Ohio State nav bar

The Ohio State University

  • BuckeyeLink
  • Find People
  • Search Ohio State

Research Questions & Hypotheses

Generally, in quantitative studies, reviewers expect hypotheses rather than research questions. However, both research questions and hypotheses serve different purposes and can be beneficial when used together.

Research Questions

Clarify the research’s aim (farrugia et al., 2010).

  • Research often begins with an interest in a topic, but a deep understanding of the subject is crucial to formulate an appropriate research question.
  • Descriptive: “What factors most influence the academic achievement of senior high school students?”
  • Comparative: “What is the performance difference between teaching methods A and B?”
  • Relationship-based: “What is the relationship between self-efficacy and academic achievement?”
  • Increasing knowledge about a subject can be achieved through systematic literature reviews, in-depth interviews with patients (and proxies), focus groups, and consultations with field experts.
  • Some funding bodies, like the Canadian Institute for Health Research, recommend conducting a systematic review or a pilot study before seeking grants for full trials.
  • The presence of multiple research questions in a study can complicate the design, statistical analysis, and feasibility.
  • It’s advisable to focus on a single primary research question for the study.
  • The primary question, clearly stated at the end of a grant proposal’s introduction, usually specifies the study population, intervention, and other relevant factors.
  • The FINER criteria underscore aspects that can enhance the chances of a successful research project, including specifying the population of interest, aligning with scientific and public interest, clinical relevance, and contribution to the field, while complying with ethical and national research standards.
Feasible
Interesting
Novel
Ethical
Relevant
  • The P ICOT approach is crucial in developing the study’s framework and protocol, influencing inclusion and exclusion criteria and identifying patient groups for inclusion.
Population (patients)
Intervention (for intervention studies only)
Comparison group
Outcome of interest
Time
  • Defining the specific population, intervention, comparator, and outcome helps in selecting the right outcome measurement tool.
  • The more precise the population definition and stricter the inclusion and exclusion criteria, the more significant the impact on the interpretation, applicability, and generalizability of the research findings.
  • A restricted study population enhances internal validity but may limit the study’s external validity and generalizability to clinical practice.
  • A broadly defined study population may better reflect clinical practice but could increase bias and reduce internal validity.
  • An inadequately formulated research question can negatively impact study design, potentially leading to ineffective outcomes and affecting publication prospects.

Checklist: Good research questions for social science projects (Panke, 2018)

difference between hypothesis research

Research Hypotheses

Present the researcher’s predictions based on specific statements.

  • These statements define the research problem or issue and indicate the direction of the researcher’s predictions.
  • Formulating the research question and hypothesis from existing data (e.g., a database) can lead to multiple statistical comparisons and potentially spurious findings due to chance.
  • The research or clinical hypothesis, derived from the research question, shapes the study’s key elements: sampling strategy, intervention, comparison, and outcome variables.
  • Hypotheses can express a single outcome or multiple outcomes.
  • After statistical testing, the null hypothesis is either rejected or not rejected based on whether the study’s findings are statistically significant.
  • Hypothesis testing helps determine if observed findings are due to true differences and not chance.
  • Hypotheses can be 1-sided (specific direction of difference) or 2-sided (presence of a difference without specifying direction).
  • 2-sided hypotheses are generally preferred unless there’s a strong justification for a 1-sided hypothesis.
  • A solid research hypothesis, informed by a good research question, influences the research design and paves the way for defining clear research objectives.

Types of Research Hypothesis

  • In a Y-centered research design, the focus is on the dependent variable (DV) which is specified in the research question. Theories are then used to identify independent variables (IV) and explain their causal relationship with the DV.
  • Example: “An increase in teacher-led instructional time (IV) is likely to improve student reading comprehension scores (DV), because extensive guided practice under expert supervision enhances learning retention and skill mastery.”
  • Hypothesis Explanation: The dependent variable (student reading comprehension scores) is the focus, and the hypothesis explores how changes in the independent variable (teacher-led instructional time) affect it.
  • In X-centered research designs, the independent variable is specified in the research question. Theories are used to determine potential dependent variables and the causal mechanisms at play.
  • Example: “Implementing technology-based learning tools (IV) is likely to enhance student engagement in the classroom (DV), because interactive and multimedia content increases student interest and participation.”
  • Hypothesis Explanation: The independent variable (technology-based learning tools) is the focus, with the hypothesis exploring its impact on a potential dependent variable (student engagement).
  • Probabilistic hypotheses suggest that changes in the independent variable are likely to lead to changes in the dependent variable in a predictable manner, but not with absolute certainty.
  • Example: “The more teachers engage in professional development programs (IV), the more their teaching effectiveness (DV) is likely to improve, because continuous training updates pedagogical skills and knowledge.”
  • Hypothesis Explanation: This hypothesis implies a probable relationship between the extent of professional development (IV) and teaching effectiveness (DV).
  • Deterministic hypotheses state that a specific change in the independent variable will lead to a specific change in the dependent variable, implying a more direct and certain relationship.
  • Example: “If the school curriculum changes from traditional lecture-based methods to project-based learning (IV), then student collaboration skills (DV) are expected to improve because project-based learning inherently requires teamwork and peer interaction.”
  • Hypothesis Explanation: This hypothesis presumes a direct and definite outcome (improvement in collaboration skills) resulting from a specific change in the teaching method.
  • Example : “Students who identify as visual learners will score higher on tests that are presented in a visually rich format compared to tests presented in a text-only format.”
  • Explanation : This hypothesis aims to describe the potential difference in test scores between visual learners taking visually rich tests and text-only tests, without implying a direct cause-and-effect relationship.
  • Example : “Teaching method A will improve student performance more than method B.”
  • Explanation : This hypothesis compares the effectiveness of two different teaching methods, suggesting that one will lead to better student performance than the other. It implies a direct comparison but does not necessarily establish a causal mechanism.
  • Example : “Students with higher self-efficacy will show higher levels of academic achievement.”
  • Explanation : This hypothesis predicts a relationship between the variable of self-efficacy and academic achievement. Unlike a causal hypothesis, it does not necessarily suggest that one variable causes changes in the other, but rather that they are related in some way.

Tips for developing research questions and hypotheses for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues, and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Ensure that the research question and objectives are answerable, feasible, and clinically relevant.

If your research hypotheses are derived from your research questions, particularly when multiple hypotheses address a single question, it’s recommended to use both research questions and hypotheses. However, if this isn’t the case, using hypotheses over research questions is advised. It’s important to note these are general guidelines, not strict rules. If you opt not to use hypotheses, consult with your supervisor for the best approach.

Farrugia, P., Petrisor, B. A., Farrokhyar, F., & Bhandari, M. (2010). Practical tips for surgical research: Research questions, hypotheses and objectives.  Canadian journal of surgery. Journal canadien de chirurgie ,  53 (4), 278–281.

Hulley, S. B., Cummings, S. R., Browner, W. S., Grady, D., & Newman, T. B. (2007). Designing clinical research. Philadelphia.

Panke, D. (2018). Research design & method selection: Making good choices in the social sciences.  Research Design & Method Selection , 1-368.

help for assessment

  • Customer Reviews
  • Extended Essays
  • IB Internal Assessment
  • Theory of Knowledge
  • Literature Review
  • Dissertations
  • Essay Writing
  • Research Writing
  • Assignment Help
  • Capstone Projects
  • College Application
  • Online Class

Research Questions vs Hypothesis: What’s The Difference?

Author Image

by  Antony W

August 1, 2024

research questions vs hypothesis

You’ll need to come up with a research question or a hypothesis to guide your next research project. But what is a hypothesis in the first place? What is the perfect definition for a research question? And, what’s the difference between the two?

In this guide to research questions vs hypothesis, we’ll look at the definition of each component and the difference between the two.

We’ll also look at when a research question and a hypothesis may be useful and provide you with some tips that you can use to come up with hypothesis and research questions that will suit your research topic . 

Let’s get to it.

What’s a Research Question?

We define a research question as the exact question you want to answer on a given topic or research project. Good research questions should be clear and easy to understand, allow for the collection of necessary data, and be specific and relevant to your field of study.

Research questions are part of heuristic research methods, where researchers use personal experiences and observations to understand a research subject. By using such approaches to explore the question, you should be able to provide an analytical justification of why and how you should respond to the question. 

While it’s common for researchers to focus on one question at a time, more complex topics may require two or more questions to cover in-depth.

When is a Research Question Useful? 

A research question may be useful when and if: 

  • There isn’t enough previous research on the topic
  • You want to report a wider range out of outcome when doing your research project
  • You want to conduct a more open ended inquiries 

Perhaps the biggest drawback with research questions is that they tend to researchers in a position to “fish expectations” or excessively manipulate their findings.

Again, research questions sometimes tend to be less specific, and the reason is that there often no sufficient previous research on the questions.

What’s a Hypothesis? 

A hypothesis is a statement you can approve or disapprove. You develop a hypothesis from a research question by changing the question into a statement.

Primarily applied in deductive research, it involves the use of scientific, mathematical, and sociological findings to agree to or write off an assumption.

Researchers use the null approach for statements they can disapprove. They take a hypothesis and add a “not” to it to make it a working null hypothesis.

A null hypothesis is quite common in scientific methods. In this case, you have to formulate a hypothesis, and then conduct an investigation to disapprove the statement.

If you can disapprove the statement, you develop another hypothesis and then repeat the process until you can’t disapprove the statement.

In other words, if a hypothesis is true, then it must have been repeatedly tested and verified.

The consensus among researchers is that, like research questions, a hypothesis should not only be clear and easy to understand but also have a definite focus, answerable, and relevant to your field of study. 

When is a Hypothesis Useful?

A hypothesis may be useful when or if:

  • There’s enough previous research on the topic
  • You want to test a specific model or a particular theory
  • You anticipate a likely outcome in advance 

The drawback to hypothesis as a scientific method is that it can hinder flexibility, or possibly blind a researcher not to see unanticipated results.

Research Question vs Hypothesis: Which One Should Come First 

Researchers use scientific methods to hone on different theories. So if the purpose of the research project were to analyze a concept, a scientific method would be necessary.

Such a case requires coming up with a research question first, followed by a scientific method.

Since a hypothesis is part of a research method, it will come after the research question.

Research Question vs Hypothesis: What’s the Difference? 

The following are the differences between a research question and a hypothesis.

We look at the differences in purpose and structure, writing, as well as conclusion. 

Research Questions vs Hypothesis: Some Useful Advice 

As much as there are differences between hypothesis and research questions, you have to state either one in the introduction and then repeat the same in the conclusion of your research paper.

Whichever element you opt to use, you should clearly demonstrate that you understand your topic, have achieved the goal of your research project, and not swayed a bit in your research process.

