothing more than normal week-to-week variation.
Combination Designs
A type of quasi-experimental design that is generally better than either the nonequivalent groups design or the pretest-posttest design is one that combines elements of both. There is a treatment group that is given a pretest, receives a treatment, and then is given a posttest. But at the same time there is a control group that is given a pretest, does not receive the treatment, and then is given a posttest. The question, then, is not simply whether participants who receive the treatment improve but whether they improve more than participants who do not receive the treatment.
Imagine, for example, that students in one school are given a pretest on their attitudes toward drugs, then are exposed to an antidrug program, and finally are given a posttest. Students in a similar school are given the pretest, not exposed to an antidrug program, and finally are given a posttest. Again, if students in the treatment condition become more negative toward drugs, this change in attitude could be an effect of the treatment, but it could also be a matter of history or maturation. If it really is an effect of the treatment, then students in the treatment condition should become more negative than students in the control condition. But if it is a matter of history (e.g., news of a celebrity drug overdose) or maturation (e.g., improved reasoning), then students in the two conditions would be likely to show similar amounts of change. This type of design does not completely eliminate the possibility of confounding variables, however. Something could occur at one of the schools but not the other (e.g., a student drug overdose), so students at the first school would be affected by it while students at the other school would not.
Finally, if participants in this kind of design are randomly assigned to conditions, it becomes a true experiment rather than a quasi experiment. In fact, it is the kind of experiment that Eysenck called for—and that has now been conducted many times—to demonstrate the effectiveness of psychotherapy.
Key Takeaways
- Quasi-experimental research involves the manipulation of an independent variable without the random assignment of participants to conditions or orders of conditions. Among the important types are nonequivalent groups designs, pretest-posttest, and interrupted time-series designs.
- Quasi-experimental research eliminates the directionality problem because it involves the manipulation of the independent variable. It does not eliminate the problem of confounding variables, however, because it does not involve random assignment to conditions. For these reasons, quasi-experimental research is generally higher in internal validity than correlational studies but lower than true experiments.
- Practice: Imagine that two professors decide to test the effect of giving daily quizzes on student performance in a statistics course. They decide that Professor A will give quizzes but Professor B will not. They will then compare the performance of students in their two sections on a common final exam. List five other variables that might differ between the two sections that could affect the results.
- regression to the mean
- spontaneous remission
- Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin. ↵
- Posternak, M. A., & Miller, I. (2001). Untreated short-term course of major depression: A meta-analysis of studies using outcomes from studies using wait-list control groups. Journal of Affective Disorders, 66 , 139–146. ↵
- Eysenck, H. J. (1952). The effects of psychotherapy: An evaluation. Journal of Consulting Psychology, 16 , 319–324. ↵
- Smith, M. L., Glass, G. V., & Miller, T. I. (1980). The benefits of psychotherapy . Baltimore, MD: Johns Hopkins University Press. ↵
Research Methods in Psychology Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.
IMAGES
VIDEO
COMMENTS
Quasi-Experimental Design Examples. 1. Smartboard Apps and Math. A school has decided to supplement their math resources with smartboard applications. The math teachers research the apps available and then choose two apps for each grade level. Before deciding on which apps to purchase, the school contacts the seller and asks for permission to ...
Revised on January 22, 2024. Like a true experiment, a quasi-experimental design aims to establish a cause-and-effect relationship between an independent and dependent variable. However, unlike a true experiment, a quasi-experiment does not rely on random assignment. Instead, subjects are assigned to groups based on non-random criteria.
Quasi-experimental designs, the unsung heroes of psychological research, offer a fascinating glimpse into the complex interplay between real-world settings and scientific inquiry. These research methods have carved out a unique niche in the field of psychology, bridging the gap between controlled laboratory experiments and the messy realities ...
A quasi-experiment is designed a lot like a true experiment except that in the quasi-experimental design, the participants are not randomly assigned to experimental groups.
Describe three different types of quasi-experimental research designs (nonequivalent groups, pretest-posttest, and interrupted time series) and identify examples of each one. The prefix quasi means "resembling.". Thus quasi-experimental research is research that resembles experimental research but is not true experimental research.
1. Higher external validity: Quasi-experimental research designs tend to have more real-world applications, especially within the social sciences. 2. Higher control over targeted hypotheses: Because the participants in the control group or comparison group are not randomized, the nonequivalent dependent variables in your study design can be ...
Quasi-experimental research designs play a vital role in scientific inquiry by allowing researchers to investigate cause-and-effect relationships in real-world settings. These designs offer practical and ethical alternatives to true experiments, making them valuable tools in various fields of study. With their versatility and applicability ...
Definition of Quasi Experimental Design. Quasi Experimental Design is a research method used in social sciences and other fields to study cause-and-effect relationships between different variables. It is called "quasi" experimental because it resembles an experimental design but lacks some key elements, such as random assignment.
Quasi-experiments are designed to maximize internal validity (confidence in cause-and-effect conclusions) despite being unable to randomly assign. At the outset, it is important to know that quasi-experiments tend to have ... For example, let's say that an elementary school teacher has a student who is acting out and disrupting class. She ...
In contrast to quasi-experiments, randomized experiments are often thought to be the gold standard when estimating the effects of treatment interventions. However, circumstances frequently arise where quasi-experiments can usefully supplement randomized experiments or when quasi-experiments can fruitfully be used in place of randomized experiments.
The prefix quasi means "resembling." Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook et al., 1979).Because the independent variable is manipulated before the dependent variable is ...
Revised on 22 January 2024. Like a true experiment, a quasi-experimental design aims to establish a cause-and-effect relationship between an independent and dependent variable. However, unlike a true experiment, a quasi-experiment does not rely on random assignment. Instead, subjects are assigned to groups based on non-random criteria.
An example of a quasi-experiment is studying a specific classroom of students to determine certain learning outcomes. ... Let's look at some more realistic and typical quasi-experiments in psychology.
The prefix quasi means "resembling." Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979). [1] Because the independent variable is manipulated before the dependent variable ...
Example Answers for Research Methods: A Level Psychology, Paper 2, June 2018 (AQA) Quasi-experiments contain a naturally occurring IV. However, in a quasi-experiment the naturally occurring IV is a difference between people that already exists (i.e. gender, age). The researcher examines the effect of this variable on the dependent variable (DV).
E Ferguson & P Bibby (2004) The design and analysis of quasi-experimental field research. In: GM Breakwell (ed.), Doing social psychology research, Chapter 3, p. 93-127. MFW Festing, P Overend, RG Das, MC Borja, M Berdoy (2002) The design of animal experiments -reducing the use of animals in research through better experimental design.
This means that sometimes to determine if a study is quasi-experiment or a true experiment, you have to dig deep into the methodology. A good example to compare a true experiment and a quasi-experiment is by looking at two very similar experiments (summaries available here): Lazar et al. (2005) on the effects of meditation on the brain
1. Lab Experiment. A laboratory experiment in psychology is a research method in which the experimenter manipulates one or more independent variables and measures the effects on the dependent variable under controlled conditions. A laboratory experiment is conducted under highly controlled conditions (not necessarily a laboratory) where ...
Updated on 04/19/2018. an experimental design in which assignment of participants to an experimental group or to a control group cannot be made at random for either practical or ethical reasons; this is usually the case in field research. Assignment of participants to conditions is usually based on self-selection (e.g., employees who have ...
The prefix quasi means "resembling.". Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979)[1].