If it helps, start and conclude every chapter of your research project by providing additional information on how you’ve or will address the hypothesis or research question.

You should also include the aims and objectives of coming up with the research question or formulating the hypothesis. Doing so will go a long way to demonstrate that you have a strong focus on the research issue at hand. 

Research Questions vs Hypothesis: Conclusion 

If you need help with coming up with research questions, formulating a hypothesis, and completing your research paper writing , feel free to talk to us. 

About the author 

Antony W is a professional writer and coach at Help for Assessment. He spends countless hours every day researching and writing great content filled with expert advice on how to write engaging essays, research papers, and assignments.

difference between hypothesis research

What Is A Research (Scientific) Hypothesis? A plain-language explainer + examples

By:  Derek Jansen (MBA)  | Reviewed By: Dr Eunice Rautenbach | June 2020

If you’re new to the world of research, or it’s your first time writing a dissertation or thesis, you’re probably noticing that the words “research hypothesis” and “scientific hypothesis” are used quite a bit, and you’re wondering what they mean in a research context .

“Hypothesis” is one of those words that people use loosely, thinking they understand what it means. However, it has a very specific meaning within academic research. So, it’s important to understand the exact meaning before you start hypothesizing. 

Research Hypothesis 101

  • What is a hypothesis ?
  • What is a research hypothesis (scientific hypothesis)?
  • Requirements for a research hypothesis
  • Definition of a research hypothesis
  • The null hypothesis

What is a hypothesis?

Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:

Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.

In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:

Hypothesis: sleep impacts academic performance.

This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.

But that’s not good enough…

Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .

What is a research hypothesis?

A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .

Let’s take a look at these more closely.

Need a helping hand?

difference between hypothesis research

Hypothesis Essential #1: Specificity & Clarity

A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).

Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.

As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.

Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.

A good research hypothesis needs to be very clear about what’s being assessed and very specific about the expected outcome.

Hypothesis Essential #2: Testability (Provability)

A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.

For example, consider the hypothesis we mentioned earlier:

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.  

We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference. 

Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?

So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂

A good research hypothesis must be testable. In other words, you must able to collect observable data in a scientifically rigorous fashion to test it.

Defining A Research Hypothesis

You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.

A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.

So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.

What about the null hypothesis?

You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.

For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.

At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.

And there you have it – hypotheses in a nutshell. 

If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.

difference between hypothesis research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

17 Comments

Lynnet Chikwaikwai

Very useful information. I benefit more from getting more information in this regard.

Dr. WuodArek

Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc

Afshin

In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin

GANDI Benjamin

This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.

Lucile Dossou-Yovo

Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?

Pereria

It’s a counter-proposal to be proven as a rejection

Egya Salihu

Please what is the difference between alternate hypothesis and research hypothesis?

Mulugeta Tefera

It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?

Derek Jansen

In qualitative research, one typically uses propositions, not hypotheses.

Samia

could you please elaborate it more

Patricia Nyawir

I’ve benefited greatly from these notes, thank you.

Hopeson Khondiwa

This is very helpful

Dr. Andarge

well articulated ideas are presented here, thank you for being reliable sources of information

TAUNO

Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)

I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?

Tesfaye Negesa Urge

this is very important note help me much more

Elton Cleckley

Hi” best wishes to you and your very nice blog” 

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic & molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids & bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals & rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants & mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition & subtraction addition & subtraction, sciencing_icons_multiplication & division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations & expressions equations & expressions, sciencing_icons_ratios & proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents & logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science Fair Project Ideas for Kids, Middle & High School Students ⋅
  • Probability & Statistics

The Difference Between Research Questions & Hypothesis

Researchers use one or both of these tools to guide their research.

To Calculate Arcsine, What Buttons Do You Press on a Scientific ...

Research questions and hypothesis are tools used in similar ways for different research methods. Both hypothesis and research questions are written before research begins and are used to help guide the research. Hypothesis are used in deductive research, where researchers use logic and scientific findings to either prove or disprove assumptions. Heuristic research is based on experience, where researchers use observations to learn about the research subject.

Definitions

A hypothesis is defined as an educated guess, while a research question is simply the researcher wondering about the world. Hypothesis are part of the scientific research method. They are employed in research in science, sociology, mathematics and more. Research questions are part of heuristic research methods, and are also used in many fields including literature, and sociology.

As its name suggests, research questions are always written as questions. Hypothesis are written as statements preceded with the words "I predict." For example, a research question would ask, "What is the effect of heat on the effectiveness of bleach?" A hypothesis would state, "I predict heat will diminish the effectiveness of bleach."

Before Writing

Before writing a hypothesis, the researcher must determine what others have discovered about this subject. On the other hand, a research question requires less preparation, but focus and structure is critical.

For example, a researcher using a hypothesis would look up studies about bleach, information on the chemical properties of the chemical when heated and data about its effectiveness before writing the hypothesis. When using a research question, the researcher would think about how to phrase the question to ensure its scope is not too broad, too narrow or impossible to answer.

Writing Conclusions

When writing the conclusion for research conducted using a hypothesis, the researcher will write whether the hypothesis was correct or incorrect, followed by an explanation of the results of the research. The researcher using only a research question will write the answer to the question, followed by the findings of the research.

Related Articles

To calculate arcsine, what buttons do you press on..., what does data mean in a science fair project, how to test for acidity with litmus paper, how to write a hypothesis of magic milk for 5th grade, difference between proposition & hypothesis, what are the 8 steps in scientific research, how to write a summary on a science project, how to calculate a p-value, what is a quotient & dividend, how to calculate calibration curves, research methods in science, test your knowledge on middle school science, how to use log on a ti-83, how to calculate solubilities, how to calculate a standard score, science project ideas & the scientific method, how to convert pounds per square foot to psi, density vs. concentration, what is an engineering goal in a science project, what is the purpose of factor analysis.

  • The Research Assistant: The Relationship Between the Research Question, Hypotheses, Specific Aims, and Long-Term Goals of the Project

About the Author

Alane Michaelson began writing professionally in 2002. Her work has appeared in Michigan publications such as the "Detroit Free Press" and the "Flint Journal." Michaelson graduated from Oakland University in 2006, earning a Bachelor of Arts in journalism.

Photo Credits

Photos.com/liquidlibrary/Getty Images

Find Your Next Great Science Fair Project! GO

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

difference between hypothesis research

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

difference between hypothesis research

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

difference between hypothesis research

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

difference between hypothesis research

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

difference between hypothesis research

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

research funding sources

What are the Best Research Funding Sources

inductive research

Inductive vs. Deductive Research Approach

Research Hypothesis In Psychology: Types, & Examples

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Theoretical Framework

Theoretical Framework – Types, Examples and...

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

Appendix in Research Paper

Appendix in Research Paper – Examples and...

Research Problem

Research Problem – Examples, Types and Guide

Critical Analysis

Critical Analysis – Types, Examples and Writing...

Research Project

Research Project – Definition, Writing Guide and...

  • Translators
  • Graphic Designers

Solve

Please enter the email address you used for your account. Your sign in information will be sent to your email address after it has been verified.

How Does a Hypothesis Differ From a Research Question?

David Costello

To understand the difference between a hypothesis and a research question , we must first define the exact nature of scientific inquiry . Essentially, scientific inquiry represents a structured and systematic approach to exploration and discovery, grounded in empirical evidence and guided by the principles of logical reasoning and critical analysis. At the heart of scientific inquiry lies a fundamental commitment to unbiased observation and the rigorous assessment of information, a process that seeks to generate verifiable knowledge based on well-founded theories and methodological robustness.

A pivotal facet of successful scientific investigation is the appropriate framing of research, which serves to delineate the scope and direction of the scholarly endeavor. The meticulous articulation of research parameters not only guides investigators in the methodical exploration of a particular phenomenon but also ensures the reliability and validity of the findings derived from it. Correctly framing a research endeavor equips scholars with a clear framework, thereby preventing research ambiguities and facilitating a coherent and purposeful investigative journey.

Central to the framing of research are two interrelated yet distinct elements: the research question and the hypothesis. While the research question generally articulates the primary inquiry or set of inquiries to be addressed in a study, offering a focal point for the exploration, a hypothesis presents a tentative, testable prediction regarding the expected outcomes of the research. It is grounded in the existing literature and theoretical frameworks, serving as a provisional answer to the research question that is subject to empirical verification.

In essence, a research question seeks to identify and explore potential relationships, patterns, or trends, fostering a deep understanding of the underlying phenomena. In contrast, a hypothesis endeavors to affirm or refute predetermined assumptions through methodical testing and validation, aiming to substantiate or discredit specific theoretical postulates.

To correctly formulate and differentiate between research questions and hypotheses, let us investigate each one in further detail.

Understanding hypotheses

Crafting a well-defined hypothesis is a pivotal step in scholarly research. This task necessitates a profound grasp of the subject matter alongside a comprehensive awareness of existing scholarly dialogues and theories relevant to the topic. The hypothesis acts as a foundational pillar that directs the analytical pathways of the investigation, anchoring the exploration with grounded expectations based on existing knowledge.

In the formulation of a hypothesis, researchers must adhere to vital principles to ensure the creation of a substantial and verifiable statement. A robust hypothesis is delineated by several attributes, including precision, testability, and a congruent alignment with established research and theories. Moreover, it is formulated to facilitate empirical substantiation, aiming to either confirm or refute the established propositions through systematic investigation.

To deepen our comprehension of a hypothesis, let us examine some examples in different research contexts, illustrating how a hypothesis can shape and steer a study:

  • Individuals between the ages of 40 and 60 who engage in regular physical activity are less likely to develop heart diseases than those who do not.
  • Adolescents who experience traumatic events during the COVID-19 pandemic have a higher prevalence of mental health issues than those who do not.
  • Remote learning hampers the development of social skills in elementary school students more than traditional classroom learning does.
  • Implementing multicultural education strategies diminishes the achievement gap in multicultural classrooms.
  • Marine ecosystems that experience high levels of plastic pollution exhibit a substantial reduction in biodiversity.
  • Urbanization leads to a significant decrease in biodiversity in metropolitan areas due to habitat loss.
  • Voting behavior in urban communities is significantly influenced by the socioeconomic status of the individuals.
  • The prevalent use of social media significantly influences the formation of societal norms and behaviors in contemporary society.
  • The integration of artificial intelligence in manufacturing elevates efficiency and productivity.
  • An increased dependence on digital platforms compromises personal privacy and heightens the risk of data security breaches.

Each of these hypothesis examples is constructed to offer focused and testable propositions, rooted in contemporary concerns, creating a pathway for empirical verification and the generation of data-driven insights.

Understanding research questions

A critical first step in any research endeavor is the formulation of a research question, a task that requires a deep understanding of both the topic at hand and the existing scholarly landscape surrounding it. The research question serves as the beacon that guides the trajectory of the investigation, providing a focal point that centers the research activities and objectives.

In constructing a research question, scholars must be guided by certain key principles to ensure that their inquiry is both meaningful and fruitful. A well-framed research question is characterized by clarity, specificity, and a sensible alignment with existing research, which aids in building upon established foundations to foster novel insights within its scholarly domain.

To further understand the concept of research questions, let us consider some concrete examples from various fields that illustrate how a well-articulated research question can guide a research project:

  • How does lifestyle affect the risk of heart disease in adults aged 40-60?
  • What impact has the COVID-19 pandemic had on mental health outcomes in adolescents?
  • How does remote learning impact the academic performance and social skills of elementary school students?
  • What strategies can be employed to reduce the achievement gap in multicultural classrooms?
  • What are the effects of plastic waste on marine ecosystems?
  • How does urbanization impact biodiversity in metropolitan regions?
  • How do socioeconomic factors influence voting behavior in urban communities?
  • What role does social media play in shaping contemporary societal norms and behaviors?
  • How does the implementation of artificial intelligence in manufacturing enhance efficiency and productivity?
  • What are the implications of increasing reliance on digital platforms for personal privacy and data security?

Each of these research question examples not only maintains a clear focus on a specific topic but also stands grounded in current concerns, thereby paving the way for empirical exploration and data-driven conclusions.

Key differences between a hypothesis and a research question

In scholarly research, it is imperative to differentiate clearly between a hypothesis and a research question. The following table delineates the comparative aspects of both concepts:

AspectHypothesisResearch Question
DefinitionA testable statement based on existing knowledge and theories.A question that guides the research, aiming to explore a specific aspect of the study topic.
PurposeTo propose a possible explanation for a phenomenon that can be tested.To identify a topic or issue to be explored and analyzed.
FormationFormed based on literature review and theoretical understanding.Formed through a process of inquiry into the existing literature and identifying gaps or unanswered questions.
TestabilityIt should be testable through experimentation or analysis.It may not be directly testable but guides the research towards data collection and analysis.
ScopeGenerally narrower, focusing on a specific prediction or explanation.Can be broader, seeking to explore a topic deeply and from various angles.
Use in ResearchOften used in experimental, .Frequently utilized in to explore and understand phenomena in depth.
Outcome ExpectationSeeks to prove or disprove a specific statement.Aims to answer open-ended questions and does not seek to prove or disprove a statement.
FlexibilityGenerally fixed; alterations can significantly affect the research outcomes.Can be more flexible, allowing for refinements throughout the research process.
Structural ComplexityCan vary; generally seeks to maintain a level of simplicity to facilitate testing.May involve complex, multi-faceted questions to encourage broad exploration.
FoundationOften grounded in established theories and preliminary research.Can be grounded in a perceived gap in knowledge or arising from exploratory research.
Role in Deductive and Inductive ResearchCentral in deductive research where it guides testing and validation.More frequently used in inductive research where the goal is to develop a theory.

When to use which

The decision to use a hypothesis or a research question largely hinges on the nature and objectives of the study. Essentially, researchers delineate between exploratory and confirmatory research . The former seeks to explore new phenomena and generate new insights, while the latter aims to verify existing theories and hypotheses. Understanding the correct circumstance for employing either a research question or a hypothesis can significantly streamline the research process, directing it towards more targeted conclusions. Let's delve into the specific situations where one may be more appropriate over the other.

Situations where a hypothesis is more appropriate

  • Confirmatory Research: When the research is grounded in existing theories and seeks to validate or invalidate a specific claim or relationship.
  • Quantitative Studies: In research designs that predominantly involve statistical analysis of numerical data to address the research problem.
  • Experimental Research: Where controlled experiments are conducted to explore the causal relationships between different variables.
  • Deductive Approaches: When the research follows a deductive approach , deriving a specific prediction from a general theory.

Situations where a research question is more appropriate

  • Exploratory Research: In studies aiming to explore a new field or topic without much existing literature or established theories.
  • Qualitative Research: When the study involves analyzing non-numerical data such as texts, interviews, or observational data to garner insights.
  • Pilot Studies: Preliminary studies that aim to identify potential issues and refine research tools before a large-scale study.
  • Inductive Approaches: Research approaches that work from specific observations to broader generalizations, aiming to develop new theories.

The interrelation between hypotheses and research questions

Understanding how a research question can give rise to hypotheses.

In scholarly inquiries, the formation of a hypothesis often finds its genesis in a well-articulated research question. This dynamic represents a pivotal juncture in research methodology, facilitating a transition from questioning to hypothesizing and setting the stage for focused analytical scrutiny. Leveraging the exploratory nature of research questions can foster the formulation of grounded hypotheses, guiding the investigative trajectory towards evidence-based conclusions.

Indeed, a well-structured research question can give rise to a series of hypotheses, each presenting a plausible answer to the research question and serving as a focal point for systematic investigation. This correlation facilitates a scaffolded approach to exploration, where researchers can build a layered understanding through a structured inquiry process.

Can a hypothesis transform into a research question?

This iterative process we have described can be envisioned as a cyclic pathway rather than a linear trajectory, wherein hypotheses, once tested and analyzed, can refine or even reformulate the initial research questions. This reflexive relationship fosters a deepened understanding and a more nuanced exploration of the research topic at hand.

To illustrate, consider a research question in the field of healthcare: "What are the primary factors influencing sleep quality in adults?" From this question, a researcher might derive several hypotheses, such as "Adults who engage in regular physical activity experience better sleep quality than those who do not." Once this hypothesis is tested, the findings could lead to further questions, fine-tuning the initial research query to delve into specific age groups, lifestyle factors, or physiological aspects, thereby perpetuating a cycle of inquiry that propels the research into deeper and more focused directions.

Research questions serve as the launchpad for scientific exploration, fostering a direction and scope that steer investigations towards relevant and focused pathways. Conversely, hypotheses act as tentative answers to these research questions, laying a grounded foundation for systematic investigations and guiding the trajectory towards evidence-based conclusions.

Selecting the right approach—whether formulating a hypothesis or crafting a research question—is not merely a procedural choice; it is a strategic decision that significantly influences the outcome of the investigation. Recognizing the interdependent and reflexive relationship between the two can foster a more robust and nuanced approach to scientific inquiry.

By embracing the cyclic pathway that intertwines questioning with hypothesizing, researchers can unlock deeper levels of understanding, paving the way for profound discoveries enriched with insight. Remember, the quality of the answers we obtain is invariably linked to the quality of the questions we ask and the hypotheses we formulate.

Header image by Luke Tanis .

Pediaa.Com

Home » Education » Difference Between Hypothesis and Research Question

Difference Between Hypothesis and Research Question

Main difference – hypothesis vs research question.

Research question and hypothesis are the foundations of a research study. Formulating the research question or developing the hypothesis can help you to decide on the approach of the research. A research question is the question the research study sets out to answer. Hypothesis is the statement the research study sets out to prove or disprove. The main difference between hypothesis and research question is that hypothesis is predictive in nature whereas research question is inquisitive in nature.

In this article, we’ll discuss,

1. What is a Hypothesis? – Meaning, Features, Characteristics, and Usage

2. What is a Research Question? – Meaning, Features, Characteristics, and Usage

Difference Between Hypothesis and Research Question - Comparison Summary

What is a Hypothesis

A hypothesis is a prediction about the relationship between two or more variables. It can be described as an educated guess about what happens in an experiment. Researchers usually tend to use hypotheses when significant knowledge is already available on the subject. The hypothesis is based on this existing knowledge. After the hypothesis is developed, the researcher can develop data, analyze and use them to support or negate the hypothesis.

Not all studies have hypotheses. They are usually used in experimental quantitative research studies. They are useful in testing a specific theory or model.  A complete hypothesis always includes the variables, population and the predicted relationship between the variables. The main disadvantage of hypotheses is that their tendency to blind a researcher to unexpected results. 

Difference Between Hypothesis and Research Question

What is a Research Question

A research question is the question a research study sets to answer. However, a research study can have more than one research question. The research methodologies , tools used to collect data, etc. all depend on the research question.

Research questions are often used in qualitative research, which seek to answer open-ended questions . But they can also be used in quantitative studies. Research questions can be used instead of hypotheses when there is little previous research on the subject. Research questions allow the researcher to conduct more open-ended queries, and a wide range of results can be reported.

A properly constructed research question should always be clear and concise. It should include the variables, population and the topic being studied.

Hypothesis is a tentative prediction about the relationship between two or more variables.

Research Question is the question a research study sets to answer.

Hypothesis is predictive in nature.

Research Question is inquisitive in nature.

Existing Research

Hypothesis can be used if there is significant knowledge or previous research on this subject.

Research Question can be used if there is little previous research on the subject.

Quantitative vs Qualitative

Hypothesis is mainly used in experimental quantitative studies.

Research Question can be used in both quantitative and qualitative studies.

Hypothesis doesn’t allow a wide range of outcomes.

Research Question allows a wide range of outcomes.

Image Courtesy: 

“Research: Mediterranean Center of Medical Sciences” by  McmScience Mediterranean Center of Medical Sciences   (CC BY 2.0)  via Flickr

' src=

About the Author: Hasa

Hasanthi is a seasoned content writer and editor with over 8 years of experience. Armed with a BA degree in English and a knack for digital marketing, she explores her passions for literature, history, culture, and food through her engaging and informative writing.

​You May Also Like These

Difference Wiki

Research Hypothesis vs. Research Question: What's the Difference?

difference between hypothesis research

Key Differences

Comparison chart, formulation, directionality, relationship to research process, research hypothesis and research question definitions, research hypothesis, research question, what is a research hypothesis, what is a research question, why is a research hypothesis important, how does a research hypothesis differ from a research question, can a study have both a research hypothesis and a research question, what types of research questions are there, what makes a good research question, how do you formulate a research hypothesis, what is a null research hypothesis, how specific should a research hypothesis be, why is a research question important, can a research hypothesis be proven, how broad can a research question be, how do research questions evolve during a study, how do you formulate a research question, how does a research hypothesis guide experimental design, how does a research question influence literature review, what role does a research question play in qualitative research, can a research hypothesis be modified, what happens if a research hypothesis is refuted.

difference between hypothesis research

Trending Comparisons

difference between hypothesis research

Popular Comparisons

difference between hypothesis research

New Comparisons

difference between hypothesis research

ThePhDHub

10 Significant Differences Between Research Question vs Research Hypothesis

Stating, developing and addressing a research question and developing & justifying the research hypothesis has vital significance in the research process. Both help researchers to approach PhD/research/ projects. 

“Research” is a word important for PhD which includes complex processes of finding new knowledge. A PhD candidate has to prepare a project & research proposal, identify a research gap , state a question, prepare a hypothesis and then do research. 

It includes tedious pre-preparation, lucrative research and frustrating post-preparations phases. So overall the research process though is inquisitive but can be managed by discipline and zero date planning. 

So to prepare for PhD, do it with ease and complete it joyfully; one has to understand every element correctly before starting their research. And for that tons and tons of articles and previous research must be read first. 

In addition, as we talked about, precisely identified research problem helps in stating an excellent research question or research hypothesis. Notwithstanding, students usually don’t understand what a research question or hypothesis is! 

The present blog content will focus on differences between research question and hypothesis and may let you understand what each term is. I hope this article will help you learn the PhD research process more accurately. 

Stay tuned,

Research question:  Does this article explain some common differences between a research question and a research hypothesis?
Research hypothesis:  This article explains the major differences between the research question and the research hypothesis. 

Example of research question: 

Some other examples of research questions are: , example of research hypothesis: , some of the examples of research hypotheses: , summary: research question vs hypothesis: , wrapping up: , what is a research question- simple explanation.

Put simply, a research question is a clear and concise question of the study that must be answered at the end. The answer usually is Yes/No type but clearly fills the gap. 

Let’s take an example, 

What are some common problems the LGBT community faces globally? 

Suppose, this one is one research question around which the researcher has to prepare its study. What can he or she do with this topic? 

  • Conduct gatherings of the community. 
  • Conduct one on one interviews. 
  • Conduct News sessions 
  • Study previous literature. 
  • Organize some Games and invite LGBT community people to take part. 

That’s it, Nothing else he or she can do.  

No statistical analysis is required and performed for this study so the outcome of this study possibly is “problems”. And it can be solved, perhaps. Note that in-depth mathematical models, statistical analysis and other scientific studies aren’t required here. 

  • What are the side effects of social media addiction on youth? 
  • What are the factors that negatively impact the mental health of US people? 
  • How effective carbon emission control strategies are? 

Now let’s understand the research hypothesis. 

What is a research hypothesis?- Simpler explanation

A research hypothesis is postulated in order to predict the results either negative or positive. Notedly is used so often in scientific, experimental and quantitative research.

The research hypothesis is a predictive model for getting results.  

Let’s take an example, 

The effect of time and temperature on biological sample transportation.

This study includes exclusive statistical analysis and data-driven studies to investigate the effect of various temperatures and times on biological specimen transportation. 

 Outcomes of the study will prove that at which temperature a biological sample can be safely transported. 

The outcomes are, 

  • Statistics 
  • The temperature which isn’t good 
  • The temperature which has is best
  • The tolerable zone for transportation

To interpret these kinds of results in-depth mathematical models, statistical analysis, scientific experiments and other biological studies are needed. 

  • The effect of time and temperature on biological sample transportation. 
  • Effect of various doses of antiviral Oseltamivir drug against viral pathogenicity. 
  • Various global warming agents and their impact.  

difference between hypothesis research

I think you get a brief idea about how each term is different. Some of the technical differences between the research question and hypothesis are explained here. 

Differences between research question and research hypothesis: 

A research question is developed depending upon the problem or gap identified while the hypothesis is prepared based on the existing knowledge. 

More than one research question is present in a single study, while the entire research is developed around a single hypothesis that is either proven or disproven at last. 

In-depth knowledge of the subject and huge data or research studies are required to state a research hypothesis; whereas the research question can be stated using a small group of research data or knowledge. 

This indicates that the relatedness among different variables is pretty uncertain for the research question while is highly related in the case of hypothesis. 

A research question is “brief” yet includes all the important information and is open to debate which typically gives an excellent varied degree of output. 

On the other hand, the research hypothesis is a kind of formal statement- (will be proved or disproved) which assumes the relatedness between two or more variables selected for the study. 

For example,

The number of patients, population size, sample type or method selected for the study. 

Both- qualitative and quantitative studies rely on the research question, however, the hypothesis can be postulated mostly for the quantitative or experimental studies. 

Depending upon the nature of the study, the research questions are of three various types which are casual, descriptive and comparative questions while the hypotheses are causal, null, directional or non-directional. 

A thesis question must be answered; A hypothesis must be tested. 

The research question is more an elaborative research term while the hypothesis is more scientific and predictive in nature. 

Henceforth, research questions are usually used in elaborate studies in subjects such as language, arts and literature. And as we said, that’s pretty straightforward. 

The impact of the “Macbeth play” on European people. 

On the other hand, the research hypothesis is based on possibilities and probabilities whose final results either or neither prove the study and therefore include a purely scientific explanation, mathematics, equations and statistical analysis. 

Studies in science, biology and sociology rely on hypotheses (that must be tested first). 

For example, the impact of temperature and time duration on sample transportation and storage. 

Definition A research question is an inquisitive query that must be answered through elaborative research.  A research hypothesis is a predictive problem statement that either approves or disapproves the research at the end. 
Nature Inquisitive/ straightforward  probability/prediction 
Structure Written as a question Written as a statement 
Example What is the impact of the water population on mankind? The possible impact of water pollutants on human health. 
Subjects Literature, arts or language Science, sociology, biology and other STEM subjects 
Outcomes Direct answer. Possible reasons for the answer.  
BackgroundStated when a little or small research or knowledge is available Stated when a significant amount of previous work in a relevant subject is available. 
ApplicationsUsed in qualitative and quantitative studies Used in quantitative, scientific and experimental studies.  

If you are designing scientific research for your PhD, perhaps stating a hypothesis may help you more, although you can raise a question as well to investigate the knowledge. 

Research, as I said, is a complex process, needs the experience to design. 

Early learning may pretty helpful for students to understand the thing well. And hence this article and series of articles on this blog are meant for PhD students. 

Dr Tushar Chauhan

Dr. Tushar Chauhan is a Scientist, Blogger and Scientific-writer. He has completed PhD in Genetics. Dr. Chauhan is a PhD coach and tutor.

Share this:

difference between hypothesis research

  • Share on Facebook
  • Share on Twitter
  • Share on Pinterest
  • Share on Linkedin
  • Share via Email

About The Author

' src=

Dr Tushar Chauhan

Related posts.

What is PhD?- History, Definition, Origin, Requirement, Fees, Duration and Process

What is PhD?- History, Definition, Origin, Requirement, Fees, Duration and Process

How to write a PhD thesis?

How to write a PhD thesis?

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Notify me of follow-up comments by email.

Notify me of new posts by email.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Null and Alternative Hypotheses | Definitions & Examples

Null & Alternative Hypotheses | Definitions, Templates & Examples

Published on May 6, 2022 by Shaun Turney . Revised on June 22, 2023.

The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test :

  • Null hypothesis ( H 0 ): There’s no effect in the population .
  • Alternative hypothesis ( H a or H 1 ) : There’s an effect in the population.

Table of contents

Answering your research question with hypotheses, what is a null hypothesis, what is an alternative hypothesis, similarities and differences between null and alternative hypotheses, how to write null and alternative hypotheses, other interesting articles, frequently asked questions.

The null and alternative hypotheses offer competing answers to your research question . When the research question asks “Does the independent variable affect the dependent variable?”:

  • The null hypothesis ( H 0 ) answers “No, there’s no effect in the population.”
  • The alternative hypothesis ( H a ) answers “Yes, there is an effect in the population.”

The null and alternative are always claims about the population. That’s because the goal of hypothesis testing is to make inferences about a population based on a sample . Often, we infer whether there’s an effect in the population by looking at differences between groups or relationships between variables in the sample. It’s critical for your research to write strong hypotheses .

You can use a statistical test to decide whether the evidence favors the null or alternative hypothesis. Each type of statistical test comes with a specific way of phrasing the null and alternative hypothesis. However, the hypotheses can also be phrased in a general way that applies to any test.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

difference between hypothesis research

The null hypothesis is the claim that there’s no effect in the population.

If the sample provides enough evidence against the claim that there’s no effect in the population ( p ≤ α), then we can reject the null hypothesis . Otherwise, we fail to reject the null hypothesis.

Although “fail to reject” may sound awkward, it’s the only wording that statisticians accept . Be careful not to say you “prove” or “accept” the null hypothesis.

Null hypotheses often include phrases such as “no effect,” “no difference,” or “no relationship.” When written in mathematical terms, they always include an equality (usually =, but sometimes ≥ or ≤).

You can never know with complete certainty whether there is an effect in the population. Some percentage of the time, your inference about the population will be incorrect. When you incorrectly reject the null hypothesis, it’s called a type I error . When you incorrectly fail to reject it, it’s a type II error.

Examples of null hypotheses

The table below gives examples of research questions and null hypotheses. There’s always more than one way to answer a research question, but these null hypotheses can help you get started.

( )
Does tooth flossing affect the number of cavities? Tooth flossing has on the number of cavities. test:

The mean number of cavities per person does not differ between the flossing group (µ ) and the non-flossing group (µ ) in the population; µ = µ .

Does the amount of text highlighted in the textbook affect exam scores? The amount of text highlighted in the textbook has on exam scores. :

There is no relationship between the amount of text highlighted and exam scores in the population; β = 0.

Does daily meditation decrease the incidence of depression? Daily meditation the incidence of depression.* test:

The proportion of people with depression in the daily-meditation group ( ) is greater than or equal to the no-meditation group ( ) in the population; ≥ .

*Note that some researchers prefer to always write the null hypothesis in terms of “no effect” and “=”. It would be fine to say that daily meditation has no effect on the incidence of depression and p 1 = p 2 .

The alternative hypothesis ( H a ) is the other answer to your research question . It claims that there’s an effect in the population.

Often, your alternative hypothesis is the same as your research hypothesis. In other words, it’s the claim that you expect or hope will be true.

The alternative hypothesis is the complement to the null hypothesis. Null and alternative hypotheses are exhaustive, meaning that together they cover every possible outcome. They are also mutually exclusive, meaning that only one can be true at a time.

Alternative hypotheses often include phrases such as “an effect,” “a difference,” or “a relationship.” When alternative hypotheses are written in mathematical terms, they always include an inequality (usually ≠, but sometimes < or >). As with null hypotheses, there are many acceptable ways to phrase an alternative hypothesis.

Examples of alternative hypotheses

The table below gives examples of research questions and alternative hypotheses to help you get started with formulating your own.

Does tooth flossing affect the number of cavities? Tooth flossing has an on the number of cavities. test:

The mean number of cavities per person differs between the flossing group (µ ) and the non-flossing group (µ ) in the population; µ ≠ µ .

Does the amount of text highlighted in a textbook affect exam scores? The amount of text highlighted in the textbook has an on exam scores. :

There is a relationship between the amount of text highlighted and exam scores in the population; β ≠ 0.

Does daily meditation decrease the incidence of depression? Daily meditation the incidence of depression. test:

The proportion of people with depression in the daily-meditation group ( ) is less than the no-meditation group ( ) in the population; < .

Null and alternative hypotheses are similar in some ways:

  • They’re both answers to the research question.
  • They both make claims about the population.
  • They’re both evaluated by statistical tests.

However, there are important differences between the two types of hypotheses, summarized in the following table.

A claim that there is in the population. A claim that there is in the population.

Equality symbol (=, ≥, or ≤) Inequality symbol (≠, <, or >)
Rejected Supported
Failed to reject Not supported

To help you write your hypotheses, you can use the template sentences below. If you know which statistical test you’re going to use, you can use the test-specific template sentences. Otherwise, you can use the general template sentences.

General template sentences

The only thing you need to know to use these general template sentences are your dependent and independent variables. To write your research question, null hypothesis, and alternative hypothesis, fill in the following sentences with your variables:

Does independent variable affect dependent variable ?

  • Null hypothesis ( H 0 ): Independent variable does not affect dependent variable.
  • Alternative hypothesis ( H a ): Independent variable affects dependent variable.

Test-specific template sentences

Once you know the statistical test you’ll be using, you can write your hypotheses in a more precise and mathematical way specific to the test you chose. The table below provides template sentences for common statistical tests.

( )
test 

with two groups

The mean dependent variable does not differ between group 1 (µ ) and group 2 (µ ) in the population; µ = µ . The mean dependent variable differs between group 1 (µ ) and group 2 (µ ) in the population; µ ≠ µ .
with three groups The mean dependent variable does not differ between group 1 (µ ), group 2 (µ ), and group 3 (µ ) in the population; µ = µ = µ . The mean dependent variable of group 1 (µ ), group 2 (µ ), and group 3 (µ ) are not all equal in the population.
There is no correlation between independent variable and dependent variable in the population; ρ = 0. There is a correlation between independent variable and dependent variable in the population; ρ ≠ 0.
There is no relationship between independent variable and dependent variable in the population; β = 0. There is a relationship between independent variable and dependent variable in the population; β ≠ 0.
Two-proportions test The dependent variable expressed as a proportion does not differ between group 1 ( ) and group 2 ( ) in the population; = . The dependent variable expressed as a proportion differs between group 1 ( ) and group 2 ( ) in the population; ≠ .

Note: The template sentences above assume that you’re performing one-tailed tests . One-tailed tests are appropriate for most studies.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

The null hypothesis is often abbreviated as H 0 . When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤).

The alternative hypothesis is often abbreviated as H a or H 1 . When the alternative hypothesis is written using mathematical symbols, it always includes an inequality symbol (usually ≠, but sometimes < or >).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (“ x affects y because …”).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses . In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Turney, S. (2023, June 22). Null & Alternative Hypotheses | Definitions, Templates & Examples. Scribbr. Retrieved August 12, 2024, from https://www.scribbr.com/statistics/null-and-alternative-hypotheses/

Is this article helpful?

Shaun Turney

Shaun Turney

Other students also liked, inferential statistics | an easy introduction & examples, hypothesis testing | a step-by-step guide with easy examples, type i & type ii errors | differences, examples, visualizations, what is your plagiarism score.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.53(4); 2010 Aug

Logo of canjsurg

Research questions, hypotheses and objectives

Patricia farrugia.

* Michael G. DeGroote School of Medicine, the

Bradley A. Petrisor

† Division of Orthopaedic Surgery and the

Forough Farrokhyar

‡ Departments of Surgery and

§ Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ont

Mohit Bhandari

There is an increasing familiarity with the principles of evidence-based medicine in the surgical community. As surgeons become more aware of the hierarchy of evidence, grades of recommendations and the principles of critical appraisal, they develop an increasing familiarity with research design. Surgeons and clinicians are looking more and more to the literature and clinical trials to guide their practice; as such, it is becoming a responsibility of the clinical research community to attempt to answer questions that are not only well thought out but also clinically relevant. The development of the research question, including a supportive hypothesis and objectives, is a necessary key step in producing clinically relevant results to be used in evidence-based practice. A well-defined and specific research question is more likely to help guide us in making decisions about study design and population and subsequently what data will be collected and analyzed. 1

Objectives of this article

In this article, we discuss important considerations in the development of a research question and hypothesis and in defining objectives for research. By the end of this article, the reader will be able to appreciate the significance of constructing a good research question and developing hypotheses and research objectives for the successful design of a research study. The following article is divided into 3 sections: research question, research hypothesis and research objectives.

Research question

Interest in a particular topic usually begins the research process, but it is the familiarity with the subject that helps define an appropriate research question for a study. 1 Questions then arise out of a perceived knowledge deficit within a subject area or field of study. 2 Indeed, Haynes suggests that it is important to know “where the boundary between current knowledge and ignorance lies.” 1 The challenge in developing an appropriate research question is in determining which clinical uncertainties could or should be studied and also rationalizing the need for their investigation.

Increasing one’s knowledge about the subject of interest can be accomplished in many ways. Appropriate methods include systematically searching the literature, in-depth interviews and focus groups with patients (and proxies) and interviews with experts in the field. In addition, awareness of current trends and technological advances can assist with the development of research questions. 2 It is imperative to understand what has been studied about a topic to date in order to further the knowledge that has been previously gathered on a topic. Indeed, some granting institutions (e.g., Canadian Institute for Health Research) encourage applicants to conduct a systematic review of the available evidence if a recent review does not already exist and preferably a pilot or feasibility study before applying for a grant for a full trial.

In-depth knowledge about a subject may generate a number of questions. It then becomes necessary to ask whether these questions can be answered through one study or if more than one study needed. 1 Additional research questions can be developed, but several basic principles should be taken into consideration. 1 All questions, primary and secondary, should be developed at the beginning and planning stages of a study. Any additional questions should never compromise the primary question because it is the primary research question that forms the basis of the hypothesis and study objectives. It must be kept in mind that within the scope of one study, the presence of a number of research questions will affect and potentially increase the complexity of both the study design and subsequent statistical analyses, not to mention the actual feasibility of answering every question. 1 A sensible strategy is to establish a single primary research question around which to focus the study plan. 3 In a study, the primary research question should be clearly stated at the end of the introduction of the grant proposal, and it usually specifies the population to be studied, the intervention to be implemented and other circumstantial factors. 4

Hulley and colleagues 2 have suggested the use of the FINER criteria in the development of a good research question ( Box 1 ). The FINER criteria highlight useful points that may increase the chances of developing a successful research project. A good research question should specify the population of interest, be of interest to the scientific community and potentially to the public, have clinical relevance and further current knowledge in the field (and of course be compliant with the standards of ethical boards and national research standards).

FINER criteria for a good research question

Feasible
Interesting
Novel
Ethical
Relevant

Adapted with permission from Wolters Kluwer Health. 2

Whereas the FINER criteria outline the important aspects of the question in general, a useful format to use in the development of a specific research question is the PICO format — consider the population (P) of interest, the intervention (I) being studied, the comparison (C) group (or to what is the intervention being compared) and the outcome of interest (O). 3 , 5 , 6 Often timing (T) is added to PICO ( Box 2 ) — that is, “Over what time frame will the study take place?” 1 The PICOT approach helps generate a question that aids in constructing the framework of the study and subsequently in protocol development by alluding to the inclusion and exclusion criteria and identifying the groups of patients to be included. Knowing the specific population of interest, intervention (and comparator) and outcome of interest may also help the researcher identify an appropriate outcome measurement tool. 7 The more defined the population of interest, and thus the more stringent the inclusion and exclusion criteria, the greater the effect on the interpretation and subsequent applicability and generalizability of the research findings. 1 , 2 A restricted study population (and exclusion criteria) may limit bias and increase the internal validity of the study; however, this approach will limit external validity of the study and, thus, the generalizability of the findings to the practical clinical setting. Conversely, a broadly defined study population and inclusion criteria may be representative of practical clinical practice but may increase bias and reduce the internal validity of the study.

PICOT criteria 1

Population (patients)
Intervention (for intervention studies only)
Comparison group
Outcome of interest
Time

A poorly devised research question may affect the choice of study design, potentially lead to futile situations and, thus, hamper the chance of determining anything of clinical significance, which will then affect the potential for publication. Without devoting appropriate resources to developing the research question, the quality of the study and subsequent results may be compromised. During the initial stages of any research study, it is therefore imperative to formulate a research question that is both clinically relevant and answerable.

Research hypothesis

The primary research question should be driven by the hypothesis rather than the data. 1 , 2 That is, the research question and hypothesis should be developed before the start of the study. This sounds intuitive; however, if we take, for example, a database of information, it is potentially possible to perform multiple statistical comparisons of groups within the database to find a statistically significant association. This could then lead one to work backward from the data and develop the “question.” This is counterintuitive to the process because the question is asked specifically to then find the answer, thus collecting data along the way (i.e., in a prospective manner). Multiple statistical testing of associations from data previously collected could potentially lead to spuriously positive findings of association through chance alone. 2 Therefore, a good hypothesis must be based on a good research question at the start of a trial and, indeed, drive data collection for the study.

The research or clinical hypothesis is developed from the research question and then the main elements of the study — sampling strategy, intervention (if applicable), comparison and outcome variables — are summarized in a form that establishes the basis for testing, statistical and ultimately clinical significance. 3 For example, in a research study comparing computer-assisted acetabular component insertion versus freehand acetabular component placement in patients in need of total hip arthroplasty, the experimental group would be computer-assisted insertion and the control/conventional group would be free-hand placement. The investigative team would first state a research hypothesis. This could be expressed as a single outcome (e.g., computer-assisted acetabular component placement leads to improved functional outcome) or potentially as a complex/composite outcome; that is, more than one outcome (e.g., computer-assisted acetabular component placement leads to both improved radiographic cup placement and improved functional outcome).

However, when formally testing statistical significance, the hypothesis should be stated as a “null” hypothesis. 2 The purpose of hypothesis testing is to make an inference about the population of interest on the basis of a random sample taken from that population. The null hypothesis for the preceding research hypothesis then would be that there is no difference in mean functional outcome between the computer-assisted insertion and free-hand placement techniques. After forming the null hypothesis, the researchers would form an alternate hypothesis stating the nature of the difference, if it should appear. The alternate hypothesis would be that there is a difference in mean functional outcome between these techniques. At the end of the study, the null hypothesis is then tested statistically. If the findings of the study are not statistically significant (i.e., there is no difference in functional outcome between the groups in a statistical sense), we cannot reject the null hypothesis, whereas if the findings were significant, we can reject the null hypothesis and accept the alternate hypothesis (i.e., there is a difference in mean functional outcome between the study groups), errors in testing notwithstanding. In other words, hypothesis testing confirms or refutes the statement that the observed findings did not occur by chance alone but rather occurred because there was a true difference in outcomes between these surgical procedures. The concept of statistical hypothesis testing is complex, and the details are beyond the scope of this article.

Another important concept inherent in hypothesis testing is whether the hypotheses will be 1-sided or 2-sided. A 2-sided hypothesis states that there is a difference between the experimental group and the control group, but it does not specify in advance the expected direction of the difference. For example, we asked whether there is there an improvement in outcomes with computer-assisted surgery or whether the outcomes worse with computer-assisted surgery. We presented a 2-sided test in the above example because we did not specify the direction of the difference. A 1-sided hypothesis states a specific direction (e.g., there is an improvement in outcomes with computer-assisted surgery). A 2-sided hypothesis should be used unless there is a good justification for using a 1-sided hypothesis. As Bland and Atlman 8 stated, “One-sided hypothesis testing should never be used as a device to make a conventionally nonsignificant difference significant.”

The research hypothesis should be stated at the beginning of the study to guide the objectives for research. Whereas the investigators may state the hypothesis as being 1-sided (there is an improvement with treatment), the study and investigators must adhere to the concept of clinical equipoise. According to this principle, a clinical (or surgical) trial is ethical only if the expert community is uncertain about the relative therapeutic merits of the experimental and control groups being evaluated. 9 It means there must exist an honest and professional disagreement among expert clinicians about the preferred treatment. 9

Designing a research hypothesis is supported by a good research question and will influence the type of research design for the study. Acting on the principles of appropriate hypothesis development, the study can then confidently proceed to the development of the research objective.

Research objective

The primary objective should be coupled with the hypothesis of the study. Study objectives define the specific aims of the study and should be clearly stated in the introduction of the research protocol. 7 From our previous example and using the investigative hypothesis that there is a difference in functional outcomes between computer-assisted acetabular component placement and free-hand placement, the primary objective can be stated as follows: this study will compare the functional outcomes of computer-assisted acetabular component insertion versus free-hand placement in patients undergoing total hip arthroplasty. Note that the study objective is an active statement about how the study is going to answer the specific research question. Objectives can (and often do) state exactly which outcome measures are going to be used within their statements. They are important because they not only help guide the development of the protocol and design of study but also play a role in sample size calculations and determining the power of the study. 7 These concepts will be discussed in other articles in this series.

From the surgeon’s point of view, it is important for the study objectives to be focused on outcomes that are important to patients and clinically relevant. For example, the most methodologically sound randomized controlled trial comparing 2 techniques of distal radial fixation would have little or no clinical impact if the primary objective was to determine the effect of treatment A as compared to treatment B on intraoperative fluoroscopy time. However, if the objective was to determine the effect of treatment A as compared to treatment B on patient functional outcome at 1 year, this would have a much more significant impact on clinical decision-making. Second, more meaningful surgeon–patient discussions could ensue, incorporating patient values and preferences with the results from this study. 6 , 7 It is the precise objective and what the investigator is trying to measure that is of clinical relevance in the practical setting.

The following is an example from the literature about the relation between the research question, hypothesis and study objectives:

Study: Warden SJ, Metcalf BR, Kiss ZS, et al. Low-intensity pulsed ultrasound for chronic patellar tendinopathy: a randomized, double-blind, placebo-controlled trial. Rheumatology 2008;47:467–71.

Research question: How does low-intensity pulsed ultrasound (LIPUS) compare with a placebo device in managing the symptoms of skeletally mature patients with patellar tendinopathy?

Research hypothesis: Pain levels are reduced in patients who receive daily active-LIPUS (treatment) for 12 weeks compared with individuals who receive inactive-LIPUS (placebo).

Objective: To investigate the clinical efficacy of LIPUS in the management of patellar tendinopathy symptoms.

The development of the research question is the most important aspect of a research project. A research project can fail if the objectives and hypothesis are poorly focused and underdeveloped. Useful tips for surgical researchers are provided in Box 3 . Designing and developing an appropriate and relevant research question, hypothesis and objectives can be a difficult task. The critical appraisal of the research question used in a study is vital to the application of the findings to clinical practice. Focusing resources, time and dedication to these 3 very important tasks will help to guide a successful research project, influence interpretation of the results and affect future publication efforts.

Tips for developing research questions, hypotheses and objectives for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Develop clear and well-defined primary and secondary (if needed) objectives.
  • Ensure that the research question and objectives are answerable, feasible and clinically relevant.

FINER = feasible, interesting, novel, ethical, relevant; PICOT = population (patients), intervention (for intervention studies only), comparison group, outcome of interest, time.

Competing interests: No funding was received in preparation of this paper. Dr. Bhandari was funded, in part, by a Canada Research Chair, McMaster University.

Research Communities by Springer Nature

What is a hypothesis.

Go to the profile of Chi-Ping Day

Share this post

Choose a social network to share with, or copy the shortened URL to share elsewhere

Share with...

...or copy the link.

What is a hypothesis?

communities.springernature.com

I got requests for commentating and revising research proposals all the time, mostly from trainees and junior PIs. However, I found a serious problem: many of them did not know how to write a hypothesis. They did not understand scientific method and, especially, the meaning of falsibility.

The beginner's level of mistake is to regard hypothesis as a re-statement of a study aim. For example, "we hypothesize that analysis of gene expression can reveal therapeutic targets." A hypothesis needs to be a theory-deduced prediction that can be tested experimentally. This is a key part of scientific method, which is frequently explained as the following procedure: (1) defining a "why" or "what" question; (2)  constructing a theory to provide an answer to the question; (3) deducing a prediction from the theory; and (4) testing the prediction by an experimental study.

Therefore, a hypothesis should be generated from a theory and predict an unknown but testable phenomenon. In other words, the hypothesis needs to be sufficient to instruct what kind of test needs to be performed. For example, a theory can be as simple as "DNA is the genetic material of cells.", to answer the question "what is genetic material composed of?". We can deduce a hypothesis from this theory: transferring the DNA from bacterial strain A into strain B will make the later to get the phenotype of the former. This was tested by British bacteriologist Frederick Griffith in 1928, validating the cellular function of DNA.    

The renowned philosopher Karl Popper defined the "testable" feature as "falsibility" of a  scientific theory. That is, a theory is scientific only when it provide the possibility to be proved wrong. Therefore, if a theory is claimed always right and provide no approach to test if it's wrong, it is not a scientific theory. For example, astrological theory drives people to find facts to match its prediction, so it is always right and therefore not scientific.    

Popper invented the concept of falsibility for the purpose to distinguish science from pseudoscience, and better theory from worse theory (e.g. Copernican model vs. Ptolemaic model). However, many people mistake that falsibility is the ONLY feature of scientific method. In such idea, as long as the hypothesis is testable in the format, it is a legit one. We can often find in a research proposal, the hypothesis is generated without the base theory and the process of deduction. For example, I've seen many like "compound X can kill cancer cells, so X can be used as a anti-cancer therapy". I am pretty sure adding salt into culture dish can kill many different kinds of cells, including cancer cells. Unfortunately, salt is never used to treat cancer patients. Again, the problem here is the lack of theory and deduction of prediction. In this example, the question could be "what kind of compound can be used to treat cancer?" The theory could be "compounds specifically killing cancer cells instead of normal cells"; so the theory needs to be further developed to instruct how to find such compounds, allowing to deduce the hypothesis. Though looked way over-simplified, this example is actually the "magic bullet" concept developed by Paul Ehrlich in 1907, and eventually evolved to the concept of targeted therapy.

In the history of scientific research, there are abundant examples of well-defined questions, development of theories, generation of hypotheses, and instruction of experimental design to test the hypothesis. We can learn scientific method from them, write a well-formed hypothesis in our research proposal, and make a good study design to test it. Unfortunately, I hardly find the history of (biomedical) research in any curriculum of undergraduate or graduate programs. I sincerely hope that the agencies of scientific education consider it.   

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Recommended content, is ai a hype, circle of connections, career transition in my 50s, in memory of a young postdoc, supernova, wow signal, and reproducibility.

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website. You can decide for yourself which categories you want to deny or allow. Please note that based on your settings not all functionalities of the site are available.

Further information can be found in our privacy policy .

Cookie Control

Customise your preferences for any tracking technology

The following allows you to customize your consent preferences for any tracking technology used to help us achieve the features and activities described below. To learn more about how these trackers help us and how they work, refer to the cookie policy. You may review and change your preferences at any time.

These trackers are used for activities that are strictly necessary to operate or deliver the service you requested from us and, therefore, do not require you to consent.

These trackers help us to deliver personalized marketing content and to operate, serve and track ads.

These trackers help us to deliver personalized marketing content to you based on your behaviour and to operate, serve and track social advertising.

These trackers help us to measure traffic and analyze your behaviour with the goal of improving our service.

These trackers help us to provide a personalized user experience by improving the quality of your preference management options, and by enabling the interaction with external networks and platforms.

Free Al Office Suite with PDF Editor

Edit Word, Excel, and PPT for FREE.

Read, edit, and convert PDFs with the powerful PDF toolkit.

Microsoft-like interface, easy to use.

Windows • MacOS • Linux • iOS • Android

banner

  • Articles of Word

How to Write a Hypothesis? [Tips with Examples]

Click here if you have ever found yourself in the position of having to wrestle with the development of a hypothesis for your research paper. As an expert writer, I have seen that this is where most students begin to sweat. It is a potpourri of theory and practice, hence rather intimidating. But not to worry because I have got your back. This guide is a pool of tips and tricks for writing a hypothesis to set the stage for compelling research.

What is a Hypothesis?

A hypothesis is a tentative statement, usually in the form of an educated guess, that provides a probable explanation for something either a phenomenon or a relationship between variables. This will, therefore, form a basis for conducting experiments and research studies, hence laying down the course of your investigation and mainly laying the ground for your conclusion.

A good hypothesis should be:

Specific and clear

Testable and falsifiable

Based upon existing knowledge

Logically consistent

Types of Hypothesis

There are different kinds of hypotheses used in research, all of which serve different purposes depending on the nature of the study. Here are eight common types:

1. The null hypothesis (H0):  asserts that there is no effect or relationship between variables. This forms a baseline for comparison. Example: "There is no difference in test scores for students who study music and for those who do not."

2. Alternative Hypothesis (H1): The hypothesis that postulates some effect or relationship between variables; it is, therefore, the opposite of the null hypothesis. For instance, "Students who study with music have different test scores than those who study in silence."

3. Simple Hypothesis: The hypothesis that states a relationship between two variables: one independent and one dependent. For example, "More sunlight increases plant growth."

4. Complex Hypothesis: This hypothesis involves the relationship of more than one variable. For example, "More sunlight and water increase plant growth."

5. Directional Hypothesis: The hypothesis which specifies the direction of the effect between variables. For instance, "Students who study with music will have higher test scores than students who study in silence."

6. Non-Directional Hypothesis: This is a hypothesis used where the relationship is indicated, but the direction is not specified. For example, "There is a difference in test scores between students who study with music and those who study in silence."

7. Associative Hypothesis: This hypothesis merely states that the change in one variable is associated with a change in another. It does not indicate cause and effect. For example: "There is a relationship between study habits and academic performance."

8. Causal Hypothesis: This hypothesis states that one variable causes a change in another. For example: "Increased study time results in higher test scores."

Understanding such types of hypotheses will help in the selection of the correct hypothesis for your research and in making your analysis clear and effective.

5 Steps to Write a Good Hypothesis [With Examples]

An excellent hypothesis provides a backbone to any scientific research. Leave some help behind in writing one? Follow this easy guide:

Step 1: Ask a Question

First, you must understand what your research question is. Suppose you want to carry out an experiment on plant growth. Your question can be, "How does sunlight affect plant growth?"

Use WPS AI to help when you get stuck. Feed it a topic, and it will come up with related questions to ask.

Step 2: Do Preliminary Research

Do some research to see what's already known about your topic. That way, you can build upon existing knowledge.

Research information in journals, books and credible websites. Then summarize what you read. This will help you formulate your hypothesis.

Step 3: Define Variables

Identify your variables:

Independent Variable: What you manipulate. For example, the amount of sun.

Dependent Variable: What you measure. For example, plant growth rate.

Clearly defining these makes your hypothesis specific and testable.

Step 4: State Your Hypothesis

State your question in the form of a hypothesis. Here are some examples:

If  then: "If plants receive more sunlight, then they will grow faster."

Comparative statements: "Plants receiving more sunlight grow faster than plants receiving less."

Correlation statements: "There is positive correlation between sunlight and plant growth." This kind of pattern makes your hypothesis easy to test.

Step 5: Refine Your Hypothesis

Revise your hypothesis to be clear and specific, and elicit feedback to improve it.

You will also need a null hypothesis, which says that there is no effect or relationship between variables. An example would be, "Sunlight has no effect on the growth of plants."

With these steps, you are now bound to come up with a testable hypothesis. WPS AI can help you in this process more efficiently.

Characteristics of a Good Hypothesis

A good hypothesis is seen as the backbone of doing effective research. Following are some key characteristics that define a good hypothesis:

A good hypothesis has to be testable either by experimentation or observation. The hypothesis should clearly predict what can be measured or observed. For example, "If it receives more sunlight, the plant will grow taller" is a testable hypothesis since it states what can be measured.

Falsifiable

A hypothesis has to be falsifiable: it should be able to prove it wrong. This feature is important because it accommodates testing in science. For example, the statement "All swans are white" is falsifiable since it just takes one black swan to disprove the claim.

A good hypothesis should be grounded in current knowledge and should be properly reasoned. It should be broad or reasonable within existing knowledge. For example, "Increasing the amount of sunlight will boost plant growth" makes sense, in that it tallies with generally known facts about photosynthesis.

Specific and Clear

What is needed is clarity and specificity. A hypothesis has to be brief, yet free from ambiguity. For instance, "Increased sunlight leads to taller plants" is clear and specific whereas "Sunlight affects plants" is too vague.

Built upon Prior Knowledge

A good hypothesis is informed by prior research and existing theories. The available knowledge enlightens it to build on what is known to find new relationships or effects. For example, "Given photosynthesis requires sunlight, increasing sunlight will enhance plant growth" is informed by available scientific understanding.

Ethical Considerations

Finally, a good hypothesis needs to consider the ethics involved. The research should not bring damage to participants or the environment. For instance, "How the new drug will affect a human when tested without testing it on animals" may present an ethical concern.

Checklist for Reviewing Your Hypothesis

To be certain that your hypothesis has the following characteristics, use this checklist to review your hypothesis:

1. Is the hypothesis testable through experimentation or observation?

2. Can the hypothesis be proven false?

3. Is the hypothesis logically deduced from known facts?

4. Is your hypothesis clear and specific?

5. Does your hypothesis relate to previous research or theories?

6. Will there be any ethical issues with the proposed research?

7. Are your independent and dependent variables well defined?

8. Is your hypothesis concise and ambiguity free?

9. Did you get feedback to help in refining your hypothesis?

10. Does your hypothesis contain a null hypothesis for comparison?

By making sure that your hypothesis has these qualities, you are much more likely to set yourself on the course of higher-quality research and larger impacts. WPS AI can help fine-tune a hypothesis to ensure it is well-structured and clear.

Using WPS to Perfect your Hypothesis

Drafting a good hypothesis is the real inception of any research project. WPS AI, with its advanced language functions, can very strongly improve this stage of your study. Here's how WPS AI can help you perfect your hypothesis:

Check Grammar and Syntax

Grammar and punctuation errors can make your hypothesis weak. WPS AI checks and corrects this with the assurance that your hypothesis is as clear as possible and professional in its presentation. For example, when your hypothesis is written, "If the temperature increases then plant growth will increases", WPS AI can correct it to "If the temperature increases, then plant growth will increase."

Rewrite Your Hypothesis for Clarity

There needs to be a clear hypothesis. WPS AI can suggest ways to reword your hypothesis so that it makes sense. If your original hypothesis is, "More sunlight will result in more significant plant growth due to photosynthesis," WPS AI can suggest, "Increased sunlight will lead to greater plant growth through enhanced photosynthesis."

Automatic Content Expansion

Sometimes, your hypothesis or the related paragraphs may require more detail. WPS AI's [Continue Writing] feature can help enlarge the content. For example, after having written, "This study will examine the effects of sunlight on plant growth", using [Continue Writing] it can enlarge it to, "This research paper is going to study how sunlight affects the growth of plants by measuring their height and their health under different amounts of sunlight over a period of six weeks."

WPS AI is a great tool that can help you in drafting a good hypothesis for your research. It will help you check grammar, syntax, clarity, and completeness. Using WPS AI , you will be assured that the results of your hypothesis will be well-written and clear to understand.

What is the difference between a hypothesis and a theory?

The hypothesis is one single testable prediction regarding some phenomenon. The theory is an explanation for some part of the natural world which is well-substantiated by a body of evidence, together with multiple hypotheses.

What do I do if my hypothesis isn't supported by my data?

If your results turn out not to support your hypothesis, analyze the data again to see why your result rejects your hypothesis. Do not manipulate the observations or experiment so that it leads to your hypothesis.

Can there be more than one hypothesis in a research study?

Yes, there may be more than one hypothesis, especially when one research study is examining several interrelated phenomena or variables. Each hypothesis has to be separately and clearly stated and tested.

Correct formulation of a strong, testable hypothesis is one of the most critical steps in the application of the scientific method and within academic research. The steps provided in this article will help you write a hypothesis that is clear, specific, and based on available knowledge. Give the tools and tips a try to elevate your academic writing and kick your research up a notch.

  • 1. How to Write a Call to Action - Steps with Examples
  • 2. How to Write a Cover Letter for Teaching Positions [Tips with Examples]
  • 3. How to Write a Bibliography [Tips with Examples]
  • 4. How to Write a Cover Letter [Tips with Examples]
  • 5. How to Write a Book Review [Tips with Examples]
  • 6. How to Write Modern Resume Examples Free 2022

difference between hypothesis research

15 years of office industry experience, tech lover and copywriter. Follow me for product reviews, comparisons, and recommendations for new apps and software.

Hypotheses versus predictions

Once upon a time there was a healthy scientific community on Twitter where we discussed science ideas and promoted our research. But alas, this community has broken apart since Twitter became X.

Here are a series of tweets I made in response to a poll by Josh Cashaback about whether we make distinctions between hypotheses and predictions in our papers and grants.

A hypothesis is a mechanism or theory that you are testing. It should be testable in a variety of ways and species. If it depends on your measurements, it is not a hypothesis. A prediction is how your specific experimental conditions and measurements will play out if the hypothesis is true. I.e when I do x, y will happen. A prediction alone is not a scientific hypothesis because the same results could be interpreted in different ways in terms of mechanism or theory. The hypothesis tells me WHY you made a particular prediction.

Ideally, when you’re proposing research you want to test your hypothesis in different ways too, this is why we need a body of literature across multiple labs, and not just a single study, to truly test a hypothesis.

difference between hypothesis research

Extract insights from customer & stakeholder interviews. At Scale.

Difference between dependent and independent variables.

Insight7

Home » Difference Between Dependent and Independent Variables

In research, understanding variable types is essential for designing and interpreting experiments effectively. Different types of variables can significantly influence research outcomes. Among these, independent and dependent variables play crucial roles in shaping study results and analyses. Knowing how these variables interact can clarify relationships and cause-effect dynamics.

Independent variables are the conditions or factors manipulated by a researcher. Conversely, dependent variables are those that respond to changes in independent variables. Recognizing these distinctions is vital, as it directly impacts how you formulate hypotheses, conduct experiments, and analyze data. As you explore further, the relationship between these variable types will become clearer, enhancing your research proficiency.

Understanding Variable Types

In understanding variable types, it's essential to differentiate between dependent and independent variables. Independent variables are those that are manipulated or changed to observe their effect on another variable. For instance, in a study exploring the impact of study time on exam performance, the study time is the independent variable. It is the factor that researchers control to see how it affects the results.

On the other hand, dependent variables are the outcomes that are measured in response to changes made in independent variables. Continuing with the previous example, exam performance becomes the dependent variable, as it depends on the amount of study time. Understanding these variable types is crucial for conducting experiments and interpreting data effectively, providing clarity in research objectives and methodologies.

What are Independent Variables?

Independent variables are key elements in research and experimentation. They represent the factors that researchers manipulate to observe their effects on dependent variables. Essentially, an independent variable is a variable that stands alone and isn’t influenced by other variables in the study. For example, if you're studying the impact of varying temperatures on plant growth, the temperature settings would be the independent variable.

Understanding independent variables is crucial in differentiating between variable types. They play a vital role in establishing cause-and-effect relationships. Researchers often change these variables to determine their effects on dependent variables, which respond to the independent variables' alterations. This interaction is fundamental in many fields, including science, social studies, and economics. By carefully controlling and manipulating independent variables, researchers can derive meaningful conclusions from their studies.

What are Dependent Variables?

Dependent variables are the outcomes or responses that researchers measure in an experiment. These variables are influenced by changes made to independent variables, effectively serving as indicators of what occurs as a result of those changes. For example, in a study examining the impact of study hours on test scores, the test score is the dependent variable.

Understanding dependent variables is crucial because they provide valuable insights into the relationship between variable types. When researchers manipulate an independent variable, they observe the effects on a dependent variable to draw conclusions about correlations and causations. This relationship helps identify patterns and trends, contributing to advancements in fields like psychology, economics, and health sciences. In summary, dependent variables tell us how outcomes are affected by specific conditions, making them essential for effective data analysis and interpretation.

Key Differences Between Variable Types

In understanding the key differences between variable types, it is essential to distinguish between independent and dependent variables. Independent variables are those that researchers manipulate or control during an experiment. They serve as the potential cause, influencing the outcome in question. In contrast, dependent variables are the effects or outcomes that are observed and measured. Essentially, these variables respond to the changes made by the independent ones.

Another vital aspect of variable types is their role in establishing relationships within research. The independent variable can be thought of as the factor that initiates changes, while the dependent variable provides valuable insights into the results of those changes. Understanding this dynamic allows researchers to create hypotheses and analyze the data effectively. By mastering these differences, one can conduct and interpret experiments more accurately, enhancing the quality of research outcomes.

Control and Manipulation

In research, control and manipulation are essential for understanding variable types. Researchers aim to isolate the influence of independent variables on dependent variables, allowing for accurate results. Control involves establishing conditions that prevent external factors from affecting the outcome, ensuring data reliability. By manipulating independent variables, researchers can observe the changes in dependent variables, creating a clearer picture of cause-and-effect relationships.

To effectively control and manipulate variables, researchers should focus on the following aspects:

Randomization : This technique minimizes selection bias, distributing participants across groups fairly. By random assignment, the influence of confounding variables is reduced, enhancing the clarity of observed effects.

Standardization : Maintaining consistent procedures for all participants ensures that any changes in dependent variables can be attributed to the manipulated independent variables. This consistency strengthens the validity of the research findings.

Replication : Repeating experiments verifies results and confirms that findings are not due to chance. Replicated studies enhance the credibility of the relationships between variable types identified in research.

By thoughtfully controlling and manipulating variables, researchers gain deeper insights into how changes can impact outcomes, ultimately contributing to the reliability of their conclusions.

Cause and Effect Relationship

Understanding the cause and effect relationship between dependent and independent variables is essential in research. This dynamic illustrates how varying one variable can influence another, giving insights into patterns and trends. For example, in an experiment, an independent variable may be manipulated to observe its impact on a dependent variable. This relationship forms the foundation of scientific inquiry, allowing researchers to establish connections and draw conclusions based on observable data.

In practical terms, the cause and effect relationship helps in formulating hypotheses and making predictions. Identifying and understanding these variable types enables researchers to isolate factors that contribute to specific outcomes. For instance, if one studies the impact of temperature on plant growth, the temperature acts as the independent variable while the plant growth is the dependent variable. By analyzing these interactions, researchers gain valuable knowledge to further their inquiries and refine their methods.

Conclusion on Variable Types in Research

In conclusion, understanding variable types is essential when conducting research. Differentiating between dependent and independent variables lays the foundation for accurate analysis and interpretation of data. Independent variables serve as the predictors or influencers, while dependent variables are the outcomes affected by these predictors. Recognizing their roles can significantly enhance the quality of research outcomes.

Effectively identifying and manipulating these variable types is crucial for sound conclusions in any research study. Researchers must grasp how changes in independent variables can lead to variations in dependent variables. This understanding not only strengthens the research design but also ensures that findings are reliable and valid for informed decision-making.

Turn interviews into actionable insights

On this Page

Random Sampling Definition in Research

You may also like, top ai customer care tools and techniques.

Insight7

AI ML Use Cases for Business Innovation

Top companies using ai in 2024.

Unlock Insights from Interviews 10x faster

difference between hypothesis research

  • Request demo
  • Get started for free

IMAGES

  1. hypothesis research difference

    difference between hypothesis research

  2. hypothesis in research methodology notes

    difference between hypothesis research

  3. Hypothesis vs Research Questions| Difference between Research Questions and Hypothesis 5Minutes Ep68

    difference between hypothesis research

  4. 10 Significant Differences Between Research Question vs Research

    difference between hypothesis research

  5. Research Hypothesis Vs Null Hypothesis

    difference between hypothesis research

  6. How to Write a Hypothesis: The Ultimate Guide with Examples

    difference between hypothesis research

COMMENTS

  1. Research Questions & Hypotheses

    The primary research question should originate from the hypothesis, not the data, and be established before starting the study. Formulating the research question and hypothesis from existing data (e.g., a database) can lead to multiple statistical comparisons and potentially spurious findings due to chance.

  2. Research Questions vs Hypothesis: What's The Difference?

    A hypothesis is a statement you can approve or disapprove. You develop a hypothesis from a research question by changing the question into a statement. Primarily applied in deductive research, it involves the use of scientific, mathematical, and sociological findings to agree to or write off an assumption. Researchers use the null approach for ...

  3. A Practical Guide to Writing Quantitative and Qualitative Research

    On the other hand, a research hypothesis is an educated statement of an expected outcome. ... .1,5,14 These questions may also aim to discover differences between groups within the context of an outcome variable (comparative research questions),1,5,14 or elucidate trends and interactions among variables (relationship research questions) ...

  4. Research Question Vs Hypothesis

    A Hypothesis is a statement that predicts the relationship between two or more variables in a research study. Hypotheses are used in studies that aim to test cause-and-effect relationships between variables. A hypothesis is a tentative explanation for an observed phenomenon, and it is often derived from existing theory or previous research.

  5. What Is A Research Hypothesis? A Simple Definition

    Hypothesis Essential #1: Specificity & Clarity. A good research hypothesis needs to be extremely clear and articulate about both what's being assessed (who or what variables are involved) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).. Let's stick with our sleepy students example and look at how this statement could be more ...

  6. The Difference Between Research Questions & Hypothesis

    A hypothesis is defined as an educated guess, while a research question is simply the researcher wondering about the world. Hypothesis are part of the scientific research method. They are employed in research in science, sociology, mathematics and more. Research questions are part of heuristic research methods, and are also used in many fields ...

  7. Research Hypothesis: Definition, Types, Examples and Quick Tips

    3. Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  8. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  9. Theory vs. Hypothesis: Basics of the Scientific Method

    Theory vs. Hypothesis: Basics of the Scientific Method. Written by MasterClass. Last updated: Jun 7, 2021 • 2 min read. Though you may hear the terms "theory" and "hypothesis" used interchangeably, these two scientific terms have drastically different meanings in the world of science.

  10. Research Questions and Hypotheses

    A hypothesis is a predictive statement about the relationship between 2 or more variables. Research questions are similar to hypotheses, but they are in question format. We expand on that general definition by splitting research questions into 3 basic types: difference questions, associational questions, and descriptive questions. For difference and associational questions, basic means that ...

  11. Research Hypothesis In Psychology: Types, & Examples

    A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. The research hypothesis is often referred to as the alternative hypothesis. ... For example, "There is a difference in performance between Group A and Group B" is a non-directional ...

  12. PDF Research Questions and Hypotheses

    difference (or relationship)" between the groups. The following example illustrates a null hypothesis. Designing Research Example 7.3 A Null Hypothesis An investigator might examine three types of reinforcement for children with autism: verbal cues, a reward, and no reinforcement. The investigator collects

  13. What is a Hypothesis

    The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

  14. How Does a Hypothesis Differ From a Research Question?

    To understand the difference between a hypothesis and a research question, we must first define the exact nature of scientific inquiry. Essentially, scientific inquiry represents a structured and systematic approach to exploration and discovery, grounded in empirical evidence and guided by the principles of logical reasoning and critical analysis. At the heart of scientific inquiry lies a ...

  15. Difference Between Hypothesis and Research Question

    A research question is the question the research study sets out to answer. Hypothesis is the statement the research study sets out to prove or disprove. The main difference between hypothesis and research question is that hypothesis is predictive in nature whereas research question is inquisitive in nature. In this article, we'll discuss, 1.

  16. Research Hypothesis vs. Research Question: What's the Difference?

    Key Differences. A research hypothesis and a research question are foundational components of any scientific study, yet they serve different purposes. A research hypothesis is a specific, testable prediction that outlines the expected outcome of the study based on existing theories or observations. It implies a relationship between two or more ...

  17. 10 Significant Differences Between Research Question vs Research Hypothesis

    A thesis question must be answered; A hypothesis must be tested. The research question is more an elaborative research term while the hypothesis is more scientific and predictive in nature. Henceforth, research questions are usually used in elaborate studies in subjects such as language, arts and literature.

  18. Should I use a research question, hypothesis, or thesis ...

    A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement. A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis —a prediction that will be confirmed or disproved by your research.

  19. 7.3: The Research Hypothesis and the Null Hypothesis

    This null hypothesis can be written as: H0: X¯ = μ H 0: X ¯ = μ. For most of this textbook, the null hypothesis is that the means of the two groups are similar. Much later, the null hypothesis will be that there is no relationship between the two groups. Either way, remember that a null hypothesis is always saying that nothing is different.

  20. What's the difference between a research hypothesis and a statistical

    The research hypothesis usually includes an explanation (" x affects y because …"). A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study, the statistical hypotheses correspond ...

  21. Null & Alternative Hypotheses

    A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation ("x affects y because …"). A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses.

  22. Research questions, hypotheses and objectives

    The null hypothesis for the preceding research hypothesis then would be that there is no difference in mean functional outcome between the computer-assisted insertion and free-hand placement techniques. After forming the null hypothesis, the researchers would form an alternate hypothesis stating the nature of the difference, if it should appear.

  23. What is a hypothesis?

    In the history of scientific research, there are abundant examples of well-defined questions, development of theories, generation of hypotheses, and instruction of experimental design to test the hypothesis. We can learn scientific method from them, write a well-formed hypothesis in our research proposal, and make a good study design to test it.

  24. Hypothesis vs research question?

    A hypothesis is a statement that prediction the relationship between variables, while a research question is a specific inquiry into a particular phenomenon or topic that a researcher aims to ...

  25. How to Write a Hypothesis? [Tips with Examples]

    3. Simple Hypothesis: The hypothesis that states a relationship between two variables: one independent and one dependent. For example, "More sunlight increases plant growth." 4. Complex Hypothesis: This hypothesis involves the relationship of more than one variable. For example, "More sunlight and water increase plant growth."

  26. Hypotheses versus predictions

    Here are a series of tweets I made in response to a poll by Josh Cashaback about whether we make distinctions between hypotheses and predictions in our papers and grants. A hypothesis is a mechanism or theory that you are testing. It should be testable in a variety of ways and species. If it depends on your measurements, it is not a hypothesis.

  27. Difference Between Dependent and Independent Variables

    Understanding this dynamic allows researchers to create hypotheses and analyze the data effectively. By mastering these differences, one can conduct and interpret experiments more accurately, enhancing the quality of research outcomes. Control and Manipulation. In research, control and manipulation are essential for understanding variable types